DC-YOLOv3: A novel efficient object detection algorithm
Feature pyramids have become an essential component in most modern object detectors, such as Mask RCNN, YOLOv3, RetinaNet. In these detectors, the pyramidal feature representations are commonly used which represent an image with multi-scale feature layers. However, the detectors can’t be used in man...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 2082; číslo 1; s. 12012 - 12017 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IOP Publishing
01.11.2021
|
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Feature pyramids have become an essential component in most modern object detectors, such as Mask RCNN, YOLOv3, RetinaNet. In these detectors, the pyramidal feature representations are commonly used which represent an image with multi-scale feature layers. However, the detectors can’t be used in many real world applications which require real time performance under a computationally limited circumstance. In the paper, we study network architecture in YOLOv3 and modify the classical backbone--darknet53 of YOLOv3 by using a group of convolutions and dilated convolutions (DC). Then, a novel one-stage object detection network framework called DC-YOLOv3 is proposed. A lot of experiments on the Pascal 2017 benchmark prove the effectiveness of our framework. The results illustrate that DC-YOLOv3 achieves comparable results with YOLOv3 while being about 1.32× faster in training time and 1.38× faster in inference time. |
|---|---|
| AbstractList | Feature pyramids have become an essential component in most modern object detectors, such as Mask RCNN, YOLOv3, RetinaNet. In these detectors, the pyramidal feature representations are commonly used which represent an image with multi-scale feature layers. However, the detectors can’t be used in many real world applications which require real time performance under a computationally limited circumstance. In the paper, we study network architecture in YOLOv3 and modify the classical backbone--darknet53 of YOLOv3 by using a group of convolutions and dilated convolutions (DC). Then, a novel one-stage object detection network framework called DC-YOLOv3 is proposed. A lot of experiments on the Pascal 2017 benchmark prove the effectiveness of our framework. The results illustrate that DC-YOLOv3 achieves comparable results with YOLOv3 while being about 1.32× faster in training time and 1.38× faster in inference time. |
| Author | Wang, Chen Han, Fang Wang, Ping Jiang, Wei Zhang, Xu |
| Author_xml | – sequence: 1 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: Science and education center of big data and computer application, Huanghe University of Science and Technology , China – sequence: 2 givenname: Fang surname: Han fullname: Han, Fang organization: Science and education center of big data and computer application, Huanghe University of Science and Technology , China – sequence: 3 givenname: Ping surname: Wang fullname: Wang, Ping organization: Science and education center of big data and computer application, Huanghe University of Science and Technology , China – sequence: 4 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: Science and education center of big data and computer application, Huanghe University of Science and Technology , China – sequence: 5 givenname: Chen surname: Wang fullname: Wang, Chen organization: Science and education center of big data and computer application, Huanghe University of Science and Technology , China |
| BookMark | eNqNUN9LwzAQDjLBbfo32GehNmnSJBV8GHX-YjBBffApJGmiGV0z0jrwvzdlMlAEPQ7u4L7v7r5vAkatbw0ApwieI8h5hhjJU1qUNMshzzOUQZTHPADj_WS07zk_ApOuW0GIY7AxYFdV-rJcLLf4Ipklrd-aJjHWOu1M2yderYzuk9r0sTjfJrJ59cH1b-tjcGhl05mTrzoFz9fzp-o2XSxv7qrZItUYwnjR1ooobVlJZK3yUhGMiDGqlpArXFKsGbdUclIwgihGOUWF5gZpKakpbIGn4HK3VwffdcFYoV0vh1_6IF0jEBSDC2LQJwatYnBBILFzIfLZD_4muLUMH_9gnu2Yzm_Eyr-HNuoU9w_V43eg2NQ2gvEv4L9OfAIY6n2t |
| CitedBy_id | crossref_primary_10_3390_su16010117 |
| Cites_doi | 10.1007/s11263-013-0620-5 10.1109/TPAMI.2011.231 10.1007/s11263-014-0733-5 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION |
| DOI | 10.1088/1742-6596/2082/1/012012 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2082_1_012012 JPCS_2082_1_012012 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB ROL |
| ID | FETCH-LOGICAL-c3002-6fdb4bcf794adb29b4314eebda08b3963c78f6a8457416312615c8e1caa6e5f53 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Tue Nov 18 22:09:56 EST 2025 Sat Nov 29 02:06:57 EST 2025 Wed Aug 21 03:43:00 EDT 2024 Fri Nov 12 21:34:55 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3002-6fdb4bcf794adb29b4314eebda08b3963c78f6a8457416312615c8e1caa6e5f53 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2082/1/012012 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1088_1742_6596_2082_1_012012 crossref_primary_10_1088_1742_6596_2082_1_012012 iop_journals_10_1088_1742_6596_2082_1_012012 |
| PublicationCentury | 2000 |
| PublicationDate | 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211101 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Everingham (JPCS_2082_1_012012bib33) 2015; 111 Redmon (JPCS_2082_1_012012bib11) 2016 Redmon (JPCS_2082_1_012012bib28) Redmon (JPCS_2082_1_012012bib13) 2018 Liu (JPCS_2082_1_012012bib15) 2016 Krizhevsky (JPCS_2082_1_012012bib2) 2012 Chen (JPCS_2082_1_012012bib32) 2016 Yu (JPCS_2082_1_012012bib31) 2015 Law (JPCS_2082_1_012012bib19) 2018 Shen (JPCS_2082_1_012012bib17) 2017 Yuan (JPCS_2082_1_012012bib26) 2019; 105 Lin (JPCS_2082_1_012012bib18) 2017 Zhao (JPCS_2082_1_012012bib16) 2019; 33 Bochkovskiy (JPCS_2082_1_012012bib29) 2020 Lin (JPCS_2082_1_012012bib20) 2017 Girshick (JPCS_2082_1_012012bib3) 2015 Liu (JPCS_2082_1_012012bib22) 2018 Kong (JPCS_2082_1_012012bib25) 2018 Ren (JPCS_2082_1_012012bib4) 2015 Dai (JPCS_2082_1_012012bib5) 2016 Cai (JPCS_2082_1_012012bib10) 2018 Zhang (JPCS_2082_1_012012bib8) 2016 Wang (JPCS_2082_1_012012bib30) 2018 Chen (JPCS_2082_1_012012bib21) 2021 Redmon (JPCS_2082_1_012012bib12) 2017 Yu (JPCS_2082_1_012012bib27) 2016 Zhao (JPCS_2082_1_012012bib23) 2019; 33 Carreira (JPCS_2082_1_012012bib7) 2012; 34 Uijlings (JPCS_2082_1_012012bib6) 2013; 104 He (JPCS_2082_1_012012bib9) 2017 Huang (JPCS_2082_1_012012bib14) 2018 Chen (JPCS_2082_1_012012bib24) 2018 Girshick (JPCS_2082_1_012012bib1) 2014 Lin (JPCS_2082_1_012012bib34) 2014 |
| References_xml | – start-page: 1440 year: 2015 ident: JPCS_2082_1_012012bib3 – volume: 104 start-page: 154 year: 2013 ident: JPCS_2082_1_012012bib6 article-title: Selective search for object recognition publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0620-5 – year: 2016 ident: JPCS_2082_1_012012bib15 – start-page: 734 year: 2018 ident: JPCS_2082_1_012012bib19 – year: 2018 ident: JPCS_2082_1_012012bib24 – start-page: 1, 2, 3, 8 year: 2017 ident: JPCS_2082_1_012012bib18 – year: 2018 ident: JPCS_2082_1_012012bib25 – start-page: 379 year: 2016 ident: JPCS_2082_1_012012bib5 – volume: 33 start-page: 9259 year: 2019 ident: JPCS_2082_1_012012bib23 – year: 2018 ident: JPCS_2082_1_012012bib14 – start-page: 13039 year: 2021 ident: JPCS_2082_1_012012bib21 – year: 2016 ident: JPCS_2082_1_012012bib27 – volume: 33 start-page: 9259 year: 2019 ident: JPCS_2082_1_012012bib16 article-title: M2Det: A Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network publication-title: Association for Advancement of Artificial Intelligence – year: 2018 ident: JPCS_2082_1_012012bib30 – start-page: 6517 year: 2017 ident: JPCS_2082_1_012012bib12 – start-page: 779 year: 2016 ident: JPCS_2082_1_012012bib11 – start-page: 2117 year: 2017 ident: JPCS_2082_1_012012bib20 – year: 2018 ident: JPCS_2082_1_012012bib13 publication-title: YOLOv3: An incremental improvement – year: 2016 ident: JPCS_2082_1_012012bib32 publication-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs – start-page: 580 year: 2014 ident: JPCS_2082_1_012012bib1 – ident: JPCS_2082_1_012012bib28 – start-page: 6154 year: 2018 ident: JPCS_2082_1_012012bib10 – start-page: 1097 year: 2012 ident: JPCS_2082_1_012012bib2 – start-page: 2980 year: 2017 ident: JPCS_2082_1_012012bib9 – volume: 34 start-page: 1312 year: 2012 ident: JPCS_2082_1_012012bib7 article-title: Cpmc: Automatic object segmentation using constrained parametric min-cuts publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.231 – year: 2016 ident: JPCS_2082_1_012012bib8 – start-page: 740 year: 2014 ident: JPCS_2082_1_012012bib34 – year: 2018 ident: JPCS_2082_1_012012bib22 – year: 2020 ident: JPCS_2082_1_012012bib29 – start-page: 1919 year: 2017 ident: JPCS_2082_1_012012bib17 – start-page: 91 year: 2015 ident: JPCS_2082_1_012012bib4 – volume: 111 start-page: 98 year: 2015 ident: JPCS_2082_1_012012bib33 article-title: The pascal visual object classes challenge: A retrospective publication-title: International Journal of Computer Vision doi: 10.1007/s11263-014-0733-5 – volume: 105 start-page: 107 year: 2019 ident: JPCS_2082_1_012012bib26 article-title: Gated CNN: Integrating Multi-scale Feature Layers for Object Detection publication-title: Pattern Recognition – year: 2015 ident: JPCS_2082_1_012012bib31 publication-title: Multi-scale context aggregation by dilated convolutions |
| SSID | ssj0033337 |
| Score | 2.283129 |
| Snippet | Feature pyramids have become an essential component in most modern object detectors, such as Mask RCNN, YOLOv3, RetinaNet. In these detectors, the pyramidal... |
| SourceID | crossref iop |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 12012 |
| Title | DC-YOLOv3: A novel efficient object detection algorithm |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2082/1/012012 |
| Volume | 2082 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA66KfjiXZyXUdBH49YmbVPf5pyIjG14wfkUctXBbMdW9_tN2k7sgwzBPpVyTggf55bmXAA4N05GyQhhiLQnIEZEw4g0CcSedSgKCcyyQuFu2OuR4TAq1cIkk8L0X5rXvFFwDmGREEcaJob2YOBHgTm4E6_hNmz9px00XEXEeHMj0330srDGyDxhXhRpmQhZ5Hj9vlDJQ62aXfxwOLdb_7HVbbBZhJtOK-fYASsq3gXrWdqnmO2B8KYNX_vd_hxdOS0nTuZq7KisqYTxRU7C7U8aR6o0y9eKHTZ-S6aj9P1jHzzfdp7ad7AYpQAFsjYv0JJjLrTRPia5F3ETN2CluGRNwpFRQhESHTCC_SxCc825yhdEuYKxQPnaRwegEiexOgSO-aSarg6FFMJ2D2Q-Zq6wqTVRIDkKayBYwEdF0WfcjrsY0-y-mxBqUaEWFWpRoS7NUamB5jfjJG-1sZzlwkBPC7WbLSc_K5HfD9qPZQo6kfrob4segw0r13l94gmopNNPdQrWxDwdzaZ1UL3u9AYP9UwovwC_ZdR1 |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB7aeuCLt1jPBX005tgcG99Ka_AobUHF-rRsNhst1KS0sb_f3SQt9kGKYJ5CmFmWLzM7s8nMtwCXMsiIyMe2hmOLazYmseYTg2i2pQKKwNxmeaNw2-t0SL_v9yoQzHth0lG59F_L24IouICwLIgjusyhLc11fFdu3Imlm7rq_zQtfRTFVVhRdCXKurv4dbYiY3l5RWOkUiRkVuf1-2ALUaoqZ_Ij6ARb_zXdbdgs007UKLR2oCKSXVjLyz_5ZA-8VlN767a7U3yDGihJp2KIRE4uIWMSSkP1sQZFIsvrthLEhu_peJB9fO7DS3D73LzTyiMVNI7V2ufGUWiHPJZeyKLQ8kOZP9hChBEzSIilM3KPxC4jtpNnaqbcXzmcCJMz5gondvAB1JI0EYeA5CNhmLHHI84ViyBzbGZyVWLju1GIvTq4MwgpL_nG1bEXQ5r_9yaEKmSoQoYqZKhJC2TqYMwVRwXlxnKVKwk_Ld1vslz8YkH8odd8WpSg8u0c_W3Qc1jvtQLavu88HsOGMvWiZfEEatn4S5zCKp9mg8n4LLfNb38Q2EM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC-YOLOv3%3A+A+novel+efficient+object+detection+algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zhang%2C+Xu&rft.au=Han%2C+Fang&rft.au=Wang%2C+Ping&rft.au=Jiang%2C+Wei&rft.date=2021-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2082&rft.issue=1&rft.spage=12012&rft_id=info:doi/10.1088%2F1742-6596%2F2082%2F1%2F012012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2082_1_012012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |