Accelerating multi-coil MR image reconstruction using weak supervision
Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruc...
Uložené v:
| Vydané v: | Magma (New York, N.Y.) Ročník 38; číslo 1; s. 37 - 51 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.02.2025
|
| Predmet: | |
| ISSN: | 1352-8661, 1352-8661 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4
×
under-sampled dataset following the
self-supervised learning via data undersampling
(SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the
high-data
regime), and enhanced robustness when training data is scarce (the
low-data
regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8
×
and 10
×
acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the
high-data
regime and improved robustness in the
low-data
regime at high acceleration rates. |
|---|---|
| AbstractList | Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4
×
under-sampled dataset following the
self-supervised learning via data undersampling
(SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the
high-data
regime), and enhanced robustness when training data is scarce (the
low-data
regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8
×
and 10
×
acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the
high-data
regime and improved robustness in the
low-data
regime at high acceleration rates. Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4 × under-sampled dataset following the self-supervised learning via data undersampling (SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the high-data regime), and enhanced robustness when training data is scarce (the low-data regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8 × and 10 × acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the high-data regime and improved robustness in the low-data regime at high acceleration rates.Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4 × under-sampled dataset following the self-supervised learning via data undersampling (SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the high-data regime), and enhanced robustness when training data is scarce (the low-data regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8 × and 10 × acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the high-data regime and improved robustness in the low-data regime at high acceleration rates. Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4 under-sampled dataset following the self-supervised learning via data undersampling (SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the high-data regime), and enhanced robustness when training data is scarce (the low-data regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8 and 10 acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the high-data regime and improved robustness in the low-data regime at high acceleration rates. |
| Author | Atalık, Arda Sodickson, Daniel K. Chopra, Sumit |
| Author_xml | – sequence: 1 givenname: Arda orcidid: 0000-0003-3439-7838 surname: Atalık fullname: Atalık, Arda email: Arda.Atalik@nyu.edu organization: Center for Data Science, New York University, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine – sequence: 2 givenname: Sumit surname: Chopra fullname: Chopra, Sumit organization: Courant Institute of Mathematical Sciences, New York University, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine – sequence: 3 givenname: Daniel K. surname: Sodickson fullname: Sodickson, Daniel K. organization: Center for Data Science, New York University, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39382814$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LAzEURYNU7If-ARcySzej-e7MshSrQkUQXYdM-qZMnSY1mSj-e1OniisX4YXHuQ_OHaOBdRYQOif4imA8vQ4EM8ZzTNMjFMucHqERYYLmhZRk8Oc_ROMQNhhTIjA7QUNWsoIWhI_QYmYMtOB119h1to1t1-TGNW328JQ1W72GzINxNnQ-mq5xNothD36Afs1C3IF_b0Jan6LjWrcBzg5zgl4WN8_zu3z5eHs_ny1zQ8uiyysjSV0AFJSTUsgKcym0lpiBoLAiJYPaVNOVJBg4n0opucaCV4JUpRG1lGyCLvu7O-_eIoRObZuQBFptwcWgGCFcYFqKMqEXBzRWW1ipnU8-_lP9uCeA9oDxLgQP9S9CsNoXrPqCVSpYfResaAqxPhQSbNfg1cZFb5Pzf6kvfcZ8gQ |
| Cites_doi | 10.1109/MSP.2019.2950640 10.1109/MSP.2019.2950557 10.1109/TIT.2006.871582 10.1109/TMI.2018.2865356 10.1109/MSP.2007.914731 10.1561/2200000016 10.1109/TIP.2003.819861 10.1109/MSP.2019.2943645 10.1002/mrm.28378 10.1109/TMI.2022.3147426 10.1002/mrm.29759 10.1109/TIP.2010.2047910 10.1109/ACSSC.2003.1292216 10.1002/mrm.10171 10.1002/mrm.28148 10.1002/nbm.4798 10.1007/978-3-319-24574-4_28 10.1148/ryai.2020190007 10.1109/TMI.2017.2760978 10.1002/mrm.26977 10.1109/TPAMI.2018.2883941 10.1109/TMI.2022.3199155 10.1007/978-3-030-59713-9_7 10.1002/mrm.21391 10.1109/TMI.2021.3075856 10.1109/CVPR.2018.00196 10.1007/978-3-031-43999-5_47 10.1109/TMI.2018.2863670 10.1002/mrm.1910380414 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1109/TMI.2019.2927101 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB). |
| Copyright_xml | – notice: The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB). |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1007/s10334-024-01206-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1352-8661 |
| EndPage | 51 |
| ExternalDocumentID | 39382814 10_1007_s10334_024_01206_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: NIH P41 EB017183 funderid: http://dx.doi.org/10.13039/100000070 – fundername: National Science Foundation grantid: 1922658 funderid: http://dx.doi.org/10.13039/100000001 – fundername: NIBIB NIH HHS grantid: NIH P41 EB017183 – fundername: National Science Foundation grantid: 1922658 – fundername: NIBIB NIH HHS grantid: P41 EB017183 |
| GroupedDBID | --- --K -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1B1 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANXM AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIUM ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACRPL ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK5 LLZTM M1P M2P M41 M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R2- R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SEW SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD SSZ STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UHS UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X Z82 Z83 Z88 Z8R Z8V Z8W ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADHKG AEUPX AFPUW AGQPQ CGR CUY CVF ECM EIF NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7X8 |
| ID | FETCH-LOGICAL-c298t-bc61f8ee8241956b0465aa603e52ed193efcb7d610e4476664a054b51b9c5f663 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329076400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1352-8661 |
| IngestDate | Thu Oct 02 06:01:46 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 Sat Nov 29 03:00:50 EST 2025 Fri Feb 21 02:38:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Accelerated imaging Weak supervision Transfer learning MR image reconstruction Machine learning Self-supervised learning |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-bc61f8ee8241956b0465aa603e52ed193efcb7d610e4476664a054b51b9c5f663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3439-7838 |
| PMID | 39382814 |
| PQID | 3114502959 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_3114502959 pubmed_primary_39382814 crossref_primary_10_1007_s10334_024_01206_2 springer_journals_10_1007_s10334_024_01206_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany |
| PublicationSubtitle | Official Journal of the European Society for Magnetic Resonance in Medicine and Biology |
| PublicationTitle | Magma (New York, N.Y.) |
| PublicationTitleAbbrev | Magn Reson Mater Phy |
| PublicationTitleAlternate | MAGMA |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | MA Griswold (1206_CR3) 2002; 47 Y Han (1206_CR12) 2019; 39 B Yaman (1206_CR18) 2022; 35 M Yurt (1206_CR20) 2022; 41 JA Fessler (1206_CR27) 2020; 37 S Boyd (1206_CR28) 2011; 3 EJ Candès (1206_CR6) 2008; 25 1206_CR9 Z Wang (1206_CR36) 2004; 13 MJ Muckley (1206_CR35) 2021; 40 1206_CR19 1206_CR39 J Schlemper (1206_CR7) 2017; 37 1206_CR15 1206_CR34 1206_CR33 SUH Dar (1206_CR40) 2020; 84 1206_CR10 1206_CR32 HK Aggarwal (1206_CR11) 2018; 38 1206_CR31 1206_CR30 JD Gibbons (1206_CR38) 2011 KP Pruessmann (1206_CR2) 1999; 42 D Liang (1206_CR13) 2020; 37 M Hollander (1206_CR37) 1999 Y Yang (1206_CR26) 2018; 42 F Knoll (1206_CR14) 2020; 37 K Hammernik (1206_CR8) 2018; 79 MV Afonso (1206_CR24) 2010; 19 B Yaman (1206_CR17) 2020; 84 M Lustig (1206_CR5) 2007; 58 1206_CR29 1206_CR23 C Qin (1206_CR25) 2018; 38 DK Sodickson (1206_CR1) 1997; 38 1206_CR22 DL Donoho (1206_CR4) 2006; 52 Y Korkmaz (1206_CR16) 2022; 41 AD Desai (1206_CR21) 2023; 90 |
| References_xml | – volume: 37 start-page: 128 issue: 1 year: 2020 ident: 1206_CR14 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2019.2950640 – ident: 1206_CR15 – volume: 37 start-page: 141 issue: 1 year: 2020 ident: 1206_CR13 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2019.2950557 – ident: 1206_CR32 – volume-title: Nonparametric statistical methods year: 1999 ident: 1206_CR37 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 1206_CR4 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2006.871582 – volume: 38 start-page: 394 issue: 2 year: 2018 ident: 1206_CR11 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2865356 – volume: 25 start-page: 21 issue: 2 year: 2008 ident: 1206_CR6 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.914731 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 1206_CR28 publication-title: Found Trends Mach Learn doi: 10.1561/2200000016 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 1206_CR36 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: 1206_CR23 – volume: 37 start-page: 33 issue: 1 year: 2020 ident: 1206_CR27 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2019.2943645 – volume: 84 start-page: 3172 issue: 6 year: 2020 ident: 1206_CR17 publication-title: Magn Reson Med doi: 10.1002/mrm.28378 – volume: 41 start-page: 1747 issue: 7 year: 2022 ident: 1206_CR16 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2022.3147426 – ident: 1206_CR19 – volume: 90 start-page: 2052 issue: 5 year: 2023 ident: 1206_CR21 publication-title: Magn Reson Med doi: 10.1002/mrm.29759 – volume: 19 start-page: 2345 issue: 9 year: 2010 ident: 1206_CR24 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2047910 – ident: 1206_CR29 doi: 10.1109/ACSSC.2003.1292216 – volume: 47 start-page: 1202 issue: 6 year: 2002 ident: 1206_CR3 publication-title: Magn Reson Med doi: 10.1002/mrm.10171 – volume: 84 start-page: 663 issue: 2 year: 2020 ident: 1206_CR40 publication-title: Magn Reson Med doi: 10.1002/mrm.28148 – volume: 35 start-page: 4798 issue: 12 year: 2022 ident: 1206_CR18 publication-title: NMR Biomed doi: 10.1002/nbm.4798 – ident: 1206_CR30 doi: 10.1007/978-3-319-24574-4_28 – ident: 1206_CR34 doi: 10.1148/ryai.2020190007 – volume: 37 start-page: 491 issue: 2 year: 2017 ident: 1206_CR7 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2760978 – volume: 79 start-page: 3055 issue: 6 year: 2018 ident: 1206_CR8 publication-title: Magn Reson Med doi: 10.1002/mrm.26977 – ident: 1206_CR33 – ident: 1206_CR39 – volume: 42 start-page: 521 issue: 3 year: 2018 ident: 1206_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2883941 – volume: 41 start-page: 3895 issue: 12 year: 2022 ident: 1206_CR20 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2022.3199155 – ident: 1206_CR10 doi: 10.1007/978-3-030-59713-9_7 – volume: 58 start-page: 1182 issue: 6 year: 2007 ident: 1206_CR5 publication-title: Magn Reson Med doi: 10.1002/mrm.21391 – volume: 40 start-page: 2306 issue: 9 year: 2021 ident: 1206_CR35 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3075856 – volume-title: Nonparametric statistical inference year: 2011 ident: 1206_CR38 – ident: 1206_CR9 doi: 10.1109/CVPR.2018.00196 – ident: 1206_CR22 doi: 10.1007/978-3-031-43999-5_47 – ident: 1206_CR31 – volume: 38 start-page: 280 issue: 1 year: 2018 ident: 1206_CR25 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2863670 – volume: 38 start-page: 591 issue: 4 year: 1997 ident: 1206_CR1 publication-title: Magn Reson Med doi: 10.1002/mrm.1910380414 – volume: 42 start-page: 952 issue: 5 year: 1999 ident: 1206_CR2 publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 39 start-page: 377 issue: 2 year: 2019 ident: 1206_CR12 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2927101 |
| SSID | ssj0021503 |
| Score | 2.3847928 |
| Snippet | Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 37 |
| SubjectTerms | Basic Science - Reconstruction algorithms and artificial intelligence Biomedical Engineering and Bioengineering Computer Appl. in Life Sciences Deep Learning Health Informatics Humans Image Processing, Computer-Assisted - methods Imaging Magnetic Resonance Imaging Medicine Medicine & Public Health Radiology Research Article Solid State Physics Supervised Machine Learning |
| Title | Accelerating multi-coil MR image reconstruction using weak supervision |
| URI | https://link.springer.com/article/10.1007/s10334-024-01206-2 https://www.ncbi.nlm.nih.gov/pubmed/39382814 https://www.proquest.com/docview/3114502959 |
| Volume | 38 |
| WOSCitedRecordID | wos001329076400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1352-8661 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021503 issn: 1352-8661 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIMSF92M8piBxg0q0TdrmOCEmDmxC46HdoiRNpwnoJrrB38fJ2gEaQoJ7m1aO6-_7ascGOFWIaQhzocd5bDwaGe4p31DPtndCtEiTTLqW-Tdxp5P0evy2PBRWVNXuVUrSReovh93CEBcJbNVEgDoYA-8Swl1iBzZ07x5nMgspTlgej_n5vu8QNMcr53KiDmpa6_97yQ1YK6klaU59YRMWTL4FK-0yeb4NrabWCDJ2y_M-cZWEnh4Onkm7SwYvGFeIU8ezjrLE1sT3ybuRT6SYjGxQsb_WduChdXV_ee2VYxQ8HfBk7Ckd-VliTIJgjWpIoSJmUkYXoWGBSZHAmUyrOEUeZSiNUc5QiTxOMV9xzTJkJLtQy4e52QdCZcb8KDV2YAeVKuaZH8dcSmaTg5qldTirLCtG024Z4rMvsjWNQNMIZxoR1OGkMr5Ap7aZCpmb4aQQIao0dhFwxuuwN92V2XohD1El-rQO59UWiPK7K3552MHfLj-E1cBO-nX12UdQQ9ObY1jWb-NB8dqAxbiXNJzbfQDje8-8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kinrx_YjPFbxpoEl2k-yxiKViW6RW6W3ZbDalqGkxrf59Z9OkKhVB78kmzEzm-77M7CzAeYSYhjDn2ZwH2qa-5nbkaGqb8U6IFnGYyHxkfjNot8Nej98Vm8Kystu9LEnmmfrLZjfPw0Vc0zXhog7GxLtIEbHMxPzO_eNMZiHF8YrtMT_f9x2C5njlXE00h5r6-v9ecgPWCmpJatNY2IQFnW7Bcqsonm9DvaYUgoxxedoneSehrYaDZ9LqkMEL5hWSq-PZRFlieuL75F3LJ5JNRiapmF9rO_BQv-5eNeziGAVbuTwc25HynSTUOkSwRjUUoSJmUvpVTzNXx0jgdKKiIEYepSkNUM5QiTwuYk7EFUuQkexCJR2meh8IlQlz_FibAzuojAKeOEHApWSmOKhYbMFFaVkxmk7LEJ9zkY1pBJpG5KYRrgVnpfEFBrWpVMhUDyeZ8FClsarLGbdgb-qV2Xoe91AlOtSCy9IFovjusl8edvC3y09hpdFtNUXzpn17CKuuOfU379U-ggq6QR_DknobD7LXkzz4PgDE6NG4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB6kSvHF-4jnCr5paJPsNtnHohbFthQv-rZsNptS1LTYVv--szlqpSKI78kmzEz2-77MsQCnIWIawpxnc-5rm9Y0t0NHU9uMd0K0iIJYpiPzm367HXS7vDPTxZ9WuxcpyaynwUxpSsaVYRRXZhrfPA8XdE0FhYuaGDfhRWoK6Y1ev3-aSi6kO17eKvPzfd_haI5jzuVHU9hprP7_hddgJaecpJ7FyDos6GQDyq08qb4JjbpSCD4mFJIeSSsMbTXov5DWHem_4n5DUtU8nTRLTK18j3xo-UxGk6HZbMwvty14bFw9XFzb-fEKtnJ5MLZDVXPiQOsAQRxVUohKmUlZq3qauTpCYqdjFfoR8itNqY8yh0rkdyFzQq5YjExlG0rJING7QKiMmVOLtDnIg8rQ57Hj-1xKZpKGikUWnBVWFsNsiob4mpdsTCPQNCI1jXAtOCkcITDYTQZDJnowGQkP1RurupxxC3YyD03X87iH6tGhFpwX7hD59zj65WF7f7v8GMqdy4Zo3rRv92HZNYcBpyXcB1BCL-hDWFLv4_7o7SiNw0-80dqc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+multi-coil+MR+image+reconstruction+using+weak+supervision&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Atal%C4%B1k%2C+Arda&rft.au=Chopra%2C+Sumit&rft.au=Sodickson%2C+Daniel+K&rft.date=2025-02-01&rft.eissn=1352-8661&rft.volume=38&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1007%2Fs10334-024-01206-2&rft_id=info%3Apmid%2F39382814&rft.externalDocID=39382814 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon |