Med-ImageTools: An open-source Python package for robust data processing pipelines and curating medical imaging data [version 3; peer review: 1 approved, 1 approved with reservations]

Background Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an ope...

Full description

Saved in:
Bibliographic Details
Published in:F1000 research Vol. 12; p. 118
Main Authors: Kim, Sejin, Kazmierski, Michal, Qu, Kevin, Peoples, Jacob, Nakano, Minoru, Ramanathan, Vishwesh, Marsilla, Joseph, Welch, Mattea, Simpson, Amber, Haibe-Kains, Benjamin
Format: Journal Article
Language:English
Published: England Faculty of 1000 Ltd 2023
F1000 Research Ltd
Subjects:
ISSN:2046-1402, 2046-1402
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge. Methods To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works. Use cases We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times. Conclusions The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.
AbstractList Background Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge. Methods To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works. Use cases We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times. Conclusions The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.
Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge.BackgroundMachine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge.To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works.MethodsTo address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works.We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times.Use casesWe have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times.The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.ConclusionsThe AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.
Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge. To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works. We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times. The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.
BackgroundMachine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge.MethodsTo address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works.Use casesWe have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times.ConclusionsThe AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.
Background Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational models that can be implemented in clinical practice. However, processing large and complex medical imaging datasets remains an open challenge. Methods To address this issue, we developed Med-ImageTools, a new Python open-source software package to automate data curation and processing while allowing researchers to share their data processing configurations more easily, lowering the barrier for other researchers to reproduce published works. Use cases We have demonstrated the efficiency of Med-ImageTools across three different datasets, resulting in significantly reduced processing times. Conclusions The AutoPipeline feature will improve the accessibility of raw clinical datasets on public archives, such as the Cancer Imaging Archive (TCIA), the largest public repository of cancer imaging, allowing machine learning researchers to process analysis-ready formats without requiring deep domain knowledge.
Author Kazmierski, Michal
Simpson, Amber
Haibe-Kains, Benjamin
Peoples, Jacob
Qu, Kevin
Ramanathan, Vishwesh
Marsilla, Joseph
Nakano, Minoru
Welch, Mattea
Kim, Sejin
Author_xml – sequence: 1
  givenname: Sejin
  surname: Kim
  fullname: Kim, Sejin
  organization: Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
– sequence: 2
  givenname: Michal
  surname: Kazmierski
  fullname: Kazmierski, Michal
  organization: Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
– sequence: 3
  givenname: Kevin
  orcidid: 0000-0002-5936-3581
  surname: Qu
  fullname: Qu, Kevin
  organization: Faculty of Engineering, University of Toronto, Toronto, ON, Canada
– sequence: 4
  givenname: Jacob
  orcidid: 0000-0003-0191-7446
  surname: Peoples
  fullname: Peoples, Jacob
  organization: Centre for Health Innovation, Queen's University and Kingston Health Science Centre, Kingston, ON, Canada
– sequence: 5
  givenname: Minoru
  surname: Nakano
  fullname: Nakano, Minoru
  organization: Princess Margaret Cancer Centre, University Health Network, Canada, Toronto, ON, Canada
– sequence: 6
  givenname: Vishwesh
  surname: Ramanathan
  fullname: Ramanathan, Vishwesh
  organization: Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
– sequence: 7
  givenname: Joseph
  surname: Marsilla
  fullname: Marsilla, Joseph
  organization: Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
– sequence: 8
  givenname: Mattea
  surname: Welch
  fullname: Welch, Mattea
  organization: Princess Margaret Cancer Centre, University Health Network, Canada, Toronto, ON, Canada
– sequence: 9
  givenname: Amber
  surname: Simpson
  fullname: Simpson, Amber
  organization: Vector Institute, Toronto, ON, Canada
– sequence: 10
  givenname: Benjamin
  surname: Haibe-Kains
  fullname: Haibe-Kains, Benjamin
  email: benjamin.haibe.kains@utoronto.ca
  organization: Vector Institute, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39989910$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSNUREvpK4AlNixIsWOP7bSrquJnpCJYlBVClmNfz3hI7WAnU82T8Xp4ZkopbFjFufrOsc-992l1EGKAqnpB8ClpuJRvHMEYJ8igk1mWmiCsOaWPqqMGM14ThpuDB-fD6iTnVVHgtqW8EU-qQ9q2sm0JPqp-fgRbz2_0Aq5j7PMZuggoDhDqHKdkAH3ejMsY0KDN98IgFxNKsZvyiKweNRpSNJCzDws0-AF6HyAjHSwyU9LjtnwD1hvdI1_u2P7vZF_XkLIvvvQcDQDFE9Yebs8QQXoonmuwrx-c0a0fl2gbOK2Lawz527PqsdN9hpO773H15d3b68sP9dWn9_PLi6vaNCVtPROUGuk4cy13stFM8KabMSw509ZQ53ZdwcTI0hLtjDNUWgZcOkJn2jB6XM33vjbqlRpSiZE2KmqvdoWYFkqn0ZseVCMpbTvaCcs5s4Z1M4ktph2hQjMjePF6tfcqqX5MkEd147OBvtcB4pQVJQKX-fKWFPTlP-iqzCOUpIo2mErGhdg-7vkdNXWlz_fP-z3eAog9YFLMOYG7RwhWu11Sf-2S2u-SokV5vlc6baZ-3Gwp9Qf7j_oXNpTRyA
Cites_doi 10.1148/rg.293075172
10.1038/sdata.2016.44
10.1016/j.mri.2012.05.001
10.7937/TCIA.HMQ8-J677
10.1007/s003300101100
10.1016/j.phro.2022.09.004
10.1109/CVPR.2009.5206848
10.1016/j.ijrobp.2017.12.013
10.7937/TCIA.ESHQ-4D90
10.1016/j.ijrobp.2018.01.057
10.1007/s10278-013-9622-7
10.7937/K9/TCIA.2017.8oje5q00
10.1148/ryai.2019190015
10.5281/zenodo.14766792
10.5281/ZENODO.7021436
10.1118/1.4754659
ContentType Journal Article
Copyright Copyright: © 2025 Kim S et al.
Copyright: © 2025 Kim S et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Kim S et al.
– notice: Copyright: © 2025 Kim S et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C-E
CH4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.12688/f1000research.127142.3
DatabaseName F1000Research
Faculty of 1000
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Women's Studies
EISSN 2046-1402
ExternalDocumentID oai_doaj_org_article_28339b3b7d664dc4b580d03b137a4c76
39989910
10_12688_f1000research_127142_3
Genre Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: 426366
– fundername: Canadian Cancer Society
  grantid: 707609
GroupedDBID 3V.
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
AAFWJ
ABUWG
ACGOD
ACPRK
ADBBV
ADRAZ
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C-E
CCPQU
CH4
DIK
DWQXO
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RPM
UKHRP
W2D
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c2993-5733c8f64f96f82a4762b540864adc3ff0009901c8399afcfc38d4e68f135ac43
IEDL.DBID DOA
ISSN 2046-1402
IngestDate Fri Oct 03 12:51:13 EDT 2025
Thu Oct 02 11:08:30 EDT 2025
Tue Oct 07 06:56:01 EDT 2025
Tue Jul 15 01:30:37 EDT 2025
Sat Nov 29 08:18:52 EST 2025
Sat Feb 08 03:15:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
open source
nnunet
data processing
medical imaging
dicom
nifti
Language English
License https://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright: © 2025 Kim S et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2993-5733c8f64f96f82a4762b540864adc3ff0009901c8399afcfc38d4e68f135ac43
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0191-7446
0000-0002-5936-3581
OpenAccessLink https://doaj.org/article/28339b3b7d664dc4b580d03b137a4c76
PMID 39989910
PQID 3203846774
PQPubID 2045578
ParticipantIDs doaj_primary_oai_doaj_org_article_28339b3b7d664dc4b580d03b137a4c76
proquest_miscellaneous_3170268691
proquest_journals_3203846774
pubmed_primary_39989910
crossref_primary_10_12688_f1000research_127142_3
faculty1000_research_10_12688_f1000research_127142_3
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle F1000 research
PublicationTitleAlternate F1000Res
PublicationYear 2023
Publisher Faculty of 1000 Ltd
F1000 Research Ltd
Publisher_xml – name: Faculty of 1000 Ltd
– name: F1000 Research Ltd
References M Law (ref4) 2009; 29
K Gorgolewski (ref18) 2016; 3
K Clark (ref3) 2013; 26
A Fedorov (ref9) 2012; 30
J Deng (ref5) 2009
C Mayo (ref15) 2018; 100
B Camp (ref12)
K Clark (ref14)
C Sabottke (ref7) 2020; 2
R Hu (ref16) 2022; 24
K Cranmer (ref17) 2014
P Mildenberger (ref2) 2002; 12
M Vallières (ref6) 2017
J Kwan (ref13) 2018; 102
W Brant (ref1) 2012
C Pinter (ref8) 2012; 39
M Kazmierski (ref11) 2022
References_xml – volume: 29
  start-page: 655-667
  year: 2009
  ident: ref4
  article-title: DICOM-RT and Its Utilization in Radiation Therapy.
  publication-title: RadioGraphics.
  doi: 10.1148/rg.293075172
– volume: 3
  year: 2016
  ident: ref18
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.
  publication-title: Sci. Data.
  doi: 10.1038/sdata.2016.44
– volume: 30
  start-page: 1323-1341
  year: 2012
  ident: ref9
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network.
  publication-title: Magn. Reson. Imaging.
  doi: 10.1016/j.mri.2012.05.001
– ident: ref14
  article-title: National Lung Screening Trial.
  doi: 10.7937/TCIA.HMQ8-J677
– volume: 12
  start-page: 920-927
  year: 2002
  ident: ref2
  article-title: Introduction to the DICOM standard.
  publication-title: Eur. Radiol.
  doi: 10.1007/s003300101100
– volume: 24
  start-page: 36-42
  year: 2022
  ident: ref16
  article-title: Radiomics artificial intelligence modelling for prediction of local control for colorectal liver metastases treated with radiotherapy.
  publication-title: Phys. Imaging Radiat. Oncol.
  doi: 10.1016/j.phro.2022.09.004
– start-page: 248-255
  year: 2009
  ident: ref5
  article-title: ImageNet: A large-scale hierarchical image database.
  doi: 10.1109/CVPR.2009.5206848
– volume: 100
  start-page: 1057-1066
  year: 2018
  ident: ref15
  article-title: American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology.
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2017.12.013
– ident: ref12
  article-title: Pancreatic-CT-CBCT-SEG - The Cancer Imaging Archive (TCIA) Public Access - Cancer Imaging Archive Wiki.
  doi: 10.7937/TCIA.ESHQ-4D90
– volume: 102
  start-page: 1107-1116
  year: 2018
  ident: ref13
  article-title: Radiomic Biomarkers to Refine Risk Models for Distant Metastasis in HPV-related Oropharyngeal Carcinoma.
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2018.01.057
– volume: 26
  start-page: 1045-1057
  year: 2013
  ident: ref3
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.
  publication-title: J. Digit. Imaging.
  doi: 10.1007/s10278-013-9622-7
– year: 2017
  ident: ref6
  article-title: Data from Head-Neck-PET-CT.
  publication-title: The Cancer Imaging Archive.
  doi: 10.7937/K9/TCIA.2017.8oje5q00
– volume: 2
  start-page: e190015
  year: 2020
  ident: ref7
  article-title: The Effect of Image Resolution on Deep Learning in Radiography.
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2019190015
– year: 2014
  ident: ref17
  article-title: decouple software associated to arXiv:1401.0080.
  publication-title: [Code] Zenodo.
  doi: 10.5281/zenodo.14766792
– year: 2022
  ident: ref11
  article-title: bhklab/med-imagetools: v4.4.0.
  publication-title: Zenodo.
  doi: 10.5281/ZENODO.7021436
– year: 2012
  ident: ref1
  article-title: Fundamentals of Diagnostic Radiology.
– volume: 39
  start-page: 6332-6338
  year: 2012
  ident: ref8
  article-title: SlicerRT: radiation therapy research toolkit for 3D Slicer.
  publication-title: Med. Phys.
  doi: 10.1118/1.4754659
SSID ssj0000993627
Score 2.2417216
Snippet Background Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train...
Background Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train...
Machine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train computational...
BackgroundMachine learning and AI promise to revolutionize the way we leverage medical imaging data for improving care but require large datasets to train...
SourceID doaj
proquest
pubmed
crossref
faculty1000
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 118
SubjectTerms Artificial intelligence
Data processing
Datasets
deep learning
Diagnostic Imaging
dicom
Digital imaging
Drug dosages
eng
Humans
Image Processing, Computer-Assisted - methods
Learning algorithms
Machine Learning
Magnetic resonance imaging
Mathematical models
Medical imaging
Metadata
Neoplasms - diagnostic imaging
nifti
open source
Radiation therapy
Researchers
Software
Software packages
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINQeChQKgYKMhMQpkMReP7iggqjgQNVDkfZmOX7ACjZZNrtI_ffMON4tPQAHrn7EcmY8_ubhGUKeC8ZDcBjdIMRouimVjaGUQQcdubJO-1RsQp6equlUn2WD25DDKjcyMQlq3zu0kb9iTcXwrpT8zeJHiVWj0LuaS2hcJzewbDbyuZzKrY0F0A_IZ5nDuhoByl5Ee3bOo_MV2mTNm5fsyqWUcvfvkb1oMfnFBU74M_xM19DJ7f_dwB2ynwEoPR455i65FroDcutTdrEfkP1U0_LFQHOE4T2ygs7y4xwEz3nffx9e0-OOYtGtcjT807MLzD9AQfn-BmMooGC67Nv1sKIYfkoX41MEuCLpYrbA5-9hoLbz1K2R-6B5PjqL6GyeSialaffJ55P35-8-lLlYQ-kajAHEvIpORcGjFlE1loOUbQEOKsGtdyzGRI6qdoDItI0uOqY8D0LFmk2s4-yQ7HR9Fx4SGrWa8CayYCPjVjctCAnt24BwMOraF6TaUMssxpwcBnUZJLC5QmAzEtiwgrxFqm6HY1Lt1NAvv5h8Rg0gLaZb1kovBPeOtxNV-Yq1NZOWOykKwn_jCXO5yL_WPtowhMkCYjCX3FCQZ9tuONror7Fd6NcwppagISuh64I8GJluuwH4iaAp19Wjv3_8MdltAJWNNqMjsrNarsMTctP9XM2G5dN0Wn4BwgobPw
  priority: 102
  providerName: ProQuest
Title Med-ImageTools: An open-source Python package for robust data processing pipelines and curating medical imaging data [version 3; peer review: 1 approved, 1 approved with reservations]
URI http://dx.doi.org/10.12688/f1000research.127142.3
https://www.ncbi.nlm.nih.gov/pubmed/39989910
https://www.proquest.com/docview/3203846774
https://www.proquest.com/docview/3170268691
https://doaj.org/article/28339b3b7d664dc4b580d03b137a4c76
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BixA9VFAoBEpkJCROC7trx49yalEreki0QkUKQmjl9doiQDZRNonUn8K_ZWxvQ3pAvXDxwet92DO2vxnPfgPwmlNmrfHRDZxH100itbOJsMoqx6Q2qg7JJsRoJMdjVWyl-vIxYZEeOA7cO9z-qKpoJWrOWW1YNZBpndIqo0IzIwLZdirUljH1I-IeXJlFF9CVczTznPdkdww637FOZCx_S29sR4G1fw_2nPa0F1f-hn8Dz7ABnT-E_Q45kpP4xY_gjm0O4P6wOxs_gP2QjPJNS7rQwMfwGy8mF1NcMS5ns1_tMTlpiM-WlUSPPSmuPHEAQav5J7YhCF_JYlat2iXxcaNkHv8hwL2NzCdz_9-6bYluamJWXm2wehpPechkGnIdxdu-rqMLjtD3ZG4tPjMcPxyTnAQC87Wtvz2Bz-dnlx8-Jl0qhsTkPsLPsyYa6ThzijuZa4ZraIVgT3Kma0OdC0OeZgbxltLOOENlzSyXLqMDbRg9hJ1m1thnQJySA5Y7arWjTKu8wiVA1ZX1YM-prO5Bei2Rch4ZN0pvqXghljeEWEYhlrQHp15ym-aeMjtUoCKVnSKVtylSD9iW3Mu_L7nt3UfXClJ2078taZ5SD-wE68GrzWWcuP40Rjd2tsI2mUD7V3KV9eBpVKxNB3AQ0Q7O0uf_o2Mv4EGOyCz6jY5gZ7lY2Zdwz6yXk3bRh7tiLEIp-7B7ejYqPvXDXMJymBe-FFjuFhfD4ssfVtMgqA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHWLsMGAMKAwwEohTIIldx0ZCaHxMq7ZWPRRpnIzj2FBBk9C0oP5T_I08J2nHDsBpB67-VJyfn39-7_k9gMecMmuN927gvFHdBEI7GyRWWumY0EZmdbKJZDgUp6dytAE_V29hvFvlSibWgjorjNeRP6dxSP1ZmbBX5bfAZ43y1tVVCo0GFsd2-QOvbNXL_lv8v0_i-PDd-M1R0GYVCEzsndV8AEAjHGdOcidizVAcpMhbBGc6M9S5mjWFkUHqILUzzlCRMcuFi2hPG0Zx3EuwyRDsYQc2R_3B6MNaq4M98URIWkeymOP10nkNehu55zOWJRGLn9Fzx2CdLWAbtp324TaWvsOfCW998B1e-9-W7DrstBSbHDR74gZs2HwXrgxaJ4Jd2Kmzdj6tSOtDeRPmWBn0pyhax0XxtXpBDnLi04oFjWmDjJY-wgIptfmCbQjyfDIr0kU1J97BlpTNYwskAaSclP6Bv62IzjNiFn5_YfG0MYeRybROClV324P3F7IKt6CTF7m9A8RJ0WOxo1Y7yrSMUxSDMkutJ7xORlkXwhU6VNlEHVH-tuYBpc4BSjWAUrQLrz2K1s192PC6oJh9Uq0UUsglqUxpmmScs8ywtCfCLKRpRBPNTMK7wH7DoDqb5F9z768AqFoRWKkz9HXh0boahZe3SOncFgtsEyUhjstl1IXbDcjXH4CLKPDyEt79--APYetoPDhRJ_3h8T24GiMHbTRk-9CZzxb2Plw23-eTavag3asEPl401n8BVLB35g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDk3sYcD4KgwwEoinsCR2HRsJoY2tohpUFRrS3jzHsbcKmoSmBfVf46_jnKQdewCe9sCrPxXn5_Pvzuc7gOecMmuN927gvDHdBEI7GyRWWumY0EZmdbKJZDgUJydytAY_l29hvFvlUibWgjorjLeR79I4pP6sTNiua90iRgf9t-W3wGeQ8jety3QaDUSO7OIHqm_Vm8EB_usXcdw_PH73PmgzDAQm9o5rPhigEY4zJ7kTsWYoGlLkMIIznRnqXM2gwsggjZDaGWeoyJjlwkW0pw2jOO41WE8oKj0dWN8_HI4-rSw82BNPh6R1Kos5qprOW9PbKD7nWJZELH5FLx2JdeaATdh02ofeWPgOfya_9SHYv_k_L98t2GqpN9lr9sptWLP5Nmx8bJ0LtmGrzub5siKtb-UdmGFlMJigyD0uiq_Va7KXE59uLGiuPMho4SMvkFKbL9iGIP8n0yKdVzPiHW9J2TzCQHJAynHpH_7biug8I2bu9x0WT5prMjKe1Mmi6m534fOVrMI96ORFbh8AcVL0WOyo1Y4yLeMUxaPMUuuJsJNR1oVwiRRVNtFIlNfiPLjUJXCpBlyKdmHfI2rV3IcTrwuK6ZlqpZNCjkllStMk45xlhqU9EWYhTSOaaGYS3gX2Gx7VxST_mntnCUbVisZKXSCxC89W1SjU_E2Vzm0xxzZREuK4XEZduN8AfvUBuIgClZrw4d8HfwobCHD1YTA8egQ3YqSmjeFsBzqz6dw-huvm-2xcTZ-025bA6VVD_RdJsYCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Med-ImageTools%3A+An+open-source+Python+package+for+robust+data+processing+pipelines+and+curating+medical+imaging+data+%5Bversion+3%3B+peer+review%3A+2+approved%5D&rft.jtitle=F1000+research&rft.au=Benjamin+Haibe-Kains&rft.au=Mattea+Welch&rft.au=Amber+Simpson&rft.au=Vishwesh+Ramanathan&rft.date=2023&rft.pub=F1000+Research+Ltd&rft.eissn=2046-1402&rft.volume=12&rft_id=info:doi/10.12688%2Ff1000research.127142.3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_28339b3b7d664dc4b580d03b137a4c76
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon