Planar Integer Linear Programming is NC Equivalent to Euclidean GCD

It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing Jg. 27; H. 4; S. 960 - 971
Hauptverfasser: Shallcross, D. F., Pan, V. Y., Lin-Kriz, Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.08.1998
Schlagworte:
ISSN:0097-5397, 1095-7111
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is not known if planar integer linear programming is P-complete or if it is in NC, and the same can be said about the computation of the remainder sequence of the Euclidean algorithm applied to two integers. However, both computations are NC equivalent. The latter computational problem was reduced in NC to the former one by Deng [Mathematical Programming: Complexity and Application, Ph.D. dissertation, Stanford University, Stanford, CA, 1989; Proc. ACM Symp. on Parallel Algorithms and Architectures, 1989,pp. 110--116]. We now prove the converse NC-reduction.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/S0097539794276841