Research Status and Future Development of Endpoint Detection Algorithms Based on Computer Science Language Signals

Today is an information technology era, language signal recognition technology, language signal coding technology and a variety of new language technology will be widely used in all areas of our life, such as: security field, human-computer interaction, communication field. We can accurately analyze...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 1744; číslo 3; s. 32128 - 32132
Hlavný autor: Wang, Juan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IOP Publishing 01.02.2021
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Today is an information technology era, language signal recognition technology, language signal coding technology and a variety of new language technology will be widely used in all areas of our life, such as: security field, human-computer interaction, communication field. We can accurately analyze pure speech signals and silent segments in a speech by using language signal endpoint detection technology, which will bring decisive effects to the efficiency of ASR and ASC. Three steps can be used to represent the language endpoint detection model, namely, the language signal preprocessing step, the extraction of the characteristic vector of the whole language flow, and the establishment of the language endpoint discrimination model. Finally, the speech endpoint discrimination model is established. The traditional speech endpoint detection algorithms include the two threshold method based on time domain, the universal entropy method based on frequency domain and the invert characteristic method. Aiming at the low SNR and complex noise environment, in order to obtain satisfactory endpoint detection effect, this paper proposes an endpoint detection model based on optimized Extreme Learning machine (ELM), and makes up for the deficiencies of the algorithm itself by optimizing network connection parameters[1-2].
AbstractList Today is an information technology era, language signal recognition technology, language signal coding technology and a variety of new language technology will be widely used in all areas of our life, such as: security field, human-computer interaction, communication field. We can accurately analyze pure speech signals and silent segments in a speech by using language signal endpoint detection technology, which will bring decisive effects to the efficiency of ASR and ASC. Three steps can be used to represent the language endpoint detection model, namely, the language signal preprocessing step, the extraction of the characteristic vector of the whole language flow, and the establishment of the language endpoint discrimination model. Finally, the speech endpoint discrimination model is established. The traditional speech endpoint detection algorithms include the two threshold method based on time domain, the universal entropy method based on frequency domain and the invert characteristic method. Aiming at the low SNR and complex noise environment, in order to obtain satisfactory endpoint detection effect, this paper proposes an endpoint detection model based on optimized Extreme Learning machine (ELM), and makes up for the deficiencies of the algorithm itself by optimizing network connection parameters[1-2].
Today is an information technology era, language signal recognition technology, language signal coding technology and a variety of new language technology will be widely used in all areas of our life, such as: security field, human-computer interaction, communication field. We can accurately analyze pure speech signals and silent segments in a speech by using language signal endpoint detection technology, which will bring decisive effects to the efficiency of ASR and ASC. Three steps can be used to represent the language endpoint detection model, namely, the language signal preprocessing step, the extraction of the characteristic vector of the whole language flow, and the establishment of the language endpoint discrimination model. Finally, the speech endpoint discrimination model is established. The traditional speech endpoint detection algorithms include the two threshold method based on time domain, the universal entropy method based on frequency domain and the invert characteristic method. Aiming at the low SNR and complex noise environment, in order to obtain satisfactory endpoint detection effect, this paper proposes an endpoint detection model based on optimized Extreme Learning machine (ELM), and makes up for the deficiencies of the algorithm itself by optimizing network connection parameters [1-2] .
Author Wang, Juan
Author_xml – sequence: 1
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  email: wangjuan@llhc.edu.cn
  organization: LUliang University, Computer Science and Technology , China
BookMark eNqNUE1LAzEQDVLBVv0N5izU7m623fTgobb1i4Li6jnMJpOa0iZLkhX89-5SERRB5zKPmffm4w1IzzqLhJylyUWacD5KizwbTsbTSYfyERslLEszfkD6X53eF-b8iAxC2CQJa6PoE_-EAcHLV1pGiE2gYBW9bmLjkS7wDbeu3qGN1Gm6tKp2psULjCijcZbOtmvnTXzdBXoFARVta3O3q5uInpbSoJVIV2DXDayRlmZtYRtOyKFuE55-5mPycr18nt8OVw83d_PZaihZkvAhAqgcJpylGVS6GmstQampSlk1LTDTVS4rrseociYLyREYKiigUBWfcl2M2TG53M-V3oXgUQtp2h_bu6MHsxVpIjoDRWeN6GzqUC6Y2BvY6osf-tqbHfj3fyjP90rjarFxje_eFveP8_I7UdRKt2T2C_mvFR8KMJao
CitedBy_id crossref_primary_10_4018_IJCINI_386839
Cites_doi 10.1109/TSP.2006.874403
10.4028/www.scientific.net/AMM.596.723
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1742-6596/1744/3/032128
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Research Status and Future Development of Endpoint Detection Algorithms Based on Computer Science Language Signals
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1744_3_032128
JPCS_1744_3_032128
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c3008-eaad4a68312abfb5ffcadd9d13b97e2fb4cb8f5ed43c7c8ea3eda7a7db898f753
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sat Nov 29 01:45:20 EST 2025
Tue Nov 18 21:01:49 EST 2025
Wed Aug 21 03:34:09 EDT 2024
Wed Feb 24 05:40:48 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3008-eaad4a68312abfb5ffcadd9d13b97e2fb4cb8f5ed43c7c8ea3eda7a7db898f753
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1744/3/032128
PageCount 5
ParticipantIDs crossref_citationtrail_10_1088_1742_6596_1744_3_032128
crossref_primary_10_1088_1742_6596_1744_3_032128
iop_journals_10_1088_1742_6596_1744_3_032128
PublicationCentury 2000
PublicationDate 20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 20210201
  day: 01
PublicationDecade 2020
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Chang (JPCS_1744_3_032128bib8) 2006; 54
Fang (JPCS_1744_3_032128bib6) 2015; 40
Lee (JPCS_1744_3_032128bib2) 2014; 36
Wang (JPCS_1744_3_032128bib7) 2014; 50
He (JPCS_1744_3_032128bib3) 2013; 33
Zhang (JPCS_1744_3_032128bib1) 2014
Lu (JPCS_1744_3_032128bib9) 2014; 34
Li (JPCS_1744_3_032128bib5) 2013; 49
Baisen (JPCS_1744_3_032128bib4) 2013
Pal (JPCS_1744_3_032128bib10) 2015
References_xml – start-page: 116
  year: 2013
  ident: JPCS_1744_3_032128bib4
  article-title: Speech Endpoint detection with Low SNR Based or HHTSM [C]
– volume: 40
  start-page: 296
  year: 2015
  ident: JPCS_1744_3_032128bib6
  article-title: Chlorophyll inversion of mixed vegetation based on continuous wavelet analysis
  publication-title: Journal of Wuhan University (Information Science)
– start-page: 192
  year: 2014
  ident: JPCS_1744_3_032128bib1
  article-title: speech endpoint detection integrating Burg spectrum estimation and signal change rate measure [J]
  publication-title: Journal of Xidian University (Natural Science)
– volume: 54
  start-page: 1965
  year: 2006
  ident: JPCS_1744_3_032128bib8
  article-title: Oice Activity Detection Based on Multiple Statistical Models [J]
  publication-title: Signal Procesing, IEEE Transactions on
  doi: 10.1109/TSP.2006.874403
– start-page: 381
  year: 2015
  ident: JPCS_1744_3_032128bib10
  article-title: Modified energy based method for word endpoints detection of continuous speech signal in real world environment [C]
– volume: 49
  start-page: 144
  year: 2013
  ident: JPCS_1744_3_032128bib5
  article-title: short-time TEO energy application in Speech Endpoint Detection with Noise [J]
  publication-title: Computer Engineering and Applications
– volume: 34
  start-page: 1386
  year: 2014
  ident: JPCS_1744_3_032128bib9
  article-title: Improved speech endpoint detection algorithm under strong noise environment [J]
  publication-title: Computer applications
– volume: 33
  year: 2013
  ident: JPCS_1744_3_032128bib3
  article-title: speech endpoint detection Based on critical band and energy entropy [J]
  publication-title: Computer applications
– volume: 36
  start-page: 714
  year: 2014
  ident: JPCS_1744_3_032128bib2
  article-title: Weighed - Finite State Transduer - based Endpoint Detection Using Probabilistic Decision Logic [J]
  publication-title: J ETRIJOURNAL
– volume: 50
  start-page: 723
  year: 2014
  ident: JPCS_1744_3_032128bib7
  article-title: The Research of Speech Recognition in Low SNR Based on GA-SVM [J]
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.596.723
SSID ssj0033337
Score 2.270192
Snippet Today is an information technology era, language signal recognition technology, language signal coding technology and a variety of new language technology will...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 32128
SubjectTerms Language Flow
Preprocessing
Speech Endpoint Detection
Speech Recognition
Title Research Status and Future Development of Endpoint Detection Algorithms Based on Computer Science Language Signals
URI https://iopscience.iop.org/article/10.1088/1742-6596/1744/3/032128
Volume 1744
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA5uU_DFuzgvI6CPzrVNL-njphsiY4rXvZVc52C2Y938_Z70Iu5BhmCfDiUnhJPmO0n65QtCFxblrhBENSmkO1ig-DDmtLIADI26d-CGTqZ489oPBgM6HIZLZ2GSaQH9V2DmQsF5CAtCHG1BDU7T90LfWG6LtCwC-EsrqEao55kF2D15K9GYwBPkhyKNE6Ulx-v3ipYyVAVa8SPh9Lb_o6k7aKuYbuJ27rGL1lS8hzYy2qdI99GsJN5hM-lcpJjFEvcymRH8g06EE427sZwmY7Bv1Dyjb8W4PRkls_H8_SPFHUiGEsO78pYIXIAG7hcbovhpPDJazQfopdd9vr5tFrcwNAUx3AjFmHSZT4ntMK65p7UATAylTXgYKEdDX3OqPSVdIgJBFSNKsoAFktOQalgNHaJqnMTqCGGfWMK3pNKcCFfaNqeBZKEjAWdCx-JuHfll5CNRSJSbmzImUfarnNLIBDQyATWWG5EoD2gdWd-O01ylY7XLJfRaVIzYdHXx86Xidw_XT8sloqnUx3-r9ARtOoYik5HAT1F1PluoM7QuPufjdNZAtU538PDYyL7nL0mc7KY
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT-MwFH5iG8SFbUCU1RIcp9M0ThPnyBaxVKUSDMPN8gqVIKmalt_PcxZEDwghkdNT5GdZz_H3bOfzZ4Ajj8lAKWqaDNMdLlBCHHPWeAiGTt07CmK_ULy570a9Hnt4iPszkLyfhcmGFfT_RbMUCi5DWBHiWAtr8JthJw6dFbRoy6OIv6w11HYW5p1cidPQv6H_a0Sm-ETlwUjnyFjN8_q8sqksNYst-ZB0kpWfau4qLFfTTnJceq3BjEnX4VdB_1T5bxjVBDziJp-TnIhUk6SQGyEfaEUks-Q81cNsgPaZGRc0rpQcPz9mo8H46SUnJ5gUNcF39W0RpAIP0q02Rsnt4NFpNm_Av-T87vSiWd3G0FTUcSSMEDoQIaNtX0grO9YqxMZYt6mMI-Nb7HPJbMfogKpIMSOo0SISkZYsZhZXRZswl2ap2QISUk-FnjZWUhXodluySIvY14g3se_JoAFhHX2uKqlyd2PGMy9-mTPGXVC5C6qzAk55GdQGeO-Ow1Kt42uXP9hzvBq5-dfFD6eKX_VPb6dLcOzY7e9VegCL_bOEdy971zuw5DvWTMEL34W58Whi9mBBvY4H-Wi_-KzfANxr8Gs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Status+and+Future+Development+of+Endpoint+Detection+Algorithms+Based+on+Computer+Science+Language+Signals&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Wang%2C+Juan&rft.date=2021-02-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1744&rft.issue=3&rft_id=info:doi/10.1088%2F1742-6596%2F1744%2F3%2F032128&rft.externalDocID=JPCS_1744_3_032128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon