Predictive Obstacle Avoidance Algorithm for Under‐Actuated Unmanned Surface Vehicle Under Disturbances via Reinforcement Learning

ABSTRACT Due to the growing complexity of diverse maritime tasks, underactuated unmanned surface vehicle (USV) has become a research hotspot. The rapid development of deep reinforcement learning (DRL) technology has brought forth a novel approach for the USV autonomous control, rendering unnecessary...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of field robotics Ročník 42; číslo 7; s. 3482 - 3499
Hlavní autoři: Jin, Kefan, Liu, Zhe, Wang, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.10.2025
Témata:
ISSN:1556-4959, 1556-4967
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Due to the growing complexity of diverse maritime tasks, underactuated unmanned surface vehicle (USV) has become a research hotspot. The rapid development of deep reinforcement learning (DRL) technology has brought forth a novel approach for the USV autonomous control, rendering unnecessary the dynamical modeling of the target USV. To further improve the USV collision avoidance performance against maritime disturbances, this paper presents a predictive reinforcement learning method for USV obstacle avoidance control. A prediction module is designed to generate latent features that depict environmental states. After that, the prediction feature is provided for a DRL‐based policy module to produce an action distribution for the underactuated unmanned surface vehicle. The proposed method in this paper can enable the USV avoid obstacle and reach the destination solely based on its local observational information, without relying on prior global information. Simulation and physical experiments have demonstrated that, compared to general DRL methods, the proposed method exhibits stronger robustness to environmental disturbances, enabling the USV to reach the destination while avoid the obstacle.
AbstractList ABSTRACT Due to the growing complexity of diverse maritime tasks, underactuated unmanned surface vehicle (USV) has become a research hotspot. The rapid development of deep reinforcement learning (DRL) technology has brought forth a novel approach for the USV autonomous control, rendering unnecessary the dynamical modeling of the target USV. To further improve the USV collision avoidance performance against maritime disturbances, this paper presents a predictive reinforcement learning method for USV obstacle avoidance control. A prediction module is designed to generate latent features that depict environmental states. After that, the prediction feature is provided for a DRL‐based policy module to produce an action distribution for the underactuated unmanned surface vehicle. The proposed method in this paper can enable the USV avoid obstacle and reach the destination solely based on its local observational information, without relying on prior global information. Simulation and physical experiments have demonstrated that, compared to general DRL methods, the proposed method exhibits stronger robustness to environmental disturbances, enabling the USV to reach the destination while avoid the obstacle.
Due to the growing complexity of diverse maritime tasks, underactuated unmanned surface vehicle (USV) has become a research hotspot. The rapid development of deep reinforcement learning (DRL) technology has brought forth a novel approach for the USV autonomous control, rendering unnecessary the dynamical modeling of the target USV. To further improve the USV collision avoidance performance against maritime disturbances, this paper presents a predictive reinforcement learning method for USV obstacle avoidance control. A prediction module is designed to generate latent features that depict environmental states. After that, the prediction feature is provided for a DRL‐based policy module to produce an action distribution for the underactuated unmanned surface vehicle. The proposed method in this paper can enable the USV avoid obstacle and reach the destination solely based on its local observational information, without relying on prior global information. Simulation and physical experiments have demonstrated that, compared to general DRL methods, the proposed method exhibits stronger robustness to environmental disturbances, enabling the USV to reach the destination while avoid the obstacle.
Author Liu, Zhe
Wang, Jian
Jin, Kefan
Author_xml – sequence: 1
  givenname: Kefan
  orcidid: 0000-0001-7457-2392
  surname: Jin
  fullname: Jin, Kefan
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Zhe
  surname: Liu
  fullname: Liu, Zhe
  email: liuzhesjtu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Ministry of Education
BookMark eNp1kM1KAzEUhYNU0FYXvsGAKxe1mZlkfpa1_kKhotbtkEnutCnTpCaZijvBF_AZfRIzbXEhurrnhu-cS04XdZRWgNBJiM9DjKOB0eV5FFFK9tBhSGnSJ3mSdn40zQ9Q19oFxiTOcnqIPu4NCMmdXEMwKa1jvIZguNZSMMW9qmfaSDdfBpU2wVQJMF_vn0PuGuZA-IclU8qLx8ZUzPPPMJdtwoYMLqV1jSnbJBusJQseQCofxGEJygVjYEZJNTtC-xWrLRzvZg9Nr6-eRrf98eTmbjQc93mU56TPIBaY4hSI4GVU0YyXiSCYEppDFkNEGW6XKkt4RUTI4yolkMTgf54yLNK4h063uSujXxqwrljoxih_sogjGmc4S0hLDbYUN9paA1XBpWNOauUMk3UR4qJtuvBNF5umvePsl2Nl5JKZtz_ZXfqrrOHtf7B4mFxsHd_OAJJ5
CitedBy_id crossref_primary_10_1016_j_apor_2025_104778
Cites_doi 10.1109/TIV.2024.3397651
10.1109/TNNLS.2021.3056444
10.1109/TNNLS.2020.3009214
10.1109/TIV.2023.3245612
10.1109/TVT.2024.3410183
10.1109/TIE.2024.3384617
10.1109/TPAMI.2023.3314762
10.1109/TSMC.2024.3460370
10.1002/rob.22068
10.1016/j.oceaneng.2024.120059
10.1016/j.neucom.2017.06.066
10.1016/j.oceaneng.2023.115467
10.1109/TII.2022.3142323
10.1109/TNNLS.2023.3313312
10.1016/j.oceaneng.2023.115958
10.1109/TTE.2024.3518553
10.1016/j.oceaneng.2024.117501
10.1109/TVT.2024.3490760
10.1038/nature14236
10.1109/TIE.2023.3274869
10.1002/rob.22456
10.1002/rob.22225
10.1109/TCST.2024.3377876
10.1109/TIV.2023.3331905
10.1002/rob.22262
10.1109/TSMC.2023.3321119
10.1016/j.oceaneng.2022.112226
10.1109/TIE.2023.3342290
10.1109/TITS.2024.3419585
10.1109/TMECH.2022.3188834
10.1109/TNNLS.2022.3223666
10.1109/TII.2023.3274229
10.1109/TITS.2024.3478319
10.1109/TITS.2024.3374796
10.1109/TIV.2023.3339852
10.1109/TII.2024.3424573
10.1109/TASE.2024.3492174
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22554
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 3499
ExternalDocumentID 10_1002_rob_22554
ROB22554
Genre researchArticle
GrantInformation_xml – fundername: This study was supported the National Natural Science Foundation of China under Grant 62303307.
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
CITATION
O8X
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2994-ae3d0507e4dcb2f58cb6d405459e83e25a00545f86cf4d1c3f74e63e5567a0d73
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489847300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-4959
IngestDate Thu Nov 06 15:42:23 EST 2025
Tue Nov 18 21:33:48 EST 2025
Thu Nov 27 01:09:04 EST 2025
Thu Sep 25 09:40:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2994-ae3d0507e4dcb2f58cb6d405459e83e25a00545f86cf4d1c3f74e63e5567a0d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7457-2392
PQID 3253808647
PQPubID 1006410
PageCount 18
ParticipantIDs proquest_journals_3253808647
crossref_citationtrail_10_1002_rob_22554
crossref_primary_10_1002_rob_22554
wiley_primary_10_1002_rob_22554_ROB22554
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 54
2023; 35
2023; 285
2023; 59
2023; 8
2023; 9
2023; 288
2024; 73
2024; 74
2024; 32
2024; 55
2024; 11
2024; 301
2024
2020; 32
2022; 27
2025; 317
2023; 20
2023; 40
2021; 32
2022; 262
2018; 272
2023; 45
2024; 71
2022; 35
2018
2024; 41
2015; 518
2024; 20
2017
2016
2024; 22
2024; 25
2023; 71
2023; 72
2022; 39
2022; 18
2014; 32
Ma B. (e_1_2_13_22_1) 2023; 72
e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_21_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_43_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_7_1
e_1_2_13_6_1
Zhang J. (e_1_2_13_44_1) 2023; 59
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_32_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_30_1
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
Silver D. (e_1_2_13_28_1) 2014; 32
e_1_2_13_29_1
References_xml – volume: 73
  start-page: 14510
  issue: 10
  year: 2024
  end-page: 14524
  article-title: A Potential Field‐Based Model Predictive Target Following Controller for Underactuated Unmanned Surface Vehicles
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 22
  start-page: 8898
  year: 2024
  end-page: 8911
  article-title: Estimating Lyapunov Region of Attraction for Robust Model‐Based Reinforcement Learning Usv
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 71
  start-page: 4089
  issue: 4
  year: 2023
  end-page: 4097
  article-title: Policy Learning for Nonlinear Model Predictive Control With Application to Usvs
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 8
  start-page: 2088
  issue: 3
  year: 2023
  end-page: 2096
  article-title: Predictor‐Based Fixed‐Time Los Path Following Control of Underactuated Usv With Unknown Disturbances
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 55
  start-page: 63
  issue: 1
  year: 2024
  end-page: 72
  article-title: Fuzzy Trajectory Tracking Control of Under‐Actuated Unmanned Surface Vehicles With Ocean Current and Input Quantization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– year: 2024
  article-title: Model‐Based Reinforcement Learning for Trajectory Tracking Control of Autonomous Surface Ship
– volume: 32
  start-page: 5456
  issue: 12
  year: 2021
  end-page: 5467
  article-title: Data‐Driven Performance‐Prescribed Reinforcement Learning Control of an Unmanned Surface Vehicle
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 25
  start-page: 21404
  issue: 12
  year: 2024
  end-page: 21415
  article-title: A Balanced Collision Avoidance Algorithm for Usvs in Complex Environment: A Deep Reinforcement Learning Approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 9
  start-page: 3127
  issue: 2
  year: 2023
  end-page: 3139
  article-title: Event‐Triggered Based Trajectory Tracking Control of Under‐Actuated Unmanned Surface Vehicle With State and Input Quantization
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 39
  start-page: 631
  issue: 5
  year: 2022
  end-page: 649
  article-title: Hijacking of Unmanned Surface Vehicles: A Demonstration of Attacks and Countermeasures in the Field
  publication-title: Journal of Field Robotics
– year: 2024
  article-title: Robust Collision Avoidance and Path‐Following of Usvs With Reduced Conservativeness: A Control Barrier Function‐Based Approach
  publication-title: Journal of Field Robotics
– volume: 74
  start-page: 3885
  issue: 3
  year: 2024
  end-page: 3900
  article-title: Collision Avoidance and Path Point Tracking Control for Underactuated Unmanned Surface Vehicles With Unknown Model Nonlinearity
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 18
  start-page: 6950
  issue: 10
  year: 2022
  end-page: 6961
  article-title: Filtered Probabilistic Model Predictive Control‐Based Reinforcement Learning for Unmanned Surface Vehicles
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 1861
  year: 2018
  end-page: 1870
  article-title: Soft Actor‐Critic: Off‐policy Maximum Entropy Deep Reinforcement Learning With a Stochastic Actor
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  article-title: Human‐Level Control Through Deep Reinforcement Learning
  publication-title: Nature
– year: 2016
– volume: 11
  start-page: 6875
  issue: 2
  year: 2024
  end-page: 6886
  article-title: Los Guidance for Fuzzy Adaptive Fault‐Tolerant Path Following Control of Usv With Side‐Slip Compensation and Actuator Fault
  publication-title: IEEE Transactions on Transportation Electrification
– volume: 288
  year: 2023
  article-title: Demrl: Dynamic Estimation Meta Reinforcement Learning for Path Following on Unseen Unmanned Surface Vehicle
  publication-title: Ocean Engineering
– volume: 20
  start-page: 12837
  issue: 11
  year: 2024
  end-page: 12847
  article-title: Event‐Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2018
  article-title: Reinforcement learning: An introduction
– year: 2024
  article-title: Trajectory Tracking Control of an Intelligent Ship Based on Deep Reinforcement Learning
– year: 2024
  article-title: Adaptive Backstepping Control for Underactuated 6‐dof Usv With Uncertain Dynamics
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 40
  start-page: 1887
  issue: 8
  year: 2023
  end-page: 1905
  article-title: Field Demonstration of Advanced Autonomous Navigation Technique for a Fully Unmanned Surface Vehicle in Complex Coastal Traffic Areas
  publication-title: Journal of Field Robotics
– volume: 35
  start-page: 8026
  issue: 6
  year: 2022
  end-page: 8039
  article-title: Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 54
  start-page: 787
  issue: 2
  year: 2023
  end-page: 799
  article-title: Distributed Robust Learning Control for Multiple Unmanned Surface Vessels With Fixed‐Time Prescribed Performance
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 59
  start-page: 7252
  issue: 5
  year: 2023
  end-page: 7268
  article-title: Dynamic Path Planning Algorithm for Unmanned Surface Vehicle Under Island‐Reef Environment
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 25
  start-page: 11522
  issue: 9
  year: 2024
  end-page: 11533
  article-title: Hybrid Physics‐Learning Model Based Predictive Control for Trajectory Tracking of Unmanned Surface Vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 32
  start-page: 1904
  issue: 5
  year: 2024
  end-page: 1919
  article-title: Path‐Following Control of Unmanned Underwater Vehicle Based on an Improved td3 Deep Reinforcement Learning
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 41
  start-page: 470
  issue: 2
  year: 2024
  end-page: 489
  article-title: Field Experiment of Autonomous Ship Navigation in Canal and Surrounding Nearshore Environments
  publication-title: Journal of Field Robotics
– volume: 32
  start-page: 3034
  issue: 7
  year: 2020
  end-page: 3045
  article-title: Reinforcement Learning‐Based Optimal Tracking Control of an Unknown Unmanned Surface Vehicle
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 20
  start-page: 1283
  issue: 2
  year: 2023
  end-page: 1293
  article-title: Probabilistic Model‐Based Reinforcement Learning Unmanned Surface Vehicles Using Local Update Sparse Spectrum Approximation
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 27
  start-page: 5736
  issue: 6
  year: 2022
  end-page: 5747
  article-title: Network‐Based Multiple Operating Points Cooperative Dynamic Positioning of Unmanned Surface Vehicles
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 32
  start-page: 387
  issue: 1
  year: 2014
  end-page: 395
  article-title: Deterministic Policy Gradient Algorithms
  publication-title: International Conference on Machine Learning, 2014 Proceedings of Machine Learning Research (PMLR)
– volume: 317
  year: 2025
  article-title: Target Tracking Control for Unmanned Surface Vehicles: An End‐To‐End Deep Reinforcement Learning Approach
  publication-title: Ocean Engineering
– volume: 35
  start-page: 18237
  issue: 12
  year: 2023
  end-page: 18250
  article-title: Path Following Control for Unmanned Surface Vehicles: A Reinforcement Learning‐Based Method With Experimental Validation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 9
  start-page: 3293
  issue: 2
  year: 2023
  end-page: 3304
  article-title: Adaptive Neural Network‐Quantized Tracking Control of Uncertain Unmanned Surface Vehicles With Output Constraints
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 301
  year: 2024
  article-title: Based on Deep Reinforcement Learning to Path Planning in Uncertain Ocean Currents for Underwater Gliders
  publication-title: Ocean Engineering
– volume: 45
  start-page: 14745
  issue: 12
  year: 2023
  end-page: 14759
  article-title: Human‐Guided Reinforcement Learning With Sim‐To‐Real Transfer for Autonomous Navigation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2017
– volume: 72
  start-page: 1
  year: 2023
  end-page: 13
  article-title: Deep Reinforcement Learning of Uav Tracking Control Under Wind Disturbances Environments
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 25
  start-page: 17810
  issue: 11
  year: 2024
  end-page: 17820
  article-title: Integrated Intelligent Guidance and Motion Control of Usvs With Anticipatory Collision Avoidance Decision‐Making
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 285
  year: 2023
  article-title: Flexible Unmanned Surface Vehicles Control Using Probabilistic Model‐Based Reinforcement Learning With Hierarchical Gaussian Distribution
  publication-title: Ocean Engineering
– volume: 71
  start-page: 11272
  issue: 9
  year: 2023
  end-page: 11282
  article-title: A Stochastic Event‐Triggered Robust Unscented Kalman Filter‐Based Usv Parameter Estimation
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 262
  year: 2022
  article-title: Path Planning for Underwater Gliders in Time‐Varying Ocean Current Using Deep Reinforcement Learning
  publication-title: Ocean Engineering
– volume: 272
  start-page: 63
  year: 2018
  end-page: 73
  article-title: Concise Deep Reinforcement Learning Obstacle Avoidance for Underactuated Unmanned Marine Vessels
  publication-title: Neurocomputing
– volume: 71
  start-page: 16388
  issue: 12
  year: 2024
  end-page: 16397
  article-title: Gaussian Process‐Based Learning Model Predictive Control With Application to Usv
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 32
  start-page: 387
  issue: 1
  year: 2014
  ident: e_1_2_13_28_1
  article-title: Deterministic Policy Gradient Algorithms
  publication-title: International Conference on Machine Learning, 2014 Proceedings of Machine Learning Research (PMLR)
– ident: e_1_2_13_43_1
  doi: 10.1109/TIV.2024.3397651
– ident: e_1_2_13_33_1
  doi: 10.1109/TNNLS.2021.3056444
– volume: 59
  start-page: 7252
  issue: 5
  year: 2023
  ident: e_1_2_13_44_1
  article-title: Dynamic Path Planning Algorithm for Unmanned Surface Vehicle Under Island‐Reef Environment
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– ident: e_1_2_13_34_1
  doi: 10.1109/TNNLS.2020.3009214
– ident: e_1_2_13_36_1
  doi: 10.1109/TIV.2023.3245612
– ident: e_1_2_13_11_1
  doi: 10.1109/TVT.2024.3410183
– ident: e_1_2_13_16_1
  doi: 10.1109/TIE.2024.3384617
– ident: e_1_2_13_40_1
  doi: 10.1109/TPAMI.2023.3314762
– ident: e_1_2_13_32_1
– ident: e_1_2_13_25_1
  doi: 10.1109/TSMC.2024.3460370
– ident: e_1_2_13_29_1
  doi: 10.1002/rob.22068
– ident: e_1_2_13_18_1
– ident: e_1_2_13_38_1
  doi: 10.1016/j.oceaneng.2024.120059
– ident: e_1_2_13_2_1
  doi: 10.1016/j.neucom.2017.06.066
– ident: e_1_2_13_5_1
  doi: 10.1016/j.oceaneng.2023.115467
– ident: e_1_2_13_26_1
– ident: e_1_2_13_3_1
  doi: 10.1109/TII.2022.3142323
– ident: e_1_2_13_37_1
  doi: 10.1109/TNNLS.2023.3313312
– ident: e_1_2_13_12_1
  doi: 10.1016/j.oceaneng.2023.115958
– ident: e_1_2_13_42_1
  doi: 10.1109/TTE.2024.3518553
– ident: e_1_2_13_15_1
  doi: 10.1016/j.oceaneng.2024.117501
– ident: e_1_2_13_47_1
  doi: 10.1109/TVT.2024.3490760
– ident: e_1_2_13_23_1
  doi: 10.1038/nature14236
– ident: e_1_2_13_9_1
– ident: e_1_2_13_35_1
  doi: 10.1109/TIE.2023.3274869
– ident: e_1_2_13_39_1
  doi: 10.1002/rob.22456
– ident: e_1_2_13_10_1
  doi: 10.1002/rob.22225
– ident: e_1_2_13_17_1
– ident: e_1_2_13_8_1
  doi: 10.1109/TCST.2024.3377876
– ident: e_1_2_13_6_1
  doi: 10.1109/TIV.2023.3331905
– ident: e_1_2_13_13_1
  doi: 10.1002/rob.22262
– ident: e_1_2_13_7_1
  doi: 10.1109/TSMC.2023.3321119
– ident: e_1_2_13_14_1
  doi: 10.1016/j.oceaneng.2022.112226
– ident: e_1_2_13_27_1
  doi: 10.1109/TIE.2023.3342290
– ident: e_1_2_13_31_1
  doi: 10.1109/TITS.2024.3419585
– ident: e_1_2_13_20_1
  doi: 10.1109/TMECH.2022.3188834
– ident: e_1_2_13_45_1
  doi: 10.1109/TNNLS.2022.3223666
– ident: e_1_2_13_4_1
  doi: 10.1109/TII.2023.3274229
– ident: e_1_2_13_21_1
  doi: 10.1109/TITS.2024.3478319
– ident: e_1_2_13_30_1
– ident: e_1_2_13_46_1
  doi: 10.1109/TITS.2024.3374796
– ident: e_1_2_13_24_1
  doi: 10.1109/TIV.2023.3339852
– ident: e_1_2_13_19_1
  doi: 10.1109/TII.2024.3424573
– volume: 72
  start-page: 1
  year: 2023
  ident: e_1_2_13_22_1
  article-title: Deep Reinforcement Learning of Uav Tracking Control Under Wind Disturbances Environments
  publication-title: IEEE Transactions on Instrumentation and Measurement
– ident: e_1_2_13_41_1
  doi: 10.1109/TASE.2024.3492174
SSID ssj0043895
Score 2.4445171
Snippet ABSTRACT Due to the growing complexity of diverse maritime tasks, underactuated unmanned surface vehicle (USV) has become a research hotspot. The rapid...
Due to the growing complexity of diverse maritime tasks, underactuated unmanned surface vehicle (USV) has become a research hotspot. The rapid development of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3482
SubjectTerms Collision avoidance
Deep learning
deep reinforcement learning (DRL)
Disturbances
Dynamic models
Modules
Obstacle avoidance
Predictions
state prediction
Surface vehicles
Task complexity
unmanned surface vehicle (USV) control
Unmanned vehicles
Title Predictive Obstacle Avoidance Algorithm for Under‐Actuated Unmanned Surface Vehicle Under Disturbances via Reinforcement Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22554
https://www.proquest.com/docview/3253808647
Volume 42
WOSCitedRecordID wos001489847300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1556-4967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0043895
  issn: 1556-4959
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7ojAc9uIs7QTx4qXbStE3xNC6DB9FhXPBWkjTVAZ2RznIW_AP-Rn-JL2k7M4KC4K2U16S89UvafA9gn0Yp5ZIHDmXKdVjgpY6IXO0wLC8CF0U1V3LbbCK8uuIPD1FzCo7LszA5P8Row81Ehs3XJsCF7B2NSUOzrjxEZ_TZNFQp-i2rQPWs1bi7LBOx6evtW7pUP3BwHRCVxEIuPRo9_L0cjTHmJFK1paax8K-XXIT5AmGSeu4SSzClO8swN8E7uALvzcx8nzGZjlxLxIcoSOrDbjsxPkDqz4_drN1_eiGIaIntjPT59lE3R00Qn-KNF2GyM7kZZKlA-Xv9ZKbKJckZOs4gk2akHhm2BWlpy86q7EYkKQhdH1fhrnF-e3rhFN0YHEUNf7DQXuIietQsUZKmPlcySBDuMT_S3NPUFwb--SkPVMqSmvLSkOnA06j9ULhJ6K1BpdPt6HUgfiiSINARFUIzRPcR14wx5dGkFmnB5QYclEaJVUFVbjpmPMc5yTKNUa-x1esG7I1EX3N-jp-EtkvLxkWI9mKPYq7HBR0LcTprw98HiFvXJ_Zi8--iWzBLTa9g--PfNlT62UDvwIwa9tu9bLfw1S9FgO7d
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL0qBWnsYcAGGgOGNfGwl0Dq2Ikj8VJgFYiurUo79S1yHAcqQTulH8-T9gf2G_dLdu0kbScNaRJvUXRiR9fX18c38bkAJzRMqYiF71CmXIf5XurI0NUOw-VF4qao5sbCFpsIWi0xGISdCpyXZ2FyfYhFws3MDBuvzQQ3CemzpWpoNo5P0Rs5W4N17ETwKqxfdRv9ZhmJTWFvbvVSue_gRiAslYVcerZ4-O_1aEkyV6mqXWsaWy97y214U3BMUs-dYgcqevQWXq8oD76Dn53MfKExsY60Y2SICCT1-XiYGC8g9cf7cTacPjwR5LTE1kb6_eNX3Rw2QYaKN56kic_kbpalEvHf9IPpKkeSK3SdWRabliZkPpSkq60-q7KpSFJIut7vQr_xpXd57RT1GBxFjYKw1F7iIn_ULFExTblQsZ8g4WM81MLTlEtDAHkqfJWypKa8NGDa9zSaP5BuEnh7UB2NR_o9EB7IxPd1SKXUDPl9KDRjTHk0qYVaingfPpejEqlCrNzUzHiMcpllGqFdI2vXffi0gH7PFTr-BToshzYqJukk8ihGe9zSsQC7s4P4fANRt31hLz78P_QYXl33vjaj5k3r9gA2qakcbH8DPITqNJvpI9hQ8-lwkn0sHPcPjMDyzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCp6gD5A5dVaVQ-9pGQdx3EkLgvLqlXRstqWilvk2BNYCXZR9nFG4g_wG_tLOnaShUqtVKm3KJrY0Tw_O_E3AB94WnCVKxlwYcJAyKgIdBpiIKi8aFoUtcJc-WYTSa-nzs_T_hIcNGdhKn6IxYabiwyfr12A440t9h9YQ8tx_om8MRZPYEXEqaSwXOkMumcnTSZ2jb1jz5cay4AWAmnDLBTy_cXDv9ejB5D5GKr6WtNd_7-3fAFrNcZk7copXsISjl7B80fMg6_hrl-6LzQu17HTnBAiCbL2fDy0zgtY--piXA6nl9eMMC3zvZF-3t633WETQqh041q7_My-zcpCk_wPvHRTVZKsQ64zK3M30oTNh5oN0POzGr8VyWpK14sNOOsefz_6HNT9GALDHYOwxsiGhB9RWJPzIlYml5YAHykfVYQ81g4AxoWSphC2ZaIiESgjJPUnOrRJtAnLo_EI3wCLE22lxJRrjYLwfapQCGEiblspapVvwcfGKpmpycpdz4yrrKJZ5hnpNfN63YL3C9GbiqHjT0K7jWmzOkgnWcQp29OSTiQ0nTfi3wfIBqeH_mL730XfwbN-p5udfOl93YFV7hoH-78Ad2F5Ws5wD56a-XQ4Kd_WfvsLLBrySA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Obstacle+Avoidance+Algorithm+for+Under%E2%80%90Actuated+Unmanned+Surface+Vehicle+Under+Disturbances+via+Reinforcement+Learning&rft.jtitle=Journal+of+field+robotics&rft.au=Jin%2C+Kefan&rft.au=Liu%2C+Zhe&rft.au=Wang%2C+Jian&rft.date=2025-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=7&rft.spage=3482&rft.epage=3499&rft_id=info:doi/10.1002%2Frob.22554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon