Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data

The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted much attention and need to be solved urgently. In the teledermatology healthcare framework, the smartphone can acquire dermatology medical image...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of biomedical and health informatics Ročník 27; číslo 2; s. 804 - 813
Hlavní autoři: Han, Baoru, Jhaveri, Rutvij H., Wang, Han, Qiao, Dawei, Du, Jinglong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2194, 2168-2208, 2168-2208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted much attention and need to be solved urgently. In the teledermatology healthcare framework, the smartphone can acquire dermatology medical images for remote diagnosis. The dermatology medical image is vulnerable to attacks during transmission, resulting in malicious tampering or privacy data disclosure. Therefore, there is an urgent need for a watermarking scheme that doesn't tamper with the dermatology medical image and doesn't disclose the dermatology healthcare data. Federated learning is a distributed machine learning framework with privacy protection and secure encryption technology. Therefore, this paper presents a robust zero-watermarking scheme based on federated learning to solve the privacy and security issues of the teledermatology healthcare framework. This scheme trains the sparse autoencoder network by federated learning. The trained sparse autoencoder network is applied to extract image features from the dermatology medical image. Image features are undergone to two-dimensional Discrete Cosine Transform (2D-DCT) in order to select low-frequency transform coefficients for creating zero-watermarking. Experimental results show that the proposed scheme has more robustness to the conventional attack and geometric attack and achieves superior performance when compared with other zero-watermarking schemes. The proposed scheme is suitable for the specific requirements of medical images, which neither changes the important information contained in medical images nor divulges privacy data.
AbstractList The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted much attention and need to be solved urgently. In the teledermatology healthcare framework, the smartphone can acquire dermatology medical images for remote diagnosis. The dermatology medical image is vulnerable to attacks during transmission, resulting in malicious tampering or privacy data disclosure. Therefore, there is an urgent need for a watermarking scheme that doesn't tamper with the dermatology medical image and doesn't disclose the dermatology healthcare data. Federated learning is a distributed machine learning framework with privacy protection and secure encryption technology. Therefore, this paper presents a robust zero-watermarking scheme based on federated learning to solve the privacy and security issues of the teledermatology healthcare framework. This scheme trains the sparse autoencoder network by federated learning. The trained sparse autoencoder network is applied to extract image features from the dermatology medical image. Image features are undergone to two-dimensional Discrete Cosine Transform (2D-DCT) in order to select low-frequency transform coefficients for creating zero-watermarking. Experimental results show that the proposed scheme has more robustness to the conventional attack and geometric attack and achieves superior performance when compared with other zero-watermarking schemes. The proposed scheme is suitable for the specific requirements of medical images, which neither changes the important information contained in medical images nor divulges privacy data.The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted much attention and need to be solved urgently. In the teledermatology healthcare framework, the smartphone can acquire dermatology medical images for remote diagnosis. The dermatology medical image is vulnerable to attacks during transmission, resulting in malicious tampering or privacy data disclosure. Therefore, there is an urgent need for a watermarking scheme that doesn't tamper with the dermatology medical image and doesn't disclose the dermatology healthcare data. Federated learning is a distributed machine learning framework with privacy protection and secure encryption technology. Therefore, this paper presents a robust zero-watermarking scheme based on federated learning to solve the privacy and security issues of the teledermatology healthcare framework. This scheme trains the sparse autoencoder network by federated learning. The trained sparse autoencoder network is applied to extract image features from the dermatology medical image. Image features are undergone to two-dimensional Discrete Cosine Transform (2D-DCT) in order to select low-frequency transform coefficients for creating zero-watermarking. Experimental results show that the proposed scheme has more robustness to the conventional attack and geometric attack and achieves superior performance when compared with other zero-watermarking schemes. The proposed scheme is suitable for the specific requirements of medical images, which neither changes the important information contained in medical images nor divulges privacy data.
The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted much attention and need to be solved urgently. In the teledermatology healthcare framework, the smartphone can acquire dermatology medical images for remote diagnosis. The dermatology medical image is vulnerable to attacks during transmission, resulting in malicious tampering or privacy data disclosure. Therefore, there is an urgent need for a watermarking scheme that doesn't tamper with the dermatology medical image and doesn't disclose the dermatology healthcare data. Federated learning is a distributed machine learning framework with privacy protection and secure encryption technology. Therefore, this paper presents a robust zero-watermarking scheme based on federated learning to solve the privacy and security issues of the teledermatology healthcare framework. This scheme trains the sparse autoencoder network by federated learning. The trained sparse autoencoder network is applied to extract image features from the dermatology medical image. Image features are undergone to two-dimensional Discrete Cosine Transform (2D-DCT) in order to select low-frequency transform coefficients for creating zero-watermarking. Experimental results show that the proposed scheme has more robustness to the conventional attack and geometric attack and achieves superior performance when compared with other zero-watermarking schemes. The proposed scheme is suitable for the specific requirements of medical images, which neither changes the important information contained in medical images nor divulges privacy data.
Author Qiao, Dawei
Du, Jinglong
Han, Baoru
Wang, Han
Jhaveri, Rutvij H.
Author_xml – sequence: 1
  givenname: Baoru
  orcidid: 0000-0002-7867-5396
  surname: Han
  fullname: Han, Baoru
  email: baoruhan@cqmu.edu.cn
  organization: College of Medical Informatics, Chongqing Medical University, Chongqing, China
– sequence: 2
  givenname: Rutvij H.
  orcidid: 0000-0002-3285-7346
  surname: Jhaveri
  fullname: Jhaveri, Rutvij H.
  email: rutvij.jhaveri@sot.pdpu.ac.in
  organization: Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, India
– sequence: 3
  givenname: Han
  orcidid: 0000-0001-7347-3763
  surname: Wang
  fullname: Wang, Han
  email: hanwang1214@126.com
  organization: Faculty of Data Science, City University of Macau, Macao, China
– sequence: 4
  givenname: Dawei
  orcidid: 0000-0002-4144-4607
  surname: Qiao
  fullname: Qiao, Dawei
  email: daweihpu@163.com
  organization: School of Emergency Management, Henan Polytechnic University, Jiaozuo, Henan, China
– sequence: 5
  givenname: Jinglong
  orcidid: 0000-0002-4225-0425
  surname: Du
  fullname: Du, Jinglong
  email: jldu@cqu.edu.cn
  organization: College of Medical Informatics, Chongqing Medical University, Chongqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34714760$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpAyAkZIkNmwz-jeNlWyhTNBISBSGxse44N0zaTDzYzoK3x2FmWHSBN_a1vnN0dc5zcjKGEQl5ydmCc2bffbpa3i4EE3whuZBW1k_ImeB1UwnBmpPjm1t1Si5SumflNOXL1s_IqVSGK1OzM_JwudsNvYfch5GGjn4J6yll-gNjqL5DxriF-NCPP-md3-AW6RUkbGlhb7DFWICWrhDiOCNdiPQO_RTnIW-QLhGGvPEQkb6HDC_I0w6GhBeH-5x8u_nw9XpZrT5_vL2-XFVeMqartRaNaFjbCuQWtOmswtpj2yimJHaeGQ2NsqC41iCapmMtqy0YC-C5AZDn5O3edxfDrwlTdts-eRwGGDFMyQltGZemZFfQN4_Q-zDFsWznhDFSaaVqW6jXB2pab7F1u9iXWH67Y4wFMHvAx5BSxM75Pv_NNEfoB8eZmztzc2du7swdOitK_kh5NP-f5tVe0yPiP95qq5Tm8g88BJ-L
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3333229
crossref_primary_10_3390_ijerph20156539
crossref_primary_10_1155_2022_3169927
crossref_primary_10_18621_eurj_1470960
crossref_primary_10_1016_j_jisa_2023_103547
crossref_primary_10_1109_ACCESS_2024_3395997
crossref_primary_10_1109_TNSM_2024_3393969
crossref_primary_10_3390_app13106099
crossref_primary_10_1109_TDSC_2024_3353317
crossref_primary_10_1109_JBHI_2023_3298446
crossref_primary_10_1155_2022_2617107
crossref_primary_10_1109_JBHI_2023_3297525
crossref_primary_10_1051_bioconf_20248601003
crossref_primary_10_3390_jsan12060078
crossref_primary_10_1109_ACCESS_2023_3262167
crossref_primary_10_1109_ACCESS_2023_3317174
crossref_primary_10_3389_fphy_2024_1494056
crossref_primary_10_1155_2023_1566123
crossref_primary_10_1007_s10489_025_06627_7
crossref_primary_10_1016_j_bspc_2025_107871
crossref_primary_10_1109_TBDATA_2025_3527202
crossref_primary_10_1186_s40537_025_01169_8
crossref_primary_10_1109_JBHI_2022_3183644
crossref_primary_10_1109_JSTARS_2025_3586280
crossref_primary_10_1155_2022_9239381
crossref_primary_10_3390_healthcare11131911
crossref_primary_10_1109_TCSVT_2022_3174582
crossref_primary_10_1109_TDSC_2023_3340563
crossref_primary_10_1109_TBDATA_2024_3366071
crossref_primary_10_1007_s10586_025_05290_4
crossref_primary_10_1109_ACCESS_2024_3493112
crossref_primary_10_1038_s41598_025_99129_y
crossref_primary_10_1049_ipr2_12937
crossref_primary_10_1007_s11042_024_18253_5
crossref_primary_10_1016_j_asoc_2025_112747
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_1016_j_asoc_2023_110666
crossref_primary_10_1016_j_imavis_2024_104975
crossref_primary_10_1016_j_ins_2025_122511
crossref_primary_10_1109_JBHI_2022_3171852
Cites_doi 10.1109/JIOT.2021.3077803
10.1109/TPDS.2020.2996273
10.1109/SOPO.2012.6270462
10.1007/s11042-018-6877-5
10.1109/JBHI.2020.2993072
10.2196/23728
10.1109/JIOT.2020.3008906
10.1109/TMI.2015.2458702
10.1038/s42256-020-0186-1
10.1109/ACCESS.2020.3037474
10.1007/s11042-016-4130-7
10.1007/s10586-018-1905-9
10.1016/j.future.2020.10.007
10.1016/j.neucom.2021.08.062
10.1155/2021/5551520
10.1142/S0129065714500348
10.32604/cmc.2019.06037
10.1016/j.sigpro.2015.10.005
10.1109/JBHI.2020.3036422
10.1177/1833358319851684
10.1016/j.jksuci.2017.12.008
10.1109/TII.2021.3052183
10.1109/ACCESS.2020.2995015
10.1109/LSP.2017.2752459
10.1016/j.ins.2018.08.028
10.1200/CCI.20.00060
10.1109/JIOT.2021.3051433
10.1109/JBHI.2020.3040015
10.1109/ICME51207.2021.9428270
10.1016/j.comcom.2020.05.048
10.1166/jmihi.2019.2559
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2021.3123936
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 813
ExternalDocumentID 34714760
10_1109_JBHI_2021_3123936
9594451
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Technology Research Program of Chongqing Education Commission of China
  grantid: KJQN201800442
– fundername: General Project of Chongqing Natural Science Foundation of China
  grantid: cstc2020jcyj-msxmX0422
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c3005-b528280dd2e19a57f94e6ced84043efc075a849a4155a288f0d069a79aac17aa3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Wed Oct 01 17:09:39 EDT 2025
Sun Nov 30 05:26:05 EST 2025
Thu Jan 02 22:53:01 EST 2025
Tue Nov 18 22:37:16 EST 2025
Sat Nov 29 04:18:20 EST 2025
Wed Aug 27 02:48:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3005-b528280dd2e19a57f94e6ced84043efc075a849a4155a288f0d069a79aac17aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4225-0425
0000-0002-4144-4607
0000-0001-7347-3763
0000-0002-7867-5396
0000-0002-3285-7346
PMID 34714760
PQID 2773454469
PQPubID 85417
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2021_3123936
pubmed_primary_34714760
proquest_miscellaneous_2590137202
crossref_primary_10_1109_JBHI_2021_3123936
proquest_journals_2773454469
ieee_primary_9594451
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref15
ref14
ref31
ref30
Liu (ref33) 2017; 41
ref11
ref32
ref2
Sui (ref34) 2013; 30
ref1
ref17
ref16
ref19
ref18
Xiao (ref13) 2017; 53
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Wen (ref10) 2003; 2003
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref26
  doi: 10.1109/JIOT.2021.3077803
– ident: ref20
  doi: 10.1109/TPDS.2020.2996273
– ident: ref30
  doi: 10.1109/SOPO.2012.6270462
– ident: ref32
  doi: 10.1007/s11042-018-6877-5
– volume: 30
  start-page: 2552
  issue: 8
  year: 2013
  ident: ref34
  article-title: Robust watermarking for medical images based on arnold scrambling and DCT
  publication-title: J. Appl. Comput. Res.
– volume: 53
  start-page: 115
  issue: 7
  year: 2017
  ident: ref13
  article-title: Zero-watermarking scheme for medical image temper location based on hyper-chaos encryption
  publication-title: Comput. Eng. Appl.
– ident: ref7
  doi: 10.1109/JBHI.2020.2993072
– ident: ref23
  doi: 10.2196/23728
– ident: ref4
  doi: 10.1109/JIOT.2020.3008906
– ident: ref19
  doi: 10.1109/TMI.2015.2458702
– ident: ref25
  doi: 10.1038/s42256-020-0186-1
– ident: ref5
  doi: 10.1109/ACCESS.2020.3037474
– ident: ref12
  doi: 10.1007/s11042-016-4130-7
– ident: ref14
  doi: 10.1007/s10586-018-1905-9
– ident: ref21
  doi: 10.1016/j.future.2020.10.007
– ident: ref27
  doi: 10.1016/j.neucom.2021.08.062
– ident: ref35
  doi: 10.1155/2021/5551520
– ident: ref29
  doi: 10.1142/S0129065714500348
– ident: ref15
  doi: 10.32604/cmc.2019.06037
– ident: ref11
  doi: 10.1016/j.sigpro.2015.10.005
– ident: ref8
  doi: 10.1109/JBHI.2020.3036422
– ident: ref6
  doi: 10.1177/1833358319851684
– volume: 2003
  start-page: 214
  issue: 2
  year: 2003
  ident: ref10
  article-title: Concept and application of zero- watermark
  publication-title: Acta Electronica Sinica
– ident: ref16
  doi: 10.1016/j.jksuci.2017.12.008
– ident: ref1
  doi: 10.1109/TII.2021.3052183
– volume: 41
  start-page: 32
  issue: 4
  year: 2017
  ident: ref33
  article-title: Zero-watermarking algorithm based on Contourlet-DCT hybrid transform
  publication-title: Video Eng.
– ident: ref17
  doi: 10.1109/ACCESS.2020.2995015
– ident: ref28
  doi: 10.1109/LSP.2017.2752459
– ident: ref9
  doi: 10.1016/j.ins.2018.08.028
– ident: ref24
  doi: 10.1200/CCI.20.00060
– ident: ref3
  doi: 10.1109/JIOT.2021.3051433
– ident: ref22
  doi: 10.1109/JBHI.2020.3040015
– ident: ref18
  doi: 10.1109/ICME51207.2021.9428270
– ident: ref2
  doi: 10.1016/j.comcom.2020.05.048
– ident: ref31
  doi: 10.1166/jmihi.2019.2559
SSID ssj0000816896
Score 2.572928
Snippet The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 804
SubjectTerms Algorithms
Collaborative work
Computer Security
Data privacy
Delivery of Health Care
Dermatology
Discrete cosine transform
Feature extraction
Federated learning
Health care
Humans
Image acquisition
IoMT
Machine learning
Medical imaging
Medical services
Privacy
Robustness
Security
Servers
sparse autoencoder network
Watermarking
Zero-watermarking
Title Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data
URI https://ieeexplore.ieee.org/document/9594451
https://www.ncbi.nlm.nih.gov/pubmed/34714760
https://www.proquest.com/docview/2773454469
https://www.proquest.com/docview/2590137202
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB61FUK8UKAc6SUj8YQwzbV2_NjSrraVqBCHWPESTWynQi0btAe_vzOON30BpL5ZyuRQZuy57O8DeNNgZU3bWqmVQVm2ykssmkY2qsjJAzqjItmEvrysplPzaQPeDWdhvPdh85l_z8PQy3edXXGp7MiMDONpbcKm1qo_qzXUUwKBRKDjymkgaSKWsYmZpebo4mRyTslgnlGOyqBfzFxU0Lpc6oBNeeeRAsXKv6PN4HXG2_f73ifwOEaX4rg3h6ew4WfP4OHH2D_fgevju3616FrxuWtWi6X44eed_I5hlQ61c_GFdPnLixPycU6Q7JgxJ0jAiQjIeiUo2hWxWn8lKIwUk2ErmTjFJT6Hb-Ozrx8mMtItSMuY9bIZcfqVOpf7zOBIt6b0ynpXMQCPby0FF1iVBjkEwbyq2tSlpGBtEG2mEYsXsDXrZv4VCI2qSTObqdya0ukWKQ_1ulQZGqN9ZhNI17-8thGLnCkxbuqQk6SmZoXVrLA6KiyBt8Mtv3sgjv8J77A2BsGoiAT213qt41Rd1LnWRTmirNgk8Hq4TJOMOyc4892KZPiELvP55Am87O1hePbajHb__s49eMQM9f1G733YWs5X_gAe2D_Ln4v5IVnytDoMlnwLZwDrSg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAXXuURKGAkTgjTxPHa8bEFVltoVwiKqHqJJrZTIWBT7aO_v2PHm14AiZulTB7KjD0v-_sAXjVYWdO2lmtlkMtWeY5l0_BGlYI8oDMqkU3o6bQ6OTGfN-DNcBbGex83n_m3YRh7-a6zq1Aq2zUjE_C0rsH1kZQi709rDRWVSCERCbkEDThNRZnamEVudj_uTw4oHRQFZakB9itwF5W0Mksd0SmvfFIkWfl7vBn9zvjO_33xXbid4ku21xvEPdjws_tw8yh10Lfh595Vx5p1LfvSNavFkp36ece_Y1ynY_WcfSVt_vZsn7ycYyQ7DqgTJOBYgmQ9YxTvslSvP2MUSLLJsJmMvcclPoBv4w_H7yY8ES5wG1DreTMKCVjunPCFwZFujfTKelcFCB7fWgovsJIGQxCCoqra3OWkYm0QbaERy4ewOetm_jEwjarJC1soYY10ukXKRL2WqkBjtC9sBvn6l9c2oZEHUoxfdcxKclMHhdVBYXVSWAavh1vOeyiOfwlvB20MgkkRGeys9VqnybqohdalJItSJoOXw2WaZqF3gjPfrUgmnNENjD4ig0e9PQzPXpvRkz-_8wXcmhwfHdaHB9NPT2Er8NX32753YHM5X_lncMNeLH8s5s-jPV8CQGrtqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Robust+Zero-Watermarking+Scheme+Based+on+Federated+Learning+for+Securing+the+Healthcare+Data&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Han%2C+Baoru&rft.au=Jhaveri%2C+Rutvij+H.&rft.au=Wang%2C+Han&rft.au=Qiao%2C+Dawei&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=27&rft.issue=2&rft.spage=804&rft.epage=813&rft_id=info:doi/10.1109%2FJBHI.2021.3123936&rft_id=info%3Apmid%2F34714760&rft.externalDocID=9594451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon