Discriminant non-stationary signal features’ clustering using hard and fuzzy cluster labeling

Current approaches to improve the pattern recognition performance mainly focus on either extracting non-stationary and discriminant features of each class, or employing complex and nonlinear feature classifiers. However, little attention has been paid to the integration of these two approaches. Comb...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP journal on advances in signal processing Ročník 2012; číslo 1; s. 1 - 20
Hlavní autoři: Ghoraani, Behnaz, Krishnan, Sridhar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 27.11.2012
Témata:
ISSN:1687-6180, 1687-6180
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Current approaches to improve the pattern recognition performance mainly focus on either extracting non-stationary and discriminant features of each class, or employing complex and nonlinear feature classifiers. However, little attention has been paid to the integration of these two approaches. Combining non-stationary feature analysis with complex feature classifiers, this article presents a novel direction to enhance the discriminatory power of pattern recognition methods. This approach, which is based on a fusion of non-stationary feature analysis with clustering techniques, proposes an algorithm to adaptively identify the feature vectors according to their importance in representing the patterns of discrimination. Non-stationary feature vectors are extracted using a non-stationary method based on time–frequency distribution and non-negative matrix factorization. The clustering algorithms including the K -means and self-organizing tree maps are utilized as unsupervised clustering methods followed by a supervised labeling. Two labeling methods are introduced: hard and fuzzy labeling. The article covers in detail the formulation of the proposed discriminant feature clustering method. Experiments performed with pathological speech classification, T-wave alternans evaluation from the surface electrocardiogram, audio scene analysis, and telemonitoring of Parkinson’s disease problems produced desirable results. The outcome demonstrates the benefits of non-stationary feature fusion with clustering methods for complex data analysis where existing approaches do not exhibit a high performance.
AbstractList Current approaches to improve the pattern recognition performance mainly focus on either extracting non-stationary and discriminant features of each class, or employing complex and nonlinear feature classifiers. However, little attention has been paid to the integration of these two approaches. Combining non-stationary feature analysis with complex feature classifiers, this article presents a novel direction to enhance the discriminatory power of pattern recognition methods. This approach, which is based on a fusion of non-stationary feature analysis with clustering techniques, proposes an algorithm to adaptively identify the feature vectors according to their importance in representing the patterns of discrimination. Non-stationary feature vectors are extracted using a non-stationary method based on time–frequency distribution and non-negative matrix factorization. The clustering algorithms including the K -means and self-organizing tree maps are utilized as unsupervised clustering methods followed by a supervised labeling. Two labeling methods are introduced: hard and fuzzy labeling. The article covers in detail the formulation of the proposed discriminant feature clustering method. Experiments performed with pathological speech classification, T-wave alternans evaluation from the surface electrocardiogram, audio scene analysis, and telemonitoring of Parkinson’s disease problems produced desirable results. The outcome demonstrates the benefits of non-stationary feature fusion with clustering methods for complex data analysis where existing approaches do not exhibit a high performance.
Current approaches to improve the pattern recognition performance mainly focus on either extracting non-stationary and discriminant features of each class, or employing complex and nonlinear feature classifiers. However, little attention has been paid to the integration of these two approaches. Combining non-stationary feature analysis with complex feature classifiers, this article presents a novel direction to enhance the discriminatory power of pattern recognition methods. This approach, which is based on a fusion of non-stationary feature analysis with clustering techniques, proposes an algorithm to adaptively identify the feature vectors according to their importance in representing the patterns of discrimination. Non-stationary feature vectors are extracted using a non-stationary method based on time-frequency distribution and non-negative matrix factorization. The clustering algorithms including the K-means and self-organizing tree maps are utilized as unsupervised clustering methods followed by a supervised labeling. Two labeling methods are introduced: hard and fuzzy labeling. The article covers in detail the formulation of the proposed discriminant feature clustering method. Experiments performed with pathological speech classification, T-wave alternans evaluation from the surface electrocardiogram, audio scene analysis, and telemonitoring of Parkinson's disease problems produced desirable results. The outcome demonstrates the benefits of non-stationary feature fusion with clustering methods for complex data analysis where existing approaches do not exhibit a high performance.
ArticleNumber 250
Author Ghoraani, Behnaz
Krishnan, Sridhar
Author_xml – sequence: 1
  givenname: Behnaz
  surname: Ghoraani
  fullname: Ghoraani, Behnaz
  email: bghoraani@ieee.org
  organization: Department of Chemical and Biomedical Engineering, Rochester Institute of Technology, Department of Electrical and Computer, 1154 Engineering, Ryerson University
– sequence: 2
  givenname: Sridhar
  surname: Krishnan
  fullname: Krishnan, Sridhar
  organization: Department of Electrical and Computer, 1154 Engineering, Ryerson University
BookMark eNp9kL1OwzAQgC1UJNrCCzB5ZAnYTpw4Iyq_UiUWmC0ntosr1ym2M7QTr8Hr8SQ4CiDE0MVn3d13p_tmYOI6pwA4x-gSY1Ze4ZJVWYkZygjCJCMUHYHpb3Ly538CZiGsEaIlQWQK-I0JrTcb44SLME3NQhTRdE74HQxm5YSFWonYexU-3z9ga_sQlTduBfswvK_CSyichLrf73c_dWhFo2yqn4JjLWxQZ99xDl7ubp8XD9ny6f5xcb3MWlKzmLWVRBWpaE00YoXWTNeyqDUqW0S1rJiQdVEijGTTIKIaVClFq7JhosglSavyObgY525999arEPkmHaasFU51feBJUkGLnFKaWsnY2vouBK803yYB6V6OER9s8kEWH2TxwSZPNhPE_kGtGUVFL4w9jOYjGraDN-X5uut9EhsOUV_ja43V
CitedBy_id crossref_primary_10_1016_j_bspc_2016_12_017
crossref_primary_10_1108_DTA_03_2020_0076
crossref_primary_10_1007_s11760_015_0854_5
crossref_primary_10_1109_TPWRD_2014_2361207
crossref_primary_10_1017_ATSIP_2014_12
crossref_primary_10_1186_s13634_016_0393_4
crossref_primary_10_1016_j_epsr_2022_108216
Cites_doi 10.1002/env.3170050203
10.1109/LSP.2002.806070
10.1109/TASL.2011.2118753
10.1109/MCI.2006.1626492
10.1152/japplphysiol.00592.2001
10.1109/78.258082
10.1109/97.895373
10.1007/BF01250288
10.1007/BF01001956
10.1038/44565
10.1109/TBME.2008.923912
10.1109/ICNN.1995.487528
10.1109/34.824819
10.1109/TFUZZ.2008.924209
10.1109/CIISP.2007.369314
10.1016/j.medengphy.2011.01.007
10.1161/01.CIR.77.1.110
10.1109/78.840002
10.1111/j.1540-8167.2005.40708.x
10.1109/10.844228
10.1162/neco.2007.19.10.2756
10.1016/j.mcm.2009.05.002
10.1109/TSP.2006.887131
10.1186/1475-925X-6-23
ContentType Journal Article
Copyright Ghoraani and Krishnan; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Ghoraani and Krishnan; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID C6C
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1186/1687-6180-2012-250
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 20
ExternalDocumentID 10_1186_1687_6180_2012_250
GroupedDBID -A0
.4S
.DC
0R~
29G
2VQ
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
IL9
K6V
K7-
KQ8
M0N
M~E
O9-
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
AFFHD
CITATION
IAO
OVT
PHGZM
PHGZT
PQGLB
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c298t-c7d0727592f084ff8f9d49f06c05fd78ad946010dbb02eb07ee576b8a43d2abe3
IEDL.DBID C24
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316281800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-6180
IngestDate Fri Sep 05 12:08:10 EDT 2025
Sat Nov 29 03:12:06 EST 2025
Tue Nov 18 22:16:42 EST 2025
Fri Feb 21 02:44:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Discriminant cluster selection
means clustering
The self-organizing tree map (SOTM)
Time–frequency feature analysis
Supervised classification
Unsupervised clustering
Language English
License http://creativecommons.org/licenses/by/2.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-c7d0727592f084ff8f9d49f06c05fd78ad946010dbb02eb07ee576b8a43d2abe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/1687-6180-2012-250
PQID 1864543555
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1864543555
crossref_primary_10_1186_1687_6180_2012_250
crossref_citationtrail_10_1186_1687_6180_2012_250
springer_journals_10_1186_1687_6180_2012_250
PublicationCentury 2000
PublicationDate 20121127
PublicationDateYYYYMMDD 2012-11-27
PublicationDate_xml – month: 11
  year: 2012
  text: 20121127
  day: 27
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2012
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Krishnan, Rangayyan, Bell, Frank (CR23) 2000; 47
Tacer, Loughlin (CR17) 1996
Lee, Seung (CR13) 1999; 401
Paatero, Tapper (CR14) 1994; 5
Duda, Hart, Stork (CR9) 2001
Romero, Grubb, Clegg, Robertson, Addison, Watson (CR29) 2008; 55
Saito, Coifman (CR5) 1995; 5
Jain, Duin, Mao (CR8) 2000; 22
Davy, Gretton, Doucet, Rayner (CR20) 2002; 9
CR15
Klingenheben, Ptaszynski, Hohnloser (CR28) 2005; 16
CR32
Jensen, Shen (CR4) 2009; 17
Freeman, Dony, Areibi (CR1) 2007
Groutage, Bennink (CR18) 2000; 48
Pawlak (CR2) 1982; 11
Ghoraani, Krishnan (CR31) 2011; 19
Dibazar, Narayanan, Berger (CR24) 2002
Ghoraani, Krishnan, Selvaraj, Chauhan (CR25) 2011; 33
Eye, Infirmary (CR21) 1994
Smith, Clancy, Valeri, Ruskin, Cohen (CR27) 1988; 77
Kyan, Jarrah, Muneesawang, Guan (CR12) 2006; 1
Lin (CR16) 2007; 19
Nearing, Verrier (CR26) 2002; 92
K Umapathy (CR6) 2007; 55
Mallat, Zhifeng (CR22) 1993; 41
Ghoraani, Krishnan (CR7) 2009; 2009
Pawlak (CR3) 1992
Kyan (CR11) 2007
Boix, Cantó, Cuesta, Micó (CR30) 2009; 50
Davy, Doncarli, Boudreaux-Bartels (CR19) 2001; 8
Kong, Guan (CR10) 1995
D Lee (394_CR13) 1999; 401
S K Umapathy (394_CR6) 2007; 55
A Dibazar (394_CR24) 2002
H Kong (394_CR10) 1995
394_CR15
SG Mallat (394_CR22) 1993; 41
M Davy (394_CR20) 2002; 9
G Freeman (394_CR1) 2007
Z Pawlak (394_CR2) 1982; 11
JM Smith (394_CR27) 1988; 77
T Klingenheben (394_CR28) 2005; 16
I Romero (394_CR29) 2008; 55
R Duda (394_CR9) 2001
M Kyan (394_CR12) 2006; 1
S Krishnan (394_CR23) 2000; 47
BD Nearing (394_CR26) 2002; 92
Z Pawlak (394_CR3) 1992
M Eye (394_CR21) 1994
C-J Lin (394_CR16) 2007; 19
394_CR32
B Ghoraani (394_CR7) 2009; 2009
B Ghoraani (394_CR31) 2011; 19
A Jain (394_CR8) 2000; 22
M Kyan (394_CR11) 2007
D Groutage (394_CR18) 2000; 48
B Ghoraani (394_CR25) 2011; 33
N Saito (394_CR5) 1995; 5
M Davy (394_CR19) 2001; 8
R Jensen (394_CR4) 2009; 17
B Tacer (394_CR17) 1996
P Paatero (394_CR14) 1994; 5
M Boix (394_CR30) 2009; 50
References_xml – volume: 5
  start-page: 111
  year: 1994
  end-page: 126
  ident: CR14
  article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 9
  start-page: 442
  issue: 12
  year: 2002
  end-page: 445
  ident: CR20
  article-title: Optimized support vector machines for nonstationary signal classification
  publication-title: IEEE Signal Process. Lett
  doi: 10.1109/LSP.2002.806070
– volume: 19
  start-page: 2197
  issue: 7
  year: 2011
  end-page: 2209
  ident: CR31
  article-title: Time-frequency matrix feature extraction and classification of environmental audio signals
  publication-title: IEEE Trans. Audio Speech Lang. Process
  doi: 10.1109/TASL.2011.2118753
– year: 2001
  ident: CR9
  publication-title: Pattern Classification
– volume: 2009
  start-page: 11
  issue: ID 928974
  year: 2009
  ident: CR7
  article-title: A joint time-frequency and matrix decomposition feature extraction methodology for pathological voice classification
  publication-title: EURASIP J. Adv. Signal Process
– volume: 1
  start-page: 27
  year: 2006
  end-page: 40
  ident: CR12
  article-title: Strategies for unsupervised multimedia processing: self-organizing trees and forests
  publication-title: IEEE Comput. Intell. Mag
  doi: 10.1109/MCI.2006.1626492
– start-page: 182
  year: 2002
  end-page: 183
  ident: CR24
  article-title: Feature analysis for automatic detection of pathological speech
  publication-title: Proceedings of the Second Joint EMBS/BMES Conference, vol. 1
– volume: 92
  start-page: 541
  year: 2002
  end-page: 549
  ident: CR26
  article-title: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy
  publication-title: J. Appl. Physiol
  doi: 10.1152/japplphysiol.00592.2001
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  end-page: 3415
  ident: CR22
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.258082
– volume: 8
  start-page: 52
  year: 2001
  end-page: 57
  ident: CR19
  article-title: Improved optimization of time-frequency based signal classifiers
  publication-title: IEEE Signal Process. Lett
  doi: 10.1109/97.895373
– volume: 5
  start-page: 337
  issue: 4
  year: 1995
  end-page: 358
  ident: CR5
  article-title: Local discriminant bases and their applications
  publication-title: J. Math. Imag. Vis
  doi: 10.1007/BF01250288
– volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: CR2
  article-title: Rough sets
  publication-title: Int. J. Comput. Inf. Sci
  doi: 10.1007/BF01001956
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  ident: CR13
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 55
  start-page: 2658
  year: 2008
  end-page: 2665
  ident: CR29
  article-title: T-wave alternans found in preventricular tachyarrhythmias in CCU patients using a wavelet transform-based methodology
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.923912
– start-page: 845
  year: 1995
  end-page: 849
  ident: CR10
  article-title: Detection and removal of impulse noise by a neural network guided adaptive median filter
  publication-title: Proceedings of the IEEE International Conference on Neural Networks, vol. 2
  doi: 10.1109/ICNN.1995.487528
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  end-page: 37
  ident: CR8
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/34.824819
– volume: 17
  start-page: 824
  year: 2009
  end-page: 838
  ident: CR4
  article-title: New approaches to fuzzy-rough feature selection
  publication-title: IEEE Trans. Fuzzy Syst
  doi: 10.1109/TFUZZ.2008.924209
– start-page: 183
  year: 2007
  end-page: 188
  ident: CR1
  article-title: Audio environment classication for hearing aids using artificial neural networks with windowed input
  publication-title: Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing, vol. 2846
  doi: 10.1109/CIISP.2007.369314
– volume: 33
  start-page: 700
  issue: 6
  year: 2011
  end-page: 711
  ident: CR25
  article-title: T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization
  publication-title: Med. Eng. Phys
  doi: 10.1016/j.medengphy.2011.01.007
– volume: 77
  start-page: 110
  issue: 1
  year: 1988
  end-page: 121
  ident: CR27
  article-title: Electrical alternans and cardiac electrical instability
  publication-title: Circulation
  doi: 10.1161/01.CIR.77.1.110
– year: 1992
  ident: CR3
  publication-title: Rough Sets: Theoretical Aspects of Reasoning About Data
– volume: 48
  start-page: 1498
  issue: 5
  year: 2000
  end-page: 1503
  ident: CR18
  article-title: Feature sets for nonstationary signals derived from moments of the singular value decomposition of cohen-posch (positive time-frequency) distributions
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.840002
– ident: CR15
– volume: 16
  start-page: 620
  year: 2005
  end-page: 624
  ident: CR28
  article-title: Quantitative assessment of microvolt t-wave alternans in patients with congestive heart failure
  publication-title: J. Cardiovasc. Electrophysiol
  doi: 10.1111/j.1540-8167.2005.40708.x
– ident: CR32
– volume: 47
  start-page: 773
  issue: 6
  year: 2000
  end-page: 783
  ident: CR23
  article-title: Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/10.844228
– volume: 19
  start-page: 2756
  issue: 10
  year: 2007
  end-page: 2779
  ident: CR16
  article-title: Projected gradient methods for nonnegative matrix factorization
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.10.2756
– start-page: 186
  year: 1996
  end-page: 192
  ident: CR17
  publication-title: Time-frequency based classification,in Proceedings of the International Society for Optical Engineering (SPIE), vol. 2846
– year: 1994
  ident: CR21
  publication-title: Voice Disorders Database, Version 1.03
– volume: 50
  start-page: 738
  year: 2009
  end-page: 742
  ident: CR30
  article-title: Using the wavelet transform for t-wave alternans detection
  publication-title: Math. Comput. Model
  doi: 10.1016/j.mcm.2009.05.002
– volume: 55
  start-page: 978
  year: 2007
  end-page: 989
  ident: CR6
  article-title: Krishnan, Time-width versus frequency band mapping of energy distributions
  publication-title: IEEE Tran. Signal Process
  doi: 10.1109/TSP.2006.887131
– year: 2007
  ident: CR11
  publication-title: Unsupervised learning through dynamic self-organization: implications for microbiological image analysis
– volume: 33
  start-page: 700
  issue: 6
  year: 2011
  ident: 394_CR25
  publication-title: Med. Eng. Phys
  doi: 10.1016/j.medengphy.2011.01.007
– volume: 17
  start-page: 824
  year: 2009
  ident: 394_CR4
  publication-title: IEEE Trans. Fuzzy Syst
  doi: 10.1109/TFUZZ.2008.924209
– volume: 55
  start-page: 2658
  year: 2008
  ident: 394_CR29
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.923912
– volume-title: Pattern Classification
  year: 2001
  ident: 394_CR9
– start-page: 845
  volume-title: Proceedings of the IEEE International Conference on Neural Networks, vol. 2
  year: 1995
  ident: 394_CR10
  doi: 10.1109/ICNN.1995.487528
– start-page: 186
  volume-title: Time-frequency based classification,in Proceedings of the International Society for Optical Engineering (SPIE), vol. 2846
  year: 1996
  ident: 394_CR17
– volume: 8
  start-page: 52
  year: 2001
  ident: 394_CR19
  publication-title: IEEE Signal Process. Lett
  doi: 10.1109/97.895373
– volume: 5
  start-page: 111
  year: 1994
  ident: 394_CR14
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 394_CR22
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.258082
– volume: 2009
  start-page: 11
  issue: ID 928974
  year: 2009
  ident: 394_CR7
  publication-title: EURASIP J. Adv. Signal Process
– volume: 19
  start-page: 2756
  issue: 10
  year: 2007
  ident: 394_CR16
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.10.2756
– volume: 77
  start-page: 110
  issue: 1
  year: 1988
  ident: 394_CR27
  publication-title: Circulation
  doi: 10.1161/01.CIR.77.1.110
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 394_CR8
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/34.824819
– volume-title: Voice Disorders Database, Version 1.03
  year: 1994
  ident: 394_CR21
– volume: 19
  start-page: 2197
  issue: 7
  year: 2011
  ident: 394_CR31
  publication-title: IEEE Trans. Audio Speech Lang. Process
  doi: 10.1109/TASL.2011.2118753
– volume: 5
  start-page: 337
  issue: 4
  year: 1995
  ident: 394_CR5
  publication-title: J. Math. Imag. Vis
  doi: 10.1007/BF01250288
– volume: 55
  start-page: 978
  year: 2007
  ident: 394_CR6
  publication-title: IEEE Tran. Signal Process
  doi: 10.1109/TSP.2006.887131
– volume-title: Unsupervised learning through dynamic self-organization: implications for microbiological image analysis
  year: 2007
  ident: 394_CR11
– volume: 9
  start-page: 442
  issue: 12
  year: 2002
  ident: 394_CR20
  publication-title: IEEE Signal Process. Lett
  doi: 10.1109/LSP.2002.806070
– volume-title: Rough Sets: Theoretical Aspects of Reasoning About Data
  year: 1992
  ident: 394_CR3
– volume: 50
  start-page: 738
  year: 2009
  ident: 394_CR30
  publication-title: Math. Comput. Model
  doi: 10.1016/j.mcm.2009.05.002
– ident: 394_CR15
– volume: 48
  start-page: 1498
  issue: 5
  year: 2000
  ident: 394_CR18
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.840002
– start-page: 183
  volume-title: Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing, vol. 2846
  year: 2007
  ident: 394_CR1
  doi: 10.1109/CIISP.2007.369314
– volume: 16
  start-page: 620
  year: 2005
  ident: 394_CR28
  publication-title: J. Cardiovasc. Electrophysiol
  doi: 10.1111/j.1540-8167.2005.40708.x
– volume: 92
  start-page: 541
  year: 2002
  ident: 394_CR26
  publication-title: J. Appl. Physiol
  doi: 10.1152/japplphysiol.00592.2001
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 394_CR13
  publication-title: Nature
  doi: 10.1038/44565
– start-page: 182
  volume-title: Proceedings of the Second Joint EMBS/BMES Conference, vol. 1
  year: 2002
  ident: 394_CR24
– ident: 394_CR32
  doi: 10.1186/1475-925X-6-23
– volume: 11
  start-page: 341
  year: 1982
  ident: 394_CR2
  publication-title: Int. J. Comput. Inf. Sci
  doi: 10.1007/BF01001956
– volume: 47
  start-page: 773
  issue: 6
  year: 2000
  ident: 394_CR23
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/10.844228
– volume: 1
  start-page: 27
  year: 2006
  ident: 394_CR12
  publication-title: IEEE Comput. Intell. Mag
  doi: 10.1109/MCI.2006.1626492
SSID ssj0056202
Score 2.0269866
Snippet Current approaches to improve the pattern recognition performance mainly focus on either extracting non-stationary and discriminant features of each class, or...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Advances in Nonstationary Electrophysiological Signal Analysis and Processing
Algorithms
Classifiers
Clustering
Engineering
Feature extraction
Fuzzy
Labels
Marking
Pattern recognition
Quantum Information Technology
Signal,Image and Speech Processing
Spintronics
Title Discriminant non-stationary signal features’ clustering using hard and fuzzy cluster labeling
URI https://link.springer.com/article/10.1186/1687-6180-2012-250
https://www.proquest.com/docview/1864543555
Volume 2012
WOSCitedRecordID wos000316281800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: P5Z
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: K7-
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: PIMPY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-l7UEPfouv6iOCNw0m2exu9qi1pVL6WEqF6iXksxTKU96-V2hP_Tf89_xLnMnu-gUW6iWXZEKYyUxmmJlfCHnpYqGi1QUrMLeunHDMRu2Z9CmIYK2Iw2cT9Wymj4-bdmgK68Zq9zElmS11VmtdvRGVxoY2zUGwQjKJgfoGwolhIdc29jj09hcedKzZ2fo33Z9P0C-_8q9UaH5hdu_-39nukTuDR0nf9lfgPlmL8wfk9m84gw-JeX-K1qGveqEQ8LOuz8DbxQXFCg6gTzFDfHbfr75Rf7ZC_ASgpVgXf0KxNYvaeaBpdXl5Mc5TuEG5nf0R-bi7c7S9x4afFZiXjV4yXwcOjkvZyMS1SkmnJqgm8crzMoVa29AojNSCc1xGx-sYIS5x2qoiSNi6eEzW4bDxCaFB1k4gaDy6ZtxVrhGBe-WCVEDkqgkRI7ONH2DH8feLM5PDD10ZZJ5B5hlkngHmTcirnzRfe9CNa1e_GGVoQDcw4WHn8cuqM7BeleAPluWEvB4FZwYl7a7Zcutmy5-SW1nuQjBZPyPry8UqPieb_nx52i2mZOPdzqw9nOZbOs1BP4z7NYOxLT_DfPvhoP30A_p65r0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bShwxNMhWqH2wapXuam0E39pgksnMZB5l22XF7eLDFvYt5CqCrGVnt6BP_Y3-nl_SnLloFRT0OeeEcHKunBtCh8YnwmuZkARy68IwQ7SXlnAbHHNaM98sm8jHYzmdFmdNU1jZVru3KclKU1diLbMjlkloaJM0fizjhEOg_kbEAAUKufrQ41Dr32jQoWan9zTeQxN071c-SoVWFmbw_nVv20DrjUeJj2sW2EQrfraF3v03Z_ADUt8uQDvUVS84BvykrDPwen6NoYIj4gdfjfgsb__8xfZyCfMTIi6GuvhzDK1ZWM8cDsubm-v2HEcOqtrZt9HPwfdJf0iazQrE8kIuiM0djY5LWvBApQhBhsKJItDM0jS4XGpXCIjUnDGUe0Nz72NcYqQWiePx6mQHdeJj_UeEHc8Ng6Hx4JpRk5mCOWqFcVxEJJN1EWuJrWwzdhy2X1yqKvyQmQLiKSCeAuKpSLwu-nKH86seuvEs9EH7hyrKBiQ89MxfLUsV4UUa_cE07aKv7cepRkjLZ67svQz8M3o7nPwYqdHJ-HQXrVU8wBjh-R7qLOZL_wmt2t-Li3K-X3HqP1Ov45E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_FFrEPbf2iZ2uN4JsGk2x2N_soXo8W5fBB4d5CPkWQveP2TtAn_w3_Pf-SZvZDraAgPmcmhMlMZoaZ-QWhHeMT4bVMSAK1dWGYIdpLS7gNjjmtmW8_m8iHQzkaFSdPpvjrbveuJNnMNABKUznbn7jQmLjM9lkmYbhN0njJjBMOSfvHmJrkoNeHMO_QvMXRuUP_zsbLfP-7o8cY81lZtPY2g6_vP-c39KWNNPFBoxrL6IMvV9DnJ_iDq0j1L-DVaLphcDkuSdVU5vX0GkNnR-QPvob-rO5v77C9nAOuQuTF0C9_jmFkC-vS4TC_ubnu1nHUrHrMfQ2dDX6fHv4h7Y8LxPJCzojNHY0BTVrwQKUIQYbCiSLQzNI0uFxqVwjI4JwxlHtDc-9jvmKkFonjcetkHS3Ew_rvCDueGwZg8hCyUZOZgjlqhXFcRCaT9RDrBK9sC0cOv2JcqjotkZkC4SkQngLhqSi8Htp94Jk0YByvUm9396mizUAhRJd-PK9UpBdpjBPTtIf2uktUrfFWr2y58TbyLbR40h-o47_Dox9oqVYBxgjPf6KF2XTuN9EnezW7qKa_aqX9B_1L7HU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminant+non-stationary+signal+features%E2%80%99+clustering+using+hard+and+fuzzy+cluster+labeling&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Ghoraani%2C+Behnaz&rft.au=Krishnan%2C+Sridhar&rft.date=2012-11-27&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2012&rft.issue=1&rft_id=info:doi/10.1186%2F1687-6180-2012-250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1687_6180_2012_250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon