Creating herd behavior by virtual agents using neural networks

The paper focuses on simulating an artificial life in which neural networks (recurrent (RNN) and Long Short Term Memory (LSTM) networks) control prey and predator agents. The research goal was to check whether a simple genetic algorithm evolves the LSTM based controller that competes with the classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 192; S. 437 - 446
Hauptverfasser: Markowska-Kaczmar, Urszula, Slimak, Adrian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2021
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The paper focuses on simulating an artificial life in which neural networks (recurrent (RNN) and Long Short Term Memory (LSTM) networks) control prey and predator agents. The research goal was to check whether a simple genetic algorithm evolves the LSTM based controller that competes with the classic RNN controller in the real world. We also examined the impact of audio communication within a given species on the survival of agents. Our experiments evidenced the LSTM network results were slightly worse than the RNN controller. We also showed that prey agents developed herd behavior in response to predator pressure. They learned to form herds that allowed them to resist predator attacks. It was also possible to observe the prey agent’s cooperation in searching for food when the plants formed clusters.
AbstractList The paper focuses on simulating an artificial life in which neural networks (recurrent (RNN) and Long Short Term Memory (LSTM) networks) control prey and predator agents. The research goal was to check whether a simple genetic algorithm evolves the LSTM based controller that competes with the classic RNN controller in the real world. We also examined the impact of audio communication within a given species on the survival of agents. Our experiments evidenced the LSTM network results were slightly worse than the RNN controller. We also showed that prey agents developed herd behavior in response to predator pressure. They learned to form herds that allowed them to resist predator attacks. It was also possible to observe the prey agent’s cooperation in searching for food when the plants formed clusters.
Author Slimak, Adrian
Markowska-Kaczmar, Urszula
Author_xml – sequence: 1
  givenname: Urszula
  surname: Markowska-Kaczmar
  fullname: Markowska-Kaczmar, Urszula
  email: urszula.markowska-kaczmar@pwr.edu.pl
  organization: Department of Computational Intelligence, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
– sequence: 2
  givenname: Adrian
  surname: Slimak
  fullname: Slimak, Adrian
  organization: Department of Computational Intelligence, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
BookMark eNp9kM1OwzAMgCM0JMbYE3DpC7TESbsmB5DQxJ80iQuco7Rxt4yRTk5XtLenZRw44Yt_5M-yvks2CW1Axq6BZ8BhcbPN9tTWMRNcQMZVxvPijE1BlWXKC64nf-oLNo9xy4eQSmkop-xuSWg7H9bJBsklFW5s71tKqmPSe-oOdpfYNYYuJoc4bgU80DAL2H219BGv2HljdxHnv3nG3h8f3pbP6er16WV5v0proVWXNjqHBSBiVYCTTjc5ClGMDSrtrAbgJUrMK-EQpZOFhEY0gLIQMudOyRmTp7s1tTESNmZP_tPS0QA3owWzNT8WzGjBcGUGCwN1e6JweK33SCbWHkONzhPWnXGt_5f_BudAaS0
Cites_doi 10.1109/TEVC.2010.2059031
10.1093/beheco/arm109
10.1162/ARTL_a_00206
10.1371/journal.pone.0235750
10.1177/105971239200100105
10.1098/rsif.2013.0305
10.1016/j.asoc.2020.106177
10.1145/37402.37406
10.1016/j.physd.2019.132306
10.1016/j.ecolmodel.2015.02.018
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2021.08.045
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 446
ExternalDocumentID 10_1016_j_procs_2021_08_045
S1877050921015325
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c298t-f94161eeeb51d3d9f4e225b51de89da91107e3e4b2dee3d3531f2f1e352340d83
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720289000044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0509
IngestDate Sat Nov 29 07:01:38 EST 2025
Wed May 17 00:07:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 2010 MSC: : 92B20
62M45
68T05
Neural networks
related approaches
learning
neural networks artificial life and related topics
adaptive systems
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-f94161eeeb51d3d9f4e225b51de89da91107e3e4b2dee3d3531f2f1e352340d83
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2021.08.045
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2021_08_045
elsevier_sciencedirect_doi_10_1016_j_procs_2021_08_045
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wood, Ackland (bib0001) 2007; 274
Olson, Hintze, Dyer, Knoester, Adami (bib0002) 2013
Beer, Gallagher (bib00010) 1992
Ch.Adami, J. Moore, F. Dyer, A. Hintze, R.Olson. (2016) “Exploring the coevolution of predator and prey morphology and behavior,” Artificial Life Conference Proceedings
Das, Suganthan (bib00011) 2011; 15
Ward, Gobet, Kendall (bib0009) 2001; 7
.
Demšar, Hemelrijk, Hildenbrandt (bib0005) 2015
Wijeyakulasuriya, Eisenhauer, Shaby, Hanks (bib00013) 2020; 15
Ioannou, Tosh, Neville, Krause (bib0008) 2008; 19
Reynolds (bib0007) 1987; 21
Olson, Knoester, Adami (bib0004) 2016; 22
Sherstinsky (bib00012) 2020; 404
Markowska-Kaczmar, Marcinkowski (bib0006) 2020; 90
Markowska-Kaczmar (10.1016/j.procs.2021.08.045_bib0006) 2020; 90
Ward (10.1016/j.procs.2021.08.045_bib0009) 2001; 7
Wood (10.1016/j.procs.2021.08.045_bib0001) 2007; 274
Wijeyakulasuriya (10.1016/j.procs.2021.08.045_bib00013) 2020; 15
Demšar (10.1016/j.procs.2021.08.045_bib0005) 2015
Beer (10.1016/j.procs.2021.08.045_bib00010) 1992
Sherstinsky (10.1016/j.procs.2021.08.045_bib00012) 2020; 404
Olson (10.1016/j.procs.2021.08.045_bib0002) 2013
Das (10.1016/j.procs.2021.08.045_bib00011) 2011; 15
Olson (10.1016/j.procs.2021.08.045_bib0004) 2016; 22
Reynolds (10.1016/j.procs.2021.08.045_bib0007) 1987; 21
10.1016/j.procs.2021.08.045_bib0003
Ioannou (10.1016/j.procs.2021.08.045_bib0008) 2008; 19
References_xml – volume: 274
  start-page: 1637
  year: 2007
  end-page: 1642
  ident: bib0001
  article-title: “Evolving the selfish herd: Emergence of distinct aggregating strategies in an individual-based model,”
  publication-title: Proc Biol Sci.
– volume: 7
  start-page: 191
  year: 2001
  end-page: 209
  ident: bib0009
  article-title: “Evolving Collective Behavior in an Artificial Ecology,”
  publication-title: Spring
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib00011
  article-title: ”Differential Evolution: A Survey of the State-of-the-Art”
  publication-title: IEEE Trans. Evolutionary Computation
– volume: 15
  start-page: e0235750
  year: 2020
  ident: bib00013
  article-title: ”Machine learning for modeling animal movement,”
  publication-title: PloS one
– volume: 19
  start-page: 126
  year: 2008
  end-page: 130
  ident: bib0008
  article-title: “The confusion effect - From neural networks to reduced predation risk,”
  publication-title: Behavioral Ecology
– reference: .
– volume: 404
  year: 2020
  ident: bib00012
  article-title: ”Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,”
  publication-title: Physica D: Nonlinear Phenomena
– volume: 21
  year: 1987
  ident: bib0007
  article-title: “Flocks, Herds, and Schools: A Distributed Behavioral Model,”
  publication-title: Computer Graphics
– year: 2013
  ident: bib0002
  article-title: “Predator confusion is sufficient to evolve swarming behaviour,”
  publication-title: Journal of The Royal Society Interface
– year: 2015
  ident: bib0005
  article-title: “Simulating predator attacks on schools: Evolving composite tactics,”
  publication-title: Ecological Modelling
– year: 1992
  ident: bib00010
  article-title: “Evolving Dynamical Neural Networks for Adaptive Behavior,”
  publication-title: Adaptive Behavior
– volume: 22
  start-page: 299
  year: 2016
  end-page: 318
  ident: bib0004
  article-title: “Evolution of Swarming Behavior Is Shaped by How Predators Attack,”
  publication-title: Art. Life
– volume: 90
  start-page: 106
  year: 2020
  end-page: 177
  ident: bib0006
  article-title: “Markov network versus recurrent neural network in forming herd behavior based on sight and simple sound communication,”
  publication-title: Applied Soft Computing
– reference: Ch.Adami, J. Moore, F. Dyer, A. Hintze, R.Olson. (2016) “Exploring the coevolution of predator and prey morphology and behavior,” Artificial Life Conference Proceedings,
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.procs.2021.08.045_bib00011
  article-title: ”Differential Evolution: A Survey of the State-of-the-Art”
  publication-title: IEEE Trans. Evolutionary Computation
  doi: 10.1109/TEVC.2010.2059031
– volume: 19
  start-page: 126
  issue: 1
  year: 2008
  ident: 10.1016/j.procs.2021.08.045_bib0008
  article-title: “The confusion effect - From neural networks to reduced predation risk,”
  publication-title: Behavioral Ecology
  doi: 10.1093/beheco/arm109
– volume: 274
  start-page: 1637
  issue: 1618
  year: 2007
  ident: 10.1016/j.procs.2021.08.045_bib0001
  article-title: “Evolving the selfish herd: Emergence of distinct aggregating strategies in an individual-based model,”
  publication-title: Proc Biol Sci.
– volume: 22
  start-page: 299
  issue: 3
  year: 2016
  ident: 10.1016/j.procs.2021.08.045_bib0004
  article-title: “Evolution of Swarming Behavior Is Shaped by How Predators Attack,”
  publication-title: Art. Life
  doi: 10.1162/ARTL_a_00206
– volume: 15
  start-page: e0235750
  issue: 7
  year: 2020
  ident: 10.1016/j.procs.2021.08.045_bib00013
  article-title: ”Machine learning for modeling animal movement,”
  publication-title: PloS one
  doi: 10.1371/journal.pone.0235750
– year: 1992
  ident: 10.1016/j.procs.2021.08.045_bib00010
  article-title: “Evolving Dynamical Neural Networks for Adaptive Behavior,”
  publication-title: Adaptive Behavior
  doi: 10.1177/105971239200100105
– year: 2013
  ident: 10.1016/j.procs.2021.08.045_bib0002
  article-title: “Predator confusion is sufficient to evolve swarming behaviour,”
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2013.0305
– volume: 90
  start-page: 106
  year: 2020
  ident: 10.1016/j.procs.2021.08.045_bib0006
  article-title: “Markov network versus recurrent neural network in forming herd behavior based on sight and simple sound communication,”
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106177
– volume: 21
  issue: 4
  year: 1987
  ident: 10.1016/j.procs.2021.08.045_bib0007
  article-title: “Flocks, Herds, and Schools: A Distributed Behavioral Model,”
  publication-title: Computer Graphics
  doi: 10.1145/37402.37406
– volume: 7
  start-page: 191
  issue: 2
  year: 2001
  ident: 10.1016/j.procs.2021.08.045_bib0009
  article-title: “Evolving Collective Behavior in an Artificial Ecology,”
  publication-title: Spring
– volume: 404
  year: 2020
  ident: 10.1016/j.procs.2021.08.045_bib00012
  article-title: ”Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,”
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2019.132306
– year: 2015
  ident: 10.1016/j.procs.2021.08.045_bib0005
  article-title: “Simulating predator attacks on schools: Evolving composite tactics,”
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2015.02.018
– ident: 10.1016/j.procs.2021.08.045_bib0003
SSID ssj0000388917
Score 2.2003098
Snippet The paper focuses on simulating an artificial life in which neural networks (recurrent (RNN) and Long Short Term Memory (LSTM) networks) control prey and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 437
SubjectTerms 2010 MSC: : 92B20
62M45
68T05
adaptive systems
learning
Neural networks
neural networks artificial life and related topics
related approaches
Title Creating herd behavior by virtual agents using neural networks
URI https://dx.doi.org/10.1016/j.procs.2021.08.045
Volume 192
WOSCitedRecordID wos000720289000044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEG3cDl7cxZ0-eNOA2dMXQUQRFBFc8BaSdEVGx4wkM24Hv92qXuKK6MFLSBrSM9P1pvp1UfWKsfWSSrvAKxC8QeYEmZ87iZCR40MIW3kMEKleBBdH8fFxcnkpTkzFdaPaCcRVlTw-irt_NTWOobGpdPYP5m4nxQG8R6PjFc2O118ZflfRwOoKOWAt2zJ8opn3nVpVi2RXqqxtoMIEJGiJY5VOB2_ek1VVRID4UXnn1Pphw-yXb2Hs-qb30NxkzmFWPJtc7fO6eR50W29_2u3cZsrl7sjaYtGEGXTVsvGJSRw7JBOjt4xvxqwj1V3tjCsMtJiL2VUDHWj84rB17OCatouC1NM9raiqJSY_ymN_2rbaZEKbp3adqklSmiSl3ppBOMxGvRiPTJTS-fIWeyMFHKGaMbe_wwpSqdS_L1_me9LyjoicTbEJc4LgO9ry02wIqhk2abtzcOOsZ9m2BQInIHALBJ4_cQMEroHAFRC4BgK3QJhj5_t7Z7sHjumW4RSeSPpOKeisCgB56EpfijIA9NX0APjvywQd9MGHIPckgC99dL6lV7qADNwPtmTiz7ORqlfBAuMikmEZ5cKTSLfjsMxFnCRQSDdzJVJSucg27XLgmitRlPQHKyyyyC5ZanCq-VqKKPjpxaW_fc4yG6cnHSBbYSP9egCrbKy473eaek1B4BXp7nH7
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creating+herd+behavior+by+virtual+agents+using+neural+networks&rft.jtitle=Procedia+computer+science&rft.au=Markowska-Kaczmar%2C+Urszula&rft.au=Slimak%2C+Adrian&rft.date=2021&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=192&rft.spage=437&rft.epage=446&rft_id=info:doi/10.1016%2Fj.procs.2021.08.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2021_08_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon