Fast Searching Density Peak Clustering Algorithm Based on Shared Nearest Neighbor and Adaptive Clustering Center

The clustering analysis algorithm is used to reveal the internal relationships among the data without prior knowledge and to further gather some data with common attributes into a group. In order to solve the problem that the existing algorithms always need prior knowledge, we proposed a fast search...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Symmetry (Basel) Ročník 12; číslo 12; s. 2014
Hlavní autoři: Lv, Yi, Liu, Mandan, Xiang, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2020
Témata:
ISSN:2073-8994, 2073-8994
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The clustering analysis algorithm is used to reveal the internal relationships among the data without prior knowledge and to further gather some data with common attributes into a group. In order to solve the problem that the existing algorithms always need prior knowledge, we proposed a fast searching density peak clustering algorithm based on the shared nearest neighbor and adaptive clustering center (DPC-SNNACC) algorithm. It can automatically ascertain the number of knee points in the decision graph according to the characteristics of different datasets, and further determine the number of clustering centers without human intervention. First, an improved calculation method of local density based on the symmetric distance matrix was proposed. Then, the position of knee point was obtained by calculating the change in the difference between decision values. Finally, the experimental and comparative evaluation of several datasets from diverse domains established the viability of the DPC-SNNACC algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12122014