On the existence of extensions for manifold-valued Sobolev maps on perforated domains

Motivated by manifold-constrained homogenization problems, we construct suitable extensions for Sobolev functions defined on a perforated domain and taking values in a compact, connected C2-manifold without boundary. The proof combines a by now classical extension result for the unconstrained case w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of functional analysis Ročník 289; číslo 11; s. 111142
Hlavní autoři: Gavioli, Chiara, Happ, Leon, Pagliari, Valerio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2025
Témata:
ISSN:0022-1236
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Motivated by manifold-constrained homogenization problems, we construct suitable extensions for Sobolev functions defined on a perforated domain and taking values in a compact, connected C2-manifold without boundary. The proof combines a by now classical extension result for the unconstrained case with a retraction argument that heavily relies on the topological properties of the manifold. With the ultimate goal of providing necessary conditions for the existence of extensions for Sobolev maps between manifolds, we additionally investigate the relationship between this problem and the surjectivity of the trace operator for such functions.
ISSN:0022-1236
DOI:10.1016/j.jfa.2025.111142