Investigating Feed-Forward Back-Propagation Neural Network with Different Hyperparameters for Inverse Kinematics of a 2-DoF Robotic Manipulator: A Comparative Study
Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions plays a crucial role in achieving precise control. This paper presents a study on solving inverse kinematics problems using the Feed-Forward Back-Propagation Neural Network (FFBP-NN) and examines i...
Uložené v:
| Vydané v: | Chaos theory and applications Ročník 6; číslo 2; s. 90 - 110 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Akif AKGUL
30.06.2024
|
| Predmet: | |
| ISSN: | 2687-4539, 2687-4539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions plays a crucial role in achieving precise control. This paper presents a study on solving inverse kinematics problems using the Feed-Forward Back-Propagation Neural Network (FFBP-NN) and examines its performance with different hyperparameters. By utilizing the FFBP-NN, our primary objective is to ascertain the joint angles required to attain precise Cartesian coordinates for the end-effector of the manipulator. To accomplish this, we first formed three input-output datasets (a fixed-step-size dataset, a random-step-size dataset, and a sinusoidal-signal-based dataset) of joint positions and their respective Cartesian coordinates using direct geometrical formulations of a two-degree-of-freedom (2-DoF) manipulator. Thereafter, we train the FFBP-NN with the generated datasets using the MATLAB Neural Network Toolbox and investigate its potential by altering the hyperparameters (e.g., number of hidden neurons, number of hidden layers, and training optimizer). Three different training optimizers are considered, namely the Levenberg-Marquardt (LM) algorithm, the Bayesian Regularization (BR) algorithm, and the Scaled Conjugate Gradient (SCG) algorithm. The Mean Squared Error is used as the main performance metric to evaluate the training accuracy of the FFBP-NN. The comparative outcomes offer valuable insights into the capabilities of various network architectures in addressing inverse kinematics challenges. Therefore, this study explores the application of the FFBP-NNs in tackling the inverse kinematics, and facilitating the choice of the most appropriate network design by achieving a portfolio of various experimental results by considering and varying different hyperparameters of the FFBP-NN. |
|---|---|
| AbstractList | Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions plays a crucial role in achieving precise control. This paper presents a study on solving inverse kinematics problems using the Feed-Forward Back-Propagation Neural Network (FFBP-NN) and examines its performance with different hyperparameters. By utilizing the FFBP-NN, our primary objective is to ascertain the joint angles required to attain precise Cartesian coordinates for the end-effector of the manipulator. To accomplish this, we first formed three input-output datasets (a fixed-step-size dataset, a random-step-size dataset, and a sinusoidal-signal-based dataset) of joint positions and their respective Cartesian coordinates using direct geometrical formulations of a two-degree-of-freedom (2-DoF) manipulator. Thereafter, we train the FFBP-NN with the generated datasets using the MATLAB Neural Network Toolbox and investigate its potential by altering the hyperparameters (e.g., number of hidden neurons, number of hidden layers, and training optimizer). Three different training optimizers are considered, namely the Levenberg-Marquardt (LM) algorithm, the Bayesian Regularization (BR) algorithm, and the Scaled Conjugate Gradient (SCG) algorithm. The Mean Squared Error is used as the main performance metric to evaluate the training accuracy of the FFBP-NN. The comparative outcomes offer valuable insights into the capabilities of various network architectures in addressing inverse kinematics challenges. Therefore, this study explores the application of the FFBP-NNs in tackling the inverse kinematics, and facilitating the choice of the most appropriate network design by achieving a portfolio of various experimental results by considering and varying different hyperparameters of the FFBP-NN. |
| Author | Narayan, Jyotindra Gritli, Hassène Bouzid, Rania |
| Author_xml | – sequence: 1 givenname: Rania orcidid: 0009-0003-9641-1380 surname: Bouzid fullname: Bouzid, Rania – sequence: 2 givenname: Hassène orcidid: 0000-0002-5643-134X surname: Gritli fullname: Gritli, Hassène – sequence: 3 givenname: Jyotindra orcidid: 0000-0002-2499-6039 surname: Narayan fullname: Narayan, Jyotindra |
| BookMark | eNp1kd1uEzEQhVeoSJTSW679Aht2vWt7l7uSEhrRAuLn2hrb49TtZh2NnUZ5Hx6UTVokVImrM5rR-TQz53VxMsYRi-JtXc1ELRr1zt5CTLO6UaKT8kVxymWnylY0_ck_9aviPKW7qqp439eSq9Pi93J8wJTDCnIYV2yB6MpFpB2QYx_A3pffKG7gMI0j-4JbgmGSvIt0z3Yh37LL4D0Sjpld7TdIGyBYY0ZKzEdiBzolZJ_DiOsJYhOLngHj5WVcsO_RxKnHbmAMm-0AOdJ7dsHmcX3A5PCA7Efeuv2b4qWHIeH5k54VvxYff86vyuuvn5bzi-vSTvfIsuXOGVtB23OlRGWt5MIKLwWYzjjT2MpxoVorDSioa6Ow6dH41mOvjHC-OSuWj1wX4U5vKKyB9jpC0MdGpJUGmhYeUHuphOmFktA0LULdgRUSVNMpZ7jxfGK1jyxLMSVCr23IxzdmgjDoutLH4PQxOP0U3GSbPbP9XeM_hj-xeqGX |
| CitedBy_id | crossref_primary_10_2478_acss_2024_0004 |
| Cites_doi | 10.1088/1742-6596/366/1/012013 10.51537/chaos.1213070 10.1016/S0893-6080(05)80056-5 10.3390/app12199512 10.1109/ICIEV.2018.8640958 10.1007/978-3-030-84205-5_26 10.3390/mca21020020 10.1007/978-3-031-51224-7_4 10.1007/s10015-019-00552-y 10.1007/s11370-023-00477-3 10.1088/1742-6596/1969/1/012010 10.1007/s11012-016-0369-3 10.2339/politeknik.1092642 10.1007/s12652-020-01815-4 10.1109/TII.2018.2792002 10.1016/j.chaos.2022.112769 10.51537/chaos.1116084 10.1016/j.engappai.2023.106301 10.1117/1.OE.53.5.055102 10.1016/j.engappai.2023.107175 10.3844/ajeassp.2017.394.411 10.51537/chaos.1184952 10.1109/ICCUBEA47591.2019.9128742 10.1109/ICOIACT.2018.8350676 10.1109/3ICT60104.2023.10391576 10.1115/1.4011045 10.1109/ISPCC.2017.8269676 10.1016/j.robot.2004.09.010 10.1007/978-3-030-01424-7_77 10.1007/s10846-017-0502-0 10.1016/j.procs.2018.07.069 10.1109/IATMSI60426.2024.10503452 10.1016/j.actaastro.2017.06.015 10.1109/ICPC2T60072.2024.10474947 10.1108/01439910810893626 10.1016/0167-8655(84)90007-2 10.1007/s12652-014-0244-9 10.1007/s00170-018-1785-4 10.51537/chaos.1249532 10.1109/ICETSIS61505.2024.10459544 10.3390/machines11100952 10.1088/0266-5611/14/3/003 10.1016/j.rcim.2018.05.008 10.5772/64047 10.1007/s10846-016-0449-6 10.1007/s12652-011-0056-0 10.1080/0951192X.2017.1305507 10.1177/0954411918781418 10.1007/s41870-017-0002-2 10.1155/2022/1713657 10.1016/j.protcy.2013.12.451 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.51537/chaos.1375866 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2687-4539 |
| EndPage | 110 |
| ExternalDocumentID | oai_doaj_org_article_f675b9576a334ea18ac56a7387db2bf2 10_51537_chaos_1375866 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ IAO ITC |
| ID | FETCH-LOGICAL-c2996-42ddbc0a4927750cc625c5f65ab8bdb3c0d2574c6ba7a11b7e39ebf4fe97b5df3 |
| IEDL.DBID | DOA |
| ISSN | 2687-4539 |
| IngestDate | Fri Oct 03 12:50:32 EDT 2025 Sat Nov 29 03:40:14 EST 2025 Tue Nov 18 22:43:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2996-42ddbc0a4927750cc625c5f65ab8bdb3c0d2574c6ba7a11b7e39ebf4fe97b5df3 |
| ORCID | 0000-0002-5643-134X 0000-0002-2499-6039 0009-0003-9641-1380 |
| OpenAccessLink | https://doaj.org/article/f675b9576a334ea18ac56a7387db2bf2 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f675b9576a334ea18ac56a7387db2bf2 crossref_citationtrail_10_51537_chaos_1375866 crossref_primary_10_51537_chaos_1375866 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-30 |
| PublicationDateYYYYMMDD | 2024-06-30 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos theory and applications |
| PublicationYear | 2024 |
| Publisher | Akif AKGUL |
| Publisher_xml | – name: Akif AKGUL |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref18 doi: 10.1088/1742-6596/366/1/012013 – ident: ref33 doi: 10.51537/chaos.1213070 – ident: ref20 – ident: ref43 doi: 10.1016/S0893-6080(05)80056-5 – ident: ref29 doi: 10.3390/app12199512 – ident: ref26 doi: 10.1109/ICIEV.2018.8640958 – ident: ref45 doi: 10.1007/978-3-030-84205-5_26 – ident: ref32 doi: 10.3390/mca21020020 – ident: ref10 doi: 10.1007/978-3-031-51224-7_4 – ident: ref27 – ident: ref56 doi: 10.1007/s10015-019-00552-y – ident: ref44 doi: 10.1007/s11370-023-00477-3 – ident: ref2 doi: 10.1088/1742-6596/1969/1/012010 – ident: ref34 doi: 10.1007/s11012-016-0369-3 – ident: ref3 doi: 10.2339/politeknik.1092642 – ident: ref11 – ident: ref13 – ident: ref23 doi: 10.1007/s12652-020-01815-4 – ident: ref54 doi: 10.1109/TII.2018.2792002 – ident: ref49 doi: 10.1016/j.chaos.2022.112769 – ident: ref42 doi: 10.51537/chaos.1116084 – ident: ref58 doi: 10.1016/j.engappai.2023.106301 – ident: ref59 doi: 10.1117/1.OE.53.5.055102 – ident: ref12 doi: 10.1016/j.engappai.2023.107175 – ident: ref50 doi: 10.3844/ajeassp.2017.394.411 – ident: ref30 doi: 10.51537/chaos.1184952 – ident: ref1 doi: 10.1109/ICCUBEA47591.2019.9128742 – ident: ref37 doi: 10.1109/ICOIACT.2018.8350676 – ident: ref6 doi: 10.1109/3ICT60104.2023.10391576 – ident: ref40 – ident: ref17 doi: 10.1115/1.4011045 – ident: ref47 – ident: ref46 doi: 10.1109/ISPCC.2017.8269676 – ident: ref35 doi: 10.1016/j.robot.2004.09.010 – ident: ref57 doi: 10.1007/978-3-030-01424-7_77 – ident: ref22 doi: 10.1007/s10846-017-0502-0 – ident: ref36 doi: 10.1016/j.procs.2018.07.069 – ident: ref8 doi: 10.1109/IATMSI60426.2024.10503452 – ident: ref60 doi: 10.1016/j.actaastro.2017.06.015 – ident: ref9 doi: 10.1109/ICPC2T60072.2024.10474947 – ident: ref28 doi: 10.1108/01439910810893626 – ident: ref21 doi: 10.1016/0167-8655(84)90007-2 – ident: ref5 doi: 10.1007/s12652-014-0244-9 – ident: ref61 doi: 10.1007/s00170-018-1785-4 – ident: ref25 – ident: ref31 doi: 10.51537/chaos.1249532 – ident: ref51 – ident: ref7 doi: 10.1109/ICETSIS61505.2024.10459544 – ident: ref24 doi: 10.3390/machines11100952 – ident: ref55 doi: 10.1088/0266-5611/14/3/003 – ident: ref38 doi: 10.1016/j.rcim.2018.05.008 – ident: ref16 doi: 10.5772/64047 – ident: ref15 – ident: ref39 doi: 10.1007/s10846-016-0449-6 – ident: ref4 doi: 10.1007/s12652-011-0056-0 – ident: ref53 doi: 10.1080/0951192X.2017.1305507 – ident: ref52 – ident: ref48 doi: 10.1177/0954411918781418 – ident: ref41 doi: 10.1007/s41870-017-0002-2 – ident: ref14 doi: 10.1155/2022/1713657 – ident: ref19 doi: 10.1016/j.protcy.2013.12.451 |
| SSID | ssj0002991627 |
| Score | 2.3189788 |
| Snippet | Inverse kinematics is a significant challenge in robotic manipulators, and finding practical solutions plays a crucial role in achieving precise control. This... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 90 |
| SubjectTerms | artifical neural network bayesian regularization algorithm different datasets feed-forward backpropagation hyperparameters inverse kinematics levenberg-marquardt algorithm mean squared error r-value robotic manipulator scaled conjugate gradient algorithm |
| Title | Investigating Feed-Forward Back-Propagation Neural Network with Different Hyperparameters for Inverse Kinematics of a 2-DoF Robotic Manipulator: A Comparative Study |
| URI | https://doaj.org/article/f675b9576a334ea18ac56a7387db2bf2 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2687-4539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002991627 issn: 2687-4539 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9ZAEF6k9OBFlCrWL-ZQ8LQ22U2y73rrVyiIL0UUegsz-1GLmpTkVfD_-EOd3cT2vYgXr5thCDOTnWfCwzNCHOhGYyDjJTlbyEoVTpKlUrpQRF87wgaLvGzCrNery0t7sbXqK3HCZnngOXCHkREtWUbFqHUVsFyhqxs0emU8KYr59mXUszVMpTtYJdijzKzSyC1bm0P3GYfpTakZIGdJxLsutCXWn7tK-1A8WOAgHM2v8UjcC_2e-LUlftFfQcsNRrbDmPitcIzui7wYedS9yjGFpK7BHtYznRvSf1U4XbaebOCcx8wxyXt_S7SXCRiiQvI-TgHeMcDMgq0TDBEQlDwdWvgw0MBn8B7767zbaxjfwhGc3KmEQ-Ie_nwsPrVnH0_O5bJNQTqVmMaV8p5cgZVVhmGCczz5uDo2NdKKPGlXeP58K9cQGixLMkHbQLGKwRqqfdRPxE4_9OGpgBC91Qz8-FmojKoQURtFqrBFbCLRvpB_otu5RWo8bbz42vHIkbPR5Wx0Szb2xetb-5tZZOOvlscpWbdWSRw7H3DJdEvJdP8qmWf_w8lzcV8xvpmpgy_Ezmb8Hl6KXfdjcz2Nr3I1_gZuM-pk |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+Feed-Forward+Back-Propagation+Neural+Network+with+Different+Hyperparameters+for+Inverse+Kinematics+of+a+2-DoF+Robotic+Manipulator%3A+A+Comparative+Study&rft.jtitle=Chaos+theory+and+applications&rft.au=Rania+Bouzid&rft.au=Jyotindra+Narayan&rft.au=Hass%C3%A8ne+Gritli&rft.date=2024-06-30&rft.pub=Akif+AKGUL&rft.eissn=2687-4539&rft.volume=6&rft.issue=2&rft.spage=90&rft.epage=110&rft_id=info:doi/10.51537%2Fchaos.1375866&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f675b9576a334ea18ac56a7387db2bf2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2687-4539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2687-4539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2687-4539&client=summon |