On the number of an eigenvalue of a general nonlinear self-adjoint spectral problem for systems of ordinary differential equations

In the case of a general nonlinear self-adjoint spectral problem for systems of ordinary differential equations with boundary conditions independent of the spectral parameter, we introduce the notion of the number of an eigenvalue. Methods for the computation of the numbers of eigenvalues lying in a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential equations Ročník 46; číslo 7; s. 1063 - 1067
Hlavní autoři: Abramov, A. A., Ul’yanova, V. I., Yukhno, L. F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.07.2010
Springer Nature B.V
Témata:
ISSN:0012-2661, 1608-3083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the case of a general nonlinear self-adjoint spectral problem for systems of ordinary differential equations with boundary conditions independent of the spectral parameter, we introduce the notion of the number of an eigenvalue. Methods for the computation of the numbers of eigenvalues lying in a given range of the spectral parameter and for finding the eigenvalue with a given number, which were earlier suggested by the author for Hamiltonian systems, are generalized to the considered problem. We introduce the notion of an index of a problem for a general nontrivially solvable linear homogeneous self-adjoint boundary value problem.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0012-2661
1608-3083
DOI:10.1134/S001226611007013X