A forward k-means algorithm for regression clustering

We propose a novel forward k-means algorithm for regression clustering, where the “forward” strategy progressively partitions samples from a single cluster into multiple ones, using the current optimal clustering solutions as initialization for subsequent iterations, thereby ensuring a deterministic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 711; s. 122105
Hlavní autoři: Lu, Jun, Luo, Tingjin, Li, Kai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2025
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a novel forward k-means algorithm for regression clustering, where the “forward” strategy progressively partitions samples from a single cluster into multiple ones, using the current optimal clustering solutions as initialization for subsequent iterations, thereby ensuring a deterministic result without any initialization requirements. We employ the mean squared error from the fitted clustering results as a criterion to guide partition optimization, which not only ensures rapid convergence of the algorithm to a stable solution but also yields desirable theoretical results. Meanwhile, we also suggest a difference-based threshold ridge ratio criterion to consistently determine the number of clusters. Comprehensive numerical studies are further conducted to demonstrate the algorithm's efficacy. •Forward k-means algorithm ensures deterministic clustering results.•MSE guides partition optimization for rapid convergence.•DTRR criterion consistently estimates the number of clusters.
ISSN:0020-0255
DOI:10.1016/j.ins.2025.122105