Domain Adaptive Algorithm Based on Multi-Manifold Embedded Distributed Alignment for Brain-Computer Interfaces

The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics Vol. 27; no. 1; pp. 296 - 307
Main Authors: Gao, Yunyuan, Liu, Yici, She, Qingshan, Zhang, Jianhai
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2194, 2168-2208, 2168-2208
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set.
AbstractList The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set.
The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set.The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different paradigms and subjects, existing EEG transfer learning algorithms mainly focus on the alignment of the original space. They may not discover hidden details owing to the low-dimensional structure of EEG. To effectively transfer data from a source to target domain, a multi-manifold embedding domain adaptive algorithm is proposed for BCI. First, we aligned the EEG covariance matrix in the Riemannian manifold and extracted the characteristics of each source domain in the tangent space to reflect the differences between different source domains. Subsequently, we mapped the extracted characteristics to the Grassmann manifold to obtain a common feature representation. In domain adaptation, the geometric and statistical attributes of EEG data were considered simultaneously, and the target domain divergence matrix was updated with pseudo-labels to maximize the inter-class distance and minimize the intra-class distance. Datasets generated via BCIs were used to verify the effectiveness of the algorithm. Under two experimental paradigms, namely single-source to single-target and multi-source to single-target, the average accuracy of the algorithm on three datasets was 73.31% and 81.02%, respectively, which is more than that of several state-of-the-art EEG cross-domain classification approaches. Our multi-manifold embedded domain adaptive method achieved satisfactory results on EEG transfer learning. The method can achieve effective EEG classification without a same subject's training set.
Author Liu, Yici
She, Qingshan
Zhang, Jianhai
Gao, Yunyuan
Author_xml – sequence: 1
  givenname: Yunyuan
  orcidid: 0000-0003-2128-2185
  surname: Gao
  fullname: Gao, Yunyuan
  email: gyy@hdu.edu.cn
  organization: College of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Yici
  orcidid: 0000-0001-6881-9627
  surname: Liu
  fullname: Liu, Yici
  email: liuyici@hdu.edu.cn
  organization: HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Qingshan
  orcidid: 0000-0001-5206-9833
  surname: She
  fullname: She, Qingshan
  email: qsshe@hdu.edu.cn
  organization: College of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Jianhai
  surname: Zhang
  fullname: Zhang, Jianhai
  email: jhzhang@hdu.edu.cn
  organization: Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36315544$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhq2KqnyUH1AhIUu9cNnUX-vsHpPwlQrUS3te2esxGO3awfYi9d_jKIEDB3wYj2aed2zNe4wOfPCA0A9KZpSS9tfv5e16xghjM85oI2r-BR0xKpuKMdIcvOW0FYfoNKUnUk5TSq38hg655LSuhThC_jKMynm8MGqT3QvgxfAQosuPI16qBAYHj--nIbvqXnlnw2Dw1ajBmNK6dClHp6dc8sXgHvwIPmMbIl7GMrNahXFTmhGvfYlW9ZC-o69WDQlO9_cJ-nd99Xd1W939uVmvFndVzwlhldDaSM21qlsLsrF933KwhEJTa6gZWE0aMNxY21hlSigVK3tJWK3p3Lb8BF3s5m5ieJ4g5W50qYdhUB7ClDo250SKsoYt-vMD-hSm6MvvCiWJrLkUolDne2rSI5huE92o4v_ubZMFoDugjyGlCPYdoaTbGtZtDeu2hnV7w4pm_kHTu6yyCz6XBQ6fKs92SgcA7y-1LedCUP4KWq6jTw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116836
crossref_primary_10_1016_j_eswa_2024_124673
crossref_primary_10_3389_fnins_2024_1508747
crossref_primary_10_1007_s00521_025_11201_w
crossref_primary_10_1016_j_bspc_2023_105155
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_1016_j_neucom_2024_127944
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_1016_j_eswa_2025_129248
crossref_primary_10_1109_ACCESS_2025_3542593
crossref_primary_10_1109_JBHI_2024_3377373
crossref_primary_10_3390_app14062326
crossref_primary_10_1016_j_neucom_2024_129010
crossref_primary_10_1109_TIM_2025_3566804
Cites_doi 10.1016/j.inffus.2014.12.003
10.1088/1741-2552/aaf3f6
10.1109/PERCOM.2018.8444572
10.1201/9781351231954-19
10.1109/ICCV.2013.274
10.1093/bioinformatics/btl242
10.1109/ICME.2018.8486446
10.1023/B:MACH.0000033120.25363.1e
10.1145/1961189.1961199
10.1088/1741-2552/aab2f2
10.5271/sjweh.1815
10.1007/11566465_15
10.1109/TBME.2017.2742541
10.1109/TBME.2019.2913914
10.1109/ICDM.2017.150
10.1109/CVPR.2014.183
10.1109/CVPR.2017.547
10.1609/aaai.v30i1.10306
10.1016/j.bspc.2022.103555
10.1109/MCI.2015.2501545
10.1109/TNN.2010.2091281
10.1109/TPAMI.1982.4767298
10.1109/ACCESS.2020.2971600
10.1109/CVPR.2012.6247911
10.1016/j.ijpsycho.2019.08.012
10.1080/01621459.1967.10482916
10.4135/9781473933200
10.1126/science.290.5500.2319
10.1007/978-3-319-25040-3_64
10.1109/TNSRE.2020.2985996
10.1016/0165-1781(91)90027-M
10.3390/s141017915
10.1002/wics.101
10.1016/j.engappai.2018.05.001
10.1109/ICCV.2011.6126344
10.1109/TNSRE.2016.2627016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3218453
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 307
ExternalDocumentID 36315544
10_1109_JBHI_2022_3218453
9933441
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ22F010003
– fundername: National Natural Science Foundation of China
  grantid: 61971168; 62071161; 62271181
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c3002-4bbd6b3ba59fe68fcc93ef01e85be52efb08ed3dff8fadf8fefbf6c6025b17f93
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 00:05:55 EDT 2025
Sun Nov 30 04:28:05 EST 2025
Thu Jan 02 22:52:45 EST 2025
Tue Nov 18 21:00:40 EST 2025
Sat Nov 29 04:18:31 EST 2025
Wed Aug 27 02:55:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3002-4bbd6b3ba59fe68fcc93ef01e85be52efb08ed3dff8fadf8fefbf6c6025b17f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5206-9833
0000-0003-2128-2185
0000-0001-6881-9627
PMID 36315544
PQID 2760653644
PQPubID 85417
PageCount 12
ParticipantIDs pubmed_primary_36315544
ieee_primary_9933441
proquest_journals_2760653644
crossref_citationtrail_10_1109_JBHI_2022_3218453
proquest_miscellaneous_2730643639
crossref_primary_10_1109_JBHI_2022_3218453
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref20
ref22
ref21
Ziko (ref26)
ref28
ref27
Ming (ref25) 2015
ref29
ref8
ref7
ref9
ref4
Taylor (ref35) 1967; 62
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1016/j.inffus.2014.12.003
– ident: ref9
  doi: 10.1088/1741-2552/aaf3f6
– ident: ref28
  doi: 10.1109/PERCOM.2018.8444572
– ident: ref17
  doi: 10.1201/9781351231954-19
– ident: ref27
  doi: 10.1109/ICCV.2013.274
– ident: ref31
  doi: 10.1109/ICCV.2013.274
– ident: ref2
  doi: 10.1093/bioinformatics/btl242
– ident: ref18
  doi: 10.1109/ICME.2018.8486446
– ident: ref24
  doi: 10.1023/B:MACH.0000033120.25363.1e
– ident: ref36
  doi: 10.1145/1961189.1961199
– ident: ref22
  doi: 10.1088/1741-2552/aab2f2
– ident: ref38
  doi: 10.5271/sjweh.1815
– ident: ref16
  doi: 10.1007/11566465_15
– ident: ref5
  doi: 10.1109/TBME.2017.2742541
– ident: ref6
  doi: 10.1109/TBME.2019.2913914
– volume-title: Bayesian Statistics and Its Applications: Bayesian Statistics and Its Applications
  year: 2015
  ident: ref25
– ident: ref30
  doi: 10.1109/ICDM.2017.150
– ident: ref3
  doi: 10.1109/CVPR.2014.183
– ident: ref4
  doi: 10.1109/CVPR.2017.547
– ident: ref32
  doi: 10.1609/aaai.v30i1.10306
– ident: ref7
  doi: 10.1016/j.bspc.2022.103555
– ident: ref8
  doi: 10.1109/MCI.2015.2501545
– ident: ref1
  doi: 10.1109/TNN.2010.2091281
– ident: ref12
  doi: 10.1109/TPAMI.1982.4767298
– ident: ref10
  doi: 10.1109/ACCESS.2020.2971600
– ident: ref20
  doi: 10.1109/CVPR.2012.6247911
– ident: ref40
  doi: 10.1016/j.ijpsycho.2019.08.012
– start-page: 11660
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Laplacian regularized few-shot learning
– volume: 62
  start-page: 399
  issue: 318
  year: 1967
  ident: ref35
  article-title: On the Kolmogorov-Smirnov test for normality with mean and variance unknown
  publication-title: J. Amer. Stat. Assoc.
  doi: 10.1080/01621459.1967.10482916
– ident: ref34
  doi: 10.4135/9781473933200
– ident: ref19
  doi: 10.1126/science.290.5500.2319
– ident: ref14
  doi: 10.1007/978-3-319-25040-3_64
– ident: ref29
  doi: 10.1109/TBME.2019.2913914
– ident: ref13
  doi: 10.1109/TNSRE.2020.2985996
– ident: ref37
  doi: 10.1016/0165-1781(91)90027-M
– ident: ref39
  doi: 10.3390/s141017915
– ident: ref23
  doi: 10.1002/wics.101
– ident: ref11
  doi: 10.1016/j.engappai.2018.05.001
– ident: ref21
  doi: 10.1109/ICCV.2011.6126344
– ident: ref15
  doi: 10.1109/TNSRE.2016.2627016
SSID ssj0000816896
Score 2.4831605
Snippet The use of transfer learning in brain-computer interfaces (BCIs) has potential applications. As electroencephalogram (EEG) signals vary among different...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 296
SubjectTerms Adaptive algorithms
Algorithms
Alignment
Brain-computer interface
Brain-Computer Interfaces
Classification
Covariance matrices
Covariance matrix
Datasets
Divergence
domain adaptive
Domains
EEG
Electroencephalography
Electroencephalography - methods
Embedding
Feature extraction
Geometry
Human-computer interface
Humans
Interfaces
Machine learning
Manifolds
Manifolds (mathematics)
Riemann manifold
Signal Processing, Computer-Assisted
subspace learning
transfer learn-ing
Transfer learning
Title Domain Adaptive Algorithm Based on Multi-Manifold Embedded Distributed Alignment for Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/9933441
https://www.ncbi.nlm.nih.gov/pubmed/36315544
https://www.proquest.com/docview/2760653644
https://www.proquest.com/docview/2730643639
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-sSOlLq7UfqVa24FNpNJfdfOzjXVVsQfFB4d7CftrAXSLnnX-_M5tcQNCCL2FJNh9kZudzZ34Ah1Z4Jz1Kv9TILBZGqViXQsUSbdtMaSV4oQLYRHF5WU6n8moDfg21MM65sPnMHdEw5PJta1YUKjtGXcoFVam_KYq8q9Ua4ikBQCLAcaU4iHEhij6JOUrk8d_J-R90BtP0iJNPkxF8Ds85KVPxRCMFiJWXrc2gdc4-vO57t-F9b12ycccOO7Dhmo_w9qLPn-9Cc9LOVd2wsVV3JOfYeHbbLurlvzmboDqzrG1YKMmNL1RT-3Zm2elcOxROlp1Qi11Cx8LxeFbfhm0EDG1eNiGYiXiND8FCkNHTVq9PcHN2ev37PO4RF2LDSTQKrW2uuVaZ9C4vvTGSO5-MXJlpl6XO66R0llvvS68sHvCMz02OhpMeFV7yz7DZtI37CkylidX4IOEyKZS2aB6PrLdW2dSgj6YiSNZ_vTJ9O3JCxZhVwS1JZEU0q4hmVU-zCH4Ot9x1vTj-N3mXCDJM7GkRwf6atFW_Wu-rtMipRS-ahhH8GC7jOqPkiWpcu6I55Kshz8gIvnQsMTx7zUnfnn_nHrwjkPoucLMPm8vFyn2HLfOwrO8XB8jM0_IgMPMjhQHwNQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VBQEXXuVhKLBInBBund214z0mtFUKTcShSL1Z-yyWErtKE34_M2vHEhIgcbFW9vohz-w8d-YD-OBk8Cqg9ONW5am0WqemlDpVaNvm2mgpxjqCTYwXi_LqSn3bg09DLYz3Pm4-80c0jLl819othcqOUZcKSVXqd3IpedZVaw0RlQghEQG5OA5SXIqyT2OOMnX8ZTo7R3eQ8yNBXk1OADqiEKRO5W86KYKs_N3ejHrn7NH_ffFjeNjbl2zSMcQT2PPNU7g37zPoB9CctCtdN2zi9A1JOjZZXrfrevNjxaao0BxrGxaLctO5burQLh07XRmP4smxE2qyS_hYOJ4s6-u4kYCh1cumBDSR7hAiWAwzBtrs9Qy-n51efp6lPeZCagUJR2mMK4wwOlfBF2WwVgkfspEvc-Nz7oPJSu-EC6EM2uEBz4TCFmg6mdE4KPEc9pu28S-BaZ45gw-SPldSG4cG8sgF57TjFr00nUC2--uV7RuSEy7GsoqOSaYqollFNKt6miXwcbjlpuvG8a_JB0SQYWJPiwQOd6St-vV6W_FxQU160ThM4P1wGVcapU9049stzSFvDXlGJfCiY4nh2TtOevXnd76D-7PL-UV1cb74-hoeEGR9F8Y5hP3NeuvfwF37c1Pfrt9Glv4FfQzylA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Adaptive+Algorithm+Based+on+Multi-Manifold+Embedded+Distributed+Alignment+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Gao%2C+Yunyuan&rft.au=Liu%2C+Yici&rft.au=She%2C+Qingshan&rft.au=Zhang%2C+Jianhai&rft.date=2023-01-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=27&rft.issue=1&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1109%2FJBHI.2022.3218453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2022_3218453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon