ForestResNet: A Deep Learning Algorithm for Forest Image Classification
Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest ima...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 2024; číslo 1; s. 12053 - 12058 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IOP Publishing
01.09.2021
|
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest images can detect forest conditions more accurately. In this paper, a classification network, named ForestResNet, is proposed to efficiently detect forest conditions, which uses ResNet50[2] as a feature extraction network to achieve rapid and accurate extraction of image feature information. Experimental results show that the proposed network achieves excellent segmentation performance in terms of efficiency and accuracy. |
|---|---|
| AbstractList | Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of forest fires is significant for forest fire protection. The application of deep learning to the classification of smoke and fire in forest images can detect forest conditions more accurately. In this paper, a classification network, named ForestResNet, is proposed to efficiently detect forest conditions, which uses ResNet50[2] as a feature extraction network to achieve rapid and accurate extraction of image feature information. Experimental results show that the proposed network achieves excellent segmentation performance in terms of efficiency and accuracy. |
| Author | Tang, Yongqing Feng, Hao Chen, Junyan Chen, Yuan |
| Author_xml | – sequence: 1 givenname: Yongqing surname: Tang fullname: Tang, Yongqing organization: School of computer and information security, Guilin University of Electronic Technology , China – sequence: 2 givenname: Hao surname: Feng fullname: Feng, Hao organization: School of computer and information security, Guilin University of Electronic Technology , China – sequence: 3 givenname: Junyan surname: Chen fullname: Chen, Junyan organization: School of computer and information security, Guilin University of Electronic Technology , China – sequence: 4 givenname: Yuan surname: Chen fullname: Chen, Yuan organization: School of computer and information security, Guilin University of Electronic Technology , China |
| BookMark | eNqNkE1PwzAMhiM0JLbBbyBnpFKnadoGicNU2BiaAPFxjrI2GZm6pkrKgX9PS9EkEIf5Ykv2Y_t9J2hU21ohdE7gkkCWhSSNoyBhPAkjiOKQhEAiYPQIjfed0b7OshM08X4LQLtIx2gxt0759ln5B9Ve4Rm-UarBKyVdbeoNnlUb60z7vsPaOjzM4uVObhTOK-m90aaQrbH1KTrWsvLq7CdP0dv89jW_C1aPi2U-WwUF7W4GOs2o1AlwkhSak5J1T8SaS84gLmMmgcagSLZmaaQ0T9clsCKREZear2OmgU7R9bC3cNZ7p7QoTPv9QeukqQQB0bsier2i1y56VwQRgysdn_7hG2d20n0eQNKBNLYRW_vh6k7nAdTFP9T9U_7ye1A0paZffWGDQA |
| CitedBy_id | crossref_primary_10_1155_2023_7939516 crossref_primary_10_3390_su15020964 crossref_primary_10_3390_app13085060 crossref_primary_10_1080_01431161_2023_2283904 crossref_primary_10_3390_rs15071821 crossref_primary_10_3390_sym14102155 crossref_primary_10_1007_s00500_025_10512_3 crossref_primary_10_3390_computers13020036 crossref_primary_10_3390_electronics13101881 crossref_primary_10_3390_f14071493 crossref_primary_10_1007_s41870_023_01630_y crossref_primary_10_3390_f14102080 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION |
| DOI | 10.1088/1742-6596/2024/1/012053 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2024_1_012053 JPCS_2024_1_012053 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c3003-f783af60916cf91d53374f9a9504d45a0340e18b572ef97bd05c6a29af9b45f03 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Tue Nov 18 21:03:11 EST 2025 Sat Nov 29 03:39:35 EST 2025 Wed Aug 21 03:32:48 EDT 2024 Tue Oct 26 22:20:57 EDT 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3003-f783af60916cf91d53374f9a9504d45a0340e18b572ef97bd05c6a29af9b45f03 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2024/1/012053 |
| PageCount | 6 |
| ParticipantIDs | iop_journals_10_1088_1742_6596_2024_1_012053 crossref_citationtrail_10_1088_1742_6596_2024_1_012053 crossref_primary_10_1088_1742_6596_2024_1_012053 |
| PublicationCentury | 2000 |
| PublicationDate | 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 20210901 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Hu (JPCS_2024_1_012053bib3) 2018 Yuan (JPCS_2024_1_012053bib5) 2015 Woo (JPCS_2024_1_012053bib4) 2018 Ganesan (JPCS_2024_1_012053bib1) 2016 He (JPCS_2024_1_012053bib8) 2016 Qiu (JPCS_2024_1_012053bib9) 2021 Szegedy (JPCS_2024_1_012053bib6) 2015 Chen (JPCS_2024_1_012053bib2) 2018 Çiçek (JPCS_2024_1_012053bib10) 2016 Chen (JPCS_2024_1_012053bib7) 2018 Oktay (JPCS_2024_1_012053bib11) 2018 |
| References_xml | – start-page: 639 year: 2015 ident: JPCS_2024_1_012053bib5 – start-page: 308 year: 2018 ident: JPCS_2024_1_012053bib7 – start-page: 1049 year: 2021 ident: JPCS_2024_1_012053bib9 – start-page: 1 year: 2016 ident: JPCS_2024_1_012053bib1 – year: 2018 ident: JPCS_2024_1_012053bib11 article-title: Attention u-net: Learning where to look for the pancreas[J] – start-page: 424 year: 2016 ident: JPCS_2024_1_012053bib10 – start-page: 3 year: 2018 ident: JPCS_2024_1_012053bib4 article-title: Cbam: Convolutional block attention module[C] – start-page: 308 year: 2018 ident: JPCS_2024_1_012053bib2 – year: 2018 ident: JPCS_2024_1_012053bib3 article-title: Competitive inner-imaging squeeze and excitation for residual network[J] – start-page: 1 year: 2015 ident: JPCS_2024_1_012053bib6 article-title: Going deeper with convolutions[C] – start-page: 630 year: 2016 ident: JPCS_2024_1_012053bib8 |
| SSID | ssj0033337 |
| Score | 2.3919437 |
| Snippet | Due to its large area and rugged terrain, the forest often fails to be detected in time and eventually causes severe losses[1]. Therefore, early detection of... |
| SourceID | crossref iop |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 12053 |
| Title | ForestResNet: A Deep Learning Algorithm for Forest Image Classification |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2024/1/012053 |
| Volume | 2024 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gA4kLb8R4TJHgSFnbJG3CbYyNh9CYBojdojZNxqQ9qrXw-0naDtEDmpDoqQfbir6ktqt8tgE4Vw4KIxkyS1IaWBhHzAoMmUpght2IhliIrM_so9_t0sGAlWphZnHh-i_1a94oOIewIMTRhs6hXcsjzDM_7rjhNEz9J0GroIqojub6TD-ht4U3Rvrx86JIo0TpguP1u6FShFrVq_gRcDpb_7HUbbBZpJuwmWvsgBU53QXrGe1TJHvg1kzmTNK-TLoyvYJNeCNlDIueq0PYHA9n81H6PoE6tYW5LLyfaBcEs2GahmaU7ew-eO20X1p3VjFawRLIsNGUT1GgPJ0seEIxJ9JJn48VCxixcYRJYCNsS4eGxHelYn4Y2UR4gcsCxUJMlI0OQGU6m8pDAM1FoEsiJEyvQYYJc0LbU0onNrarbZMa8BZwclH0HTfjL8Y8u_-mlBuUuEGJG5S4w3OUasD-Vozz1hvLVS70VvDiM0yWi5-VxB96reeyBI8jdfQ3o8dgwzW8l4yHdgIq6fxDnoI18ZmOknkdVK_b3V6_nh3SL9Qf2dA |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLY2XuLCGzGekeBIWdskbcJtAsZTY-IhuEVtmoxJ7KG18PtJ2g6xA5qQ6KkH24rs1HGVz58BjrSH40TF3FGMRQ4hCXciC6aShBM_YTGRMueZvQtbLfb6ytsVaH73wgyGZeo_Ma8FUXDhwhIQx-qmhvadgPLA_riTule3_Z8U14eJrsKspSuxu_sev4wzMjZPWDRGWkXGxjiv341NnFJVs5Ifh05z-b-WuwJLZdmJGoXWKlRUfw3mc_inTNfh0k7oTLMHlbZUdooa6FypISq5Vzuo8d4ZjLrZWw-ZEhcVsui6Z1IRyodqWrhRHuENeG5ePJ1dOeWIBUdii0rTIcORDkzREEjNvcQUfyHRPOLUJQmhkYuJqzwW09BXmodx4lIZRD6PNI8J1S7ehJn-oK-2ANkLQZ8mWFrOQU4o92I30NoUOK5vbNMaBGOXClnyj9sxGO8ivwdnTFhPCespYT0lPFF4qgbut-KwoOCYrnJswiHKzzGdLn44IX7TPnuclBAmWtt_M3oAC-3zpri7bt3uwKJvoTA5NG0XZrLRh9qDOfmZddPRfr5XvwDYzt2e |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ForestResNet%3A+A+Deep+Learning+Algorithm+for+Forest+Image+Classification&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Tang%2C+Yongqing&rft.au=Feng%2C+Hao&rft.au=Chen%2C+Junyan&rft.au=Chen%2C+Yuan&rft.date=2021-09-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2024%2F1%2F012053&rft.externalDocID=JPCS_2024_1_012053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |