Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 22; s. 359 - 365
Hlavní autoři: Chikalov, Igor, Hussain, Shahid, Moshkov, Mikhail
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2013
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2013.09.113