Semantic sensor data integration for talent development via hybrid multi‐objective evolutionary algorithm

In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi‐Objec...

Full description

Saved in:
Bibliographic Details
Published in:Internet technology letters Vol. 8; no. 2
Main Authors: Luo, Fang, Yang, Ya‐Juan, Geng, Yu‐Cheng
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.03.2025
Subjects:
ISSN:2476-1508, 2476-1508
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi‐Objective Particle Swarm Optimization and Genetic Algorithms to tackle the sophisticated challenges inherent in Sensor Ontology Matching (SOM). This innovative hMOEA framework is adapt at discerning precise semantic correlations among diverse ontologies, thereby facilitating seamless interoperability and enhancing the functionality of IoT applications. Central to our contributions are the development of an advanced multi‐objective optimization model that underpins the SOM process, the implementation of the hMOEA framework which sets a new benchmark for accurate semantic sensor data integration, and the rigorous validation of hMOEA's superiority through extensive testing in varied real‐world SOM scenarios. This research not only marks a significant advancement in SOM but also highlights the critical role of cutting‐edge SOM methodologies in educational curricula, for example, the new business subject education proposed by China in recent years, aimed at equipping future professionals with the necessary skills to innovate and lead in the SIoT and SW domains.
AbstractList In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi‐Objective Particle Swarm Optimization and Genetic Algorithms to tackle the sophisticated challenges inherent in Sensor Ontology Matching (SOM). This innovative hMOEA framework is adapt at discerning precise semantic correlations among diverse ontologies, thereby facilitating seamless interoperability and enhancing the functionality of IoT applications. Central to our contributions are the development of an advanced multi‐objective optimization model that underpins the SOM process, the implementation of the hMOEA framework which sets a new benchmark for accurate semantic sensor data integration, and the rigorous validation of hMOEA's superiority through extensive testing in varied real‐world SOM scenarios. This research not only marks a significant advancement in SOM but also highlights the critical role of cutting‐edge SOM methodologies in educational curricula, for example, the new business subject education proposed by China in recent years, aimed at equipping future professionals with the necessary skills to innovate and lead in the SIoT and SW domains.
Author Luo, Fang
Geng, Yu‐Cheng
Yang, Ya‐Juan
Author_xml – sequence: 1
  givenname: Fang
  orcidid: 0009-0001-4386-9609
  surname: Luo
  fullname: Luo, Fang
  organization: Dongguan City University
– sequence: 2
  givenname: Ya‐Juan
  orcidid: 0000-0003-3651-0881
  surname: Yang
  fullname: Yang, Ya‐Juan
  email: 1909853gbm30002@student.must.edu.mo
  organization: Dongguan City University
– sequence: 3
  givenname: Yu‐Cheng
  orcidid: 0009-0001-8362-0197
  surname: Geng
  fullname: Geng, Yu‐Cheng
  organization: Dongguan City University
BookMark eNpNkEtOwzAYhC1UJEqpxBF8gRQ_4jyWqOJRqRILyjr6Y_9pXZy4Styg7DgCZ-QkJIIFqxmNNKPRd01mjW-QkFvOVpwxcWeDEyul0gsyF3GaRFyxbPbPX5Fl1x0ZYzyXcZarOXl_xRqaYDXtsOl8Sw0EoLYJuG8hWN_QagwDOGwCNdij86d68r0FehjK1hpan12w359fvjyiDrZHir1356kN7UDB7X1rw6G-IZcVuA6Xf7ogb48Pu_VztH152qzvt5EWeZ5GWYIclC4VxKWQOjWYIKsEM8JoJRBAGZNLFIgmqRBllqSxrpAniqGWEuSCRL-7H9bhUJxaW48_Cs6KCVIxQSpGSMVmtxWjyh-oPGL0
CitedBy_id crossref_primary_10_1002_itl2_618
crossref_primary_10_1007_s13042_025_02811_w
crossref_primary_10_1007_s12293_025_00477_z
crossref_primary_10_1016_j_swevo_2025_102117
crossref_primary_10_1109_JIOT_2025_3560031
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd.
DBID 24P
DOI 10.1002/itl2.557
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2476-1508
EndPage n/a
ExternalDocumentID ITL2557
Genre researchArticle
GrantInformation_xml – fundername: Education Department of Guangdong Province
  funderid: 2022GXJK433; YJGH[2021]29‐700; DLC[2021]96‐yjjg007; 2021ZLGC203 & 205
GroupedDBID 0R~
1OC
24P
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABJNI
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADMLS
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
ID FETCH-LOGICAL-c2997-86e1a5cb5a4b23c7de6e0f20d2dc52eaa5dd93e2eed6fee38674cfe1650ec33a3
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001278719300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2476-1508
IngestDate Wed Mar 12 09:40:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2997-86e1a5cb5a4b23c7de6e0f20d2dc52eaa5dd93e2eed6fee38674cfe1650ec33a3
ORCID 0009-0001-8362-0197
0009-0001-4386-9609
0000-0003-3651-0881
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fitl2.557
PageCount 6
ParticipantIDs wiley_primary_10_1002_itl2_557_ITL2557
PublicationCentury 2000
PublicationDate March/April 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March/April 2025
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Internet technology letters
PublicationYear 2025
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 1989; 40
2023; 40
2017; 8
2021; 21
2020; 20
2013; 13
2002; 6
2019; 56
2023; 9
2019; 48
2023; 132
2017
2016
2012; 17
2024
2021; 2021
References_xml – volume: 20
  start-page: 2056
  issue: 7
  year: 2020
  article-title: Optimizing sensor ontology alignment through compact co‐firefly algorithm
  publication-title: Sensors
– volume: 9
  start-page: 435
  issue: 1
  year: 2023
  end-page: 462
  article-title: A multi‐objective particle swarm optimization with density and distribution‐based competitive mechanism for sensor ontology meta‐matching
  publication-title: Complex Intell Syst
– volume: 21
  start-page: 24570
  issue: 21
  year: 2021
  end-page: 24578
  article-title: Matching sensor ontologies with multi‐context similarity measure and parallel compact differential evolution algorithm
  publication-title: IEEE Sens J
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II
  publication-title: IEEE Trans Evol Comput
– volume: 132
  start-page: 190
  year: 2023
  end-page: 198
  article-title: Complex ontology alignment for autonomous systems via the compact co‐evolutionary brain storm optimization algorithm
  publication-title: ISA Trans
– start-page: 1
  year: 2024
  end-page: 13
  article-title: Similarity feature construction for semantic sensor ontology integration via light genetic programming
  publication-title: IEEE Internet Things J
– start-page: 91
  year: 2016
  end-page: 95
– volume: 13
  start-page: 12581
  issue: 9
  year: 2013
  end-page: 12604
  article-title: Ontology alignment architecture for semantic sensor web integration
  publication-title: Sensors
– volume: 17
  start-page: 25
  year: 2012
  end-page: 32
  article-title: The SSN ontology of the W3C semantic sensor network incubator group
  publication-title: J Web Semant
– volume: 56
  start-page: 1
  year: 2019
  end-page: 10
  article-title: SOSA: a lightweight ontology for sensors, observations, samples, and actuators
  publication-title: J Web Semant
– volume: 40
  issue: 4
  year: 2023
  article-title: Generative adversarial learning for optimizing ontology alignment
  publication-title: Expert Syst
– volume: 8
  start-page: 766
  issue: 4
  year: 2017
  end-page: 773
  article-title: Using artificial bee colony algorithm for optimizing ontology alignment
  publication-title: J Inf Hiding Multim Signal Process
– volume: 40
  start-page: 145
  issue: 3
  year: 1989
  end-page: 151
  article-title: Recall‐precision trade‐off: a derivation
  publication-title: J Am Soc Inf Sci
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Matching sensor ontologies with simulated annealing particle swarm optimization
  publication-title: Mob Inf Syst
– start-page: 3
  year: 2017
  end-page: 36
– volume: 48
  start-page: 25
  year: 2019
  end-page: 30
  article-title: Using compact evolutionary tabu search algorithm for matching sensor ontologies
  publication-title: Swarm Evol Comput
– start-page: 90
  year: 2016
  end-page: 97
SSID ssj0001934895
Score 2.3236198
Snippet In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting...
SourceID wiley
SourceType Publisher
SubjectTerms evolutionary
multi‐objective
ontology
semantic
talent
Title Semantic sensor data integration for talent development via hybrid multi‐objective evolutionary algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fitl2.557
Volume 8
WOSCitedRecordID wos001278719300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgMMDAG_GWB8QWmviZjAhRgYSqShSpW2Q7N7RAG5SWSmx8At_Il2A7KYUNiT2OrONr32P7-hyETqUxkVaMBDnLacCEDWMlVB7wKGMk40oJHXqzCdlux71e0qmrKt1bmEof4vvAzc0Mv167Ca70uDkXDbVYknPO5SJaiiIaO9sGwjrz85WEstibrhAmReBkz2fasyFpzhr_pqQ-p7TW_9ObDbRWM0l8UQ39JlqA0RZa_aEvuI2e7mBokRsYPLa71aLErh4UzxQi7IhgS1mxpd828-BsXj6EpwOF-2_uMRf2FYef7x-FfqzWRgzTOlxtb7F6fijKwaQ_3EH3ravu5XVQuysEhjgJ1lhApLjRXDFNqJEZCAhzEmYkM5yAUjzLEgrEJlGRA9BYSGZyiCylA0OporuoMSpGsIewlu4S3BIdSzdYIkBr-2cVKq2oBkKifXTmsUtfKgWNtNJKJqlDLbWopTfdW7u3kQd__fAQrRBnxOuLwY5QY1K-wjFaNtPJYFye-Ej4An_lvC8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEA1aBfXgt_htDuJt7W6STXbxJGJpsZaCFXpbkmzWrtqubGvBmz_B3-gvcbLbWr0J3pMQXiaZl8nkDUKnQmtPSUachCXUYRzMWHKZOL4XMxL7UnLlFsUmRKsVdLthew5dTP_ClPoQ3wE3uzOK89pucBuQrs5UQwFMcu77Yh4tMHAy1sgJa88CLCFlQVF1hTDBHat7PhWfdUl12vk3Jy2cSm3tX9NZR6sTLokvy8XfQHNmsIlWfigMbqGnO9MH7FKNh3BfzXJsM0LxVCMC1gQDacVAwMH34HiWQITHqcS9N_udCxc5h5_vH5l6LE9HbMYTg4XpYvn8kOXpqNffRve1685V3ZnUV3A0sSKsATee9LXyJVOEahEbbtyEuDGJtU-MlH4ch9QQcKM8MYYGXDCdGA9IndGUSrqDKoNsYHYRVsI-gwPVAcLBQm6UgpGlK5WkyhDi7aGzArzopdTQiEq1ZBJZ1CJALWp0mnC7Eft_bXiCluqd22bUbLRuDtAysWV5i9SwQ1QZ5a_mCC3q8Sgd5seFWXwBvNHAGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA21iujCt_g2C3E3OpNniytRi8VSClbobsjjjh21D9pacOcn-I1-iclMa3UnuE9COLk39yS5ORehE2lMpBUjQcISGjDhzFgJlQQ8soxYrpTQYVZsQtbrpVar3Cigi-lfmFwf4vvCzXtGtl97B4e-Tc5nqqEOTHLGuZxD84zLyJs0YY3ZBUuZslJWdYUwKQKvez4Vnw3J-bTzb06aBZXK6r-ms4ZWJlwSX-aLv44K0N1Ayz8UBjfR8z10HHapwUN3Xu0NsM8IxVONCLcm2JFW7Ai4iz3YzhKI8DhVuP3mv3PhLOfw8_2jp5_y3RHDeGKwbrpYvTz2Bumo3dlCD5Wb5tVtMKmvEBjiRVhLAiLFjeaKaUKNtCAgTEhoiTWcgFLc2jIF4sKoSABoSUhmEogcqQNDqaLbqNjtdWEHYS39M7ijOo5wsLIArd3IKlRaUQ2ERLvoNAMv7ucaGnGulkxij1rsUIurzZo73ci9vzY8RouN60pcq9bv9tES8VV5s8ywA1QcDV7hEC2Y8SgdDo4yq_gCunO_ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+sensor+data+integration+for+talent+development+via+hybrid+multi%E2%80%90objective+evolutionary+algorithm&rft.jtitle=Internet+technology+letters&rft.au=Luo%2C+Fang&rft.au=Yang%2C+Ya%E2%80%90Juan&rft.au=Geng%2C+Yu%E2%80%90Cheng&rft.date=2025-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2476-1508&rft.eissn=2476-1508&rft.volume=8&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fitl2.557&rft.externalDBID=10.1002%252Fitl2.557&rft.externalDocID=ITL2557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2476-1508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2476-1508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2476-1508&client=summon