Research on Image Classification Algorithm Based on Convolutional Neural Network
Nowadays, we are in the information age. Pictures carry a lot of information and play an indispensable role. For a large number of images, it is very important to find useful image information within the effective time. Therefore, the excellent performance of the image classification algorithm has c...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 2083; no. 3; pp. 32054 - 32058 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
IOP Publishing
01.11.2021
|
| Subjects: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nowadays, we are in the information age. Pictures carry a lot of information and play an indispensable role. For a large number of images, it is very important to find useful image information within the effective time. Therefore, the excellent performance of the image classification algorithm has certain influence factors on the result of image classification. Image classification is to input an image, and then use a certain classification algorithm to determine the category of the image. The main process of image classification: image preprocessing, image feature extraction and classifier design. Compared with the manual feature extraction of traditional machine learning, the convolutional neural network under the deep learning model can automatically extract local features and share weights. Compared with traditional machine learning algorithms, the image classification effect is better. This paper focuses on the study of image classification algorithms based on convolutional neural networks, and at the same time compares and analyzes deep belief network algorithms, and summarizes the application characteristics of different algorithms. |
|---|---|
| AbstractList | Nowadays, we are in the information age. Pictures carry a lot of information and play an indispensable role. For a large number of images, it is very important to find useful image information within the effective time. Therefore, the excellent performance of the image classification algorithm has certain influence factors on the result of image classification. Image classification is to input an image, and then use a certain classification algorithm to determine the category of the image. The main process of image classification: image preprocessing, image feature extraction and classifier design. Compared with the manual feature extraction of traditional machine learning, the convolutional neural network under the deep learning model can automatically extract local features and share weights. Compared with traditional machine learning algorithms, the image classification effect is better. This paper focuses on the study of image classification algorithms based on convolutional neural networks, and at the same time compares and analyzes deep belief network algorithms, and summarizes the application characteristics of different algorithms. |
| Author | Luo, Lihua |
| Author_xml | – sequence: 1 givenname: Lihua surname: Luo fullname: Luo, Lihua organization: College of Software Engineering, Guangdong University of science and technology , China |
| BookMark | eNqNkE1PwzAMhiM0JLbBb6BnpNKkadr0wGFUfAxNMPFxjtw22TK6ZkpaEP-edkOTQBzmiy3bj-X3HaFBbWqJ0DnBlwRzHpAkCv2YpXEQYk4DGmAaYhYdoeF-MtjXnJ-gkXMrjGkXyRDNn6WTYIulZ2pvuoaF9LIKnNNKF9DorjmpFsbqZrn2rsHJst_LTP1hqrYfQ-U9ytZuU_Np7PspOlZQOXn2k8fo7fbmNbv3Z09302wy8wuKceTnUCpW0DDFJVdRDjFVLFYAGCLWPccimRJFkhLnNI254lzRKIyBsjIuctIVY5Ts7hbWOGelEhur12C_BMGiN0b0kkUvX_TGCCp2xnTk1R-y0M1Wa2NBVwfwdMdrsxEr09rOBHcAdfEP9TDPXn4vik2p6De9UYfy |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3492389 crossref_primary_10_1088_1755_1315_1412_1_012029 |
| Cites_doi | 10.5768/JAO202041.0302007 10.1016/j.asoc.2021.107678 10.7753/IJCATR0901.1007 10.1016/j.comcom.2019.11.053 10.18280/ts.370618 10.1109/AVSS.2018.8639372 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00063 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION |
| DOI | 10.1088/1742-6596/2083/3/032054 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2083_3_032054 JPCS_2083_3_032054 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB ROL |
| ID | FETCH-LOGICAL-c3004-badf5c3290d8f4ba63f56faa0a4500354e91f17d0b3968f88f3426a35d6cb16a3 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Sat Nov 29 02:07:14 EST 2025 Tue Nov 18 22:04:18 EST 2025 Wed Aug 21 03:42:40 EDT 2024 Tue Dec 07 22:40:54 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3004-badf5c3290d8f4ba63f56faa0a4500354e91f17d0b3968f88f3426a35d6cb16a3 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032054 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1088_1742_6596_2083_3_032054 iop_journals_10_1088_1742_6596_2083_3_032054 crossref_primary_10_1088_1742_6596_2083_3_032054 |
| PublicationCentury | 2000 |
| PublicationDate | 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211101 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Tang (JPCS_2083_3_032054bib5) 2020; 9 Tan (JPCS_2083_3_032054bib6) 2021 Qiang (JPCS_2083_3_032054bib10) 2017 Aizezi (JPCS_2083_3_032054bib14) 2018 Jiang (JPCS_2083_3_032054bib2) 2019 Zhou (JPCS_2083_3_032054bib4) 2019 Daqin (JPCS_2083_3_032054bib12) 2018 Song (JPCS_2083_3_032054bib15) 2021; 1871 Wu (JPCS_2083_3_032054bib13) 2020; 150 Yunyan (JPCS_2083_3_032054bib16) Wang (JPCS_2083_3_032054bib17) 2019 Wang (JPCS_2083_3_032054bib8) 2016 Cheng (JPCS_2083_3_032054bib1) 2018 Jing (JPCS_2083_3_032054bib9) 2020; 41 Dong (JPCS_2083_3_032054bib11) 2020; 37 Chen (JPCS_2083_3_032054bib7) 2021; 2021 Li (JPCS_2083_3_032054bib3) 2020 |
| References_xml | – volume: 41 start-page: 531 year: 2020 ident: JPCS_2083_3_032054bib9 article-title: Research on weld defect image classification based on convolutional neural network [J] publication-title: Journal of Applied Optics doi: 10.5768/JAO202041.0302007 – volume: 2021 start-page: 1 year: 2021 ident: JPCS_2083_3_032054bib7 article-title: Sports Sequence Images Based on Convolutional Neural Network [J] publication-title: Mathematical Problems in Engineering – year: 2021 ident: JPCS_2083_3_032054bib6 article-title: Differential evolution with mixed mutation strategy based on deep reinforcement learning [J] doi: 10.1016/j.asoc.2021.107678 – year: 2018 ident: JPCS_2083_3_032054bib1 article-title: Research on Image Classification Based on Convolutional Neural Network – volume: 9 start-page: 037 year: 2020 ident: JPCS_2083_3_032054bib5 article-title: Research on Garbage Image Classification Method Based on Convolutional Neural Network [J] publication-title: International Journal of Computer Applications Technology and Research doi: 10.7753/IJCATR0901.1007 – volume: 1871 start-page: 8 year: 2021 ident: JPCS_2083_3_032054bib15 article-title: Research on mail classification algorithm based on improved convolutional neural network [J] publication-title: Journal of Physics: Conference Series – year: 2019 ident: JPCS_2083_3_032054bib4 article-title: Research on Image Classification Method Based on Improved Multi-channel Convolutional Neural Network Model [J] – start-page: 231 year: 2018 ident: JPCS_2083_3_032054bib12 article-title: The Algorithm Research of Image Classification Based on Deep Convolutional Network [C] – volume: 150 start-page: 729 year: 2020 ident: JPCS_2083_3_032054bib13 article-title: Application of image retrieval based on convolutional neural networks and Hu invariant moment algorithm in computer telecommunications [J] publication-title: Computer Communications doi: 10.1016/j.comcom.2019.11.053 – year: 2020 ident: JPCS_2083_3_032054bib3 article-title: Research on image classification method based on convolutional neural network [J] publication-title: Neural Computing and Applications – volume: 37 start-page: 1055 year: 2020 ident: JPCS_2083_3_032054bib11 article-title: An Image Classification Algorithm of Financial Instruments Based on Convolutional Neural Network [J] publication-title: Traitement du Signal doi: 10.18280/ts.370618 – year: 2018 ident: JPCS_2083_3_032054bib14 article-title: Research on Image Recognition Method Based on Deep Learning Algorithm [C] doi: 10.1109/AVSS.2018.8639372 – year: 2019 ident: JPCS_2083_3_032054bib2 – year: 2016 ident: JPCS_2083_3_032054bib8 article-title: Research and implementation of image classification technology based on convolutional neural network [J] publication-title: Computer Knowledge and Technology – start-page: 0 ident: JPCS_2083_3_032054bib16 article-title: Image Classification Based on transfer Learning of Convolutional neural network [C] – year: 2019 ident: JPCS_2083_3_032054bib17 article-title: Research on Improved Pedestrian Detection Algorithm Based on Convolutional Neural Network [C] doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00063 – year: 2017 ident: JPCS_2083_3_032054bib10 article-title: Research on image classification based on HP — Net convolutional neural networks [C] |
| SSID | ssj0033337 |
| Score | 2.33343 |
| Snippet | Nowadays, we are in the information age. Pictures carry a lot of information and play an indispensable role. For a large number of images, it is very important... |
| SourceID | crossref iop |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 32054 |
| SubjectTerms | Convolutional neural network Deep belief network algorithm Image classification algorithm |
| Title | Research on Image Classification Algorithm Based on Convolutional Neural Network |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032054 |
| Volume | 2083 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gA4kLb8R4TJXgSFjbpGl63KZNwGFMPMRuUZo0MGlrp23s95OkLaIHNCHRS3KwrchJbFf5bANwrZDUQaurYIgVh1j6HqQ4DqGvIsIxVhEX2DabCAcDOhpFlVyYbFaY_ls9zQsF5yosAHG0pWNoH5IgIvrHnaIWapke4AHeBHVEA2LO-iN6K60x0l-YJ0UaJkpLjNfvgioealOv4ofD6e_9x1L3wW4RbjrtnOMAbCTpIdi2sE-xOALDEnjnZKlzP9W2xbFdMg1-yG6Z0568Z_Px8mPqdLS_k4aum6Wr4sBq0aa6hx0snPwYvPZ7L907WPRYgMLU2oIxlyoQyI9cSRWOOUEqIIpzl-PAvDLiJPKUF0o3RhGhilKFtE_nKJBExJ6enIBamqXJKXCk0DurowVXx3w4Mimzeoy9RFIpYiq9BiClXpkoCpCbPhgTZh_CKWVGXcyoixl1McRydTWA-804y2twrGe50XvCivu4WE9-VSF_GHafqxRsJtXZ34Segx3fAGBs4uIFqC3nn8kl2BKr5Xgxb4J6pzcYPjXtaf0CDrXe8w |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4iwtvxJtKcKSsbdI2PcJgYoDGJEBwi9KkgUlbO22D34-TdhM7IIREL8nBjiI7sV3lsw1wqonCoNXTbky1cKkKfJfRNHYDnUSCUp0ISW2zibjVYq-vSXsGGpNcmKJfmf5znJaFgksRVoA4VsMYOnCjMInwx52RGqmZHuAhrfWVnoX5kITEtHB4IC9ji0zwi8vESMPI2Bjn9fNiU15qFnfyzek0Vv9ru2uwUoWdzkXJtQ4zWb4Bixb-KYeb0B4D8Jwid5o9tDGO7ZZpcERWdc5F960YdEbvPecS_Z4ydPUi_6wOLi5tqnzYwcLKt-C5cf1Uv3GrXguuNDW33FQoHUoSJJ5imqYiIjqMtBCeoKF5baRZ4ms_Vl5KkohpxjRB3y5IqCKZ-jjZhrm8yLMdcJREDWPU4GHsRxOTOotj6meKKZky5e9CNJYtl1UhctMPo8vtgzhj3IiMG5FxIzJOeCmyXfAmjP2yFsfvLGeoF17dy-Hv5CdT5Lft-uM0BUe17f1t0WNYal81-H2zdbcPy4HBxNhcxgOYGw0-skNYkJ-jznBwZA_tFyG14rg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Image+Classification+Algorithm+Based+on+Convolutional+Neural+Network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Luo%2C+Lihua&rft.date=2021-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2083&rft.issue=3&rft_id=info:doi/10.1088%2F1742-6596%2F2083%2F3%2F032054&rft.externalDocID=JPCS_2083_3_032054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |