A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics
The present study aims to design stochastic intelligent computational heuristics for the numerical treatment of a nonlinear SITR system representing the dynamics of novel coronavirus disease 2019 (COVID-19). The mathematical SITR system using fractal parameters for COVID-19 dynamics is divided into...
Uloženo v:
| Vydáno v: | Symmetry (Basel) Ročník 12; číslo 10; s. 1628 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.10.2020
|
| Témata: | |
| ISSN: | 2073-8994, 2073-8994 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The present study aims to design stochastic intelligent computational heuristics for the numerical treatment of a nonlinear SITR system representing the dynamics of novel coronavirus disease 2019 (COVID-19). The mathematical SITR system using fractal parameters for COVID-19 dynamics is divided into four classes; that is, susceptible (S), infected (I), treatment (T), and recovered (R). The comprehensive details of each class along with the explanation of every parameter are provided, and the dynamics of novel COVID-19 are represented by calculating the solution of the mathematical SITR system using feed-forward artificial neural networks (FF-ANNs) trained with global search genetic algorithms (GAs) and speedy fine tuning by sequential quadratic programming (SQP)—that is, an FF-ANN-GASQP scheme. In the proposed FF-ANN-GASQP method, the objective function is formulated in the mean squared error sense using the approximate differential mapping of FF-ANNs for the SITR model, and learning of the networks is proficiently conducted with the integrated capabilities of GA and SQP. The correctness, stability, and potential of the proposed FF-ANN-GASQP scheme for the four different cases are established through comparative assessment study from the results of numerical computing with Adams solver for single as well as multiple autonomous trials. The results of statistical evaluations further authenticate the convergence and prospective accuracy of the FF-ANN-GASQP method. |
|---|---|
| AbstractList | The present study aims to design stochastic intelligent computational heuristics for the numerical treatment of a nonlinear SITR system representing the dynamics of novel coronavirus disease 2019 (COVID-19). The mathematical SITR system using fractal parameters for COVID-19 dynamics is divided into four classes; that is, susceptible (S), infected (I), treatment (T), and recovered (R). The comprehensive details of each class along with the explanation of every parameter are provided, and the dynamics of novel COVID-19 are represented by calculating the solution of the mathematical SITR system using feed-forward artificial neural networks (FF-ANNs) trained with global search genetic algorithms (GAs) and speedy fine tuning by sequential quadratic programming (SQP)—that is, an FF-ANN-GASQP scheme. In the proposed FF-ANN-GASQP method, the objective function is formulated in the mean squared error sense using the approximate differential mapping of FF-ANNs for the SITR model, and learning of the networks is proficiently conducted with the integrated capabilities of GA and SQP. The correctness, stability, and potential of the proposed FF-ANN-GASQP scheme for the four different cases are established through comparative assessment study from the results of numerical computing with Adams solver for single as well as multiple autonomous trials. The results of statistical evaluations further authenticate the convergence and prospective accuracy of the FF-ANN-GASQP method. |
| Author | Sabir, Zulqurnain Raja, Muhammad Asif Zahoor Shoaib, Muhammad Sánchez, Yolanda Guerrero Gupta, Manoj Umar, Muhammad |
| Author_xml | – sequence: 1 givenname: Muhammad surname: Umar fullname: Umar, Muhammad – sequence: 2 givenname: Zulqurnain surname: Sabir fullname: Sabir, Zulqurnain – sequence: 3 givenname: Muhammad Asif Zahoor orcidid: 0000-0001-9953-822X surname: Raja fullname: Raja, Muhammad Asif Zahoor – sequence: 4 givenname: Muhammad orcidid: 0000-0001-8295-9861 surname: Shoaib fullname: Shoaib, Muhammad – sequence: 5 givenname: Manoj orcidid: 0000-0002-4274-4927 surname: Gupta fullname: Gupta, Manoj – sequence: 6 givenname: Yolanda Guerrero orcidid: 0000-0002-4228-2355 surname: Sánchez fullname: Sánchez, Yolanda Guerrero |
| BookMark | eNptkMtqAjEUhkOxUGtd9QUCXZZpc5kZJ0tRWwVRqLbbIcZEIzOJTaIyb9-IXUjp2Zzb958D_z1oGWskAI8YvVDK0KtvakwwwjkpbkCboB5NCsbS1lV9B7re71CMDGVpjtrg1IeLYMWW-6AFnJggq0pvpAlwYOv9IWizgScdtnAmD84mo6Ot4tAaOI69Pos8VNbBmTWVNpI7uJgsP-Ci8UHW0Kq4OMoKDuZfk2GCGRw2htdR9ABuFa-87P7mDvh8Gy0H42Q6f58M-tNEEFaEhKmV5GtG12iFU5ySNVIFzgURIk9FulJUMZHlq5ypgnFa8LUgFKmcU5L1JE0p7YCny929s98H6UO5swdn4suSZBkiPRoFkXq-UMJZ751U5d7pmrumxKg8m1temRtp_IcWOvCzK8FxXf2r-QEJGX8f |
| CitedBy_id | crossref_primary_10_1002_zamm_202300748 crossref_primary_10_32604_cmc_2022_032087 crossref_primary_10_32604_cmc_2023_032364 crossref_primary_10_1007_s12652_021_03638_3 crossref_primary_10_1007_s13369_022_06667_y crossref_primary_10_1016_j_imu_2022_101028 crossref_primary_10_32604_cmc_2022_021462 crossref_primary_10_3390_asi7040063 crossref_primary_10_3390_axioms9040136 crossref_primary_10_3390_fractalfract6060333 crossref_primary_10_1177_23977914251343344 crossref_primary_10_3389_fphy_2022_949907 crossref_primary_10_1080_00207160_2022_2037132 crossref_primary_10_3390_ai4010014 crossref_primary_10_1016_j_isatra_2024_08_003 crossref_primary_10_3390_sym13040618 crossref_primary_10_3390_ijerph182212192 crossref_primary_10_1007_s12652_023_04744_0 crossref_primary_10_1080_17455030_2022_2144654 crossref_primary_10_3390_math9233122 crossref_primary_10_1063_5_0085737 crossref_primary_10_3390_coatings11121554 crossref_primary_10_1016_j_jrras_2025_101448 crossref_primary_10_3390_fractalfract6100604 crossref_primary_10_1007_s00366_021_01427_2 crossref_primary_10_1155_2023_6887913 crossref_primary_10_3390_math11040975 crossref_primary_10_1140_epjp_s13360_022_02421_3 crossref_primary_10_1016_j_jtice_2021_03_042 crossref_primary_10_1016_j_heliyon_2023_e22030 crossref_primary_10_1016_j_mex_2025_103375 crossref_primary_10_1016_j_enganabound_2022_10_033 crossref_primary_10_1038_s41598_024_75336_x crossref_primary_10_3390_sym13040723 crossref_primary_10_1080_10255842_2022_2039640 crossref_primary_10_1007_s00521_021_06318_7 crossref_primary_10_1002_num_22692 crossref_primary_10_32604_cmes_2023_029879 crossref_primary_10_1140_epjp_s13360_023_04735_2 crossref_primary_10_3390_fractalfract6100553 crossref_primary_10_1038_s41598_021_88499_8 crossref_primary_10_3390_s21196498 crossref_primary_10_1016_j_chaos_2022_112818 crossref_primary_10_1080_10407790_2024_2329253 crossref_primary_10_3390_math11040835 crossref_primary_10_1002_zamm_202200141 crossref_primary_10_32604_cmes_2022_018496 crossref_primary_10_1016_j_icheatmasstransfer_2022_106140 crossref_primary_10_1016_j_icheatmasstransfer_2022_106262 crossref_primary_10_1109_ACCESS_2021_3113986 crossref_primary_10_3390_app11188549 crossref_primary_10_1016_j_icheatmasstransfer_2024_108320 crossref_primary_10_1080_02286203_2023_2191586 crossref_primary_10_1109_ACCESS_2021_3072952 crossref_primary_10_3390_su13179537 crossref_primary_10_1016_j_icheatmasstransfer_2022_105971 crossref_primary_10_32604_cmc_2023_032950 crossref_primary_10_3390_coatings11121483 crossref_primary_10_1016_j_icheatmasstransfer_2021_105436 crossref_primary_10_1007_s12530_022_09469_7 crossref_primary_10_1016_j_cmpb_2021_105973 crossref_primary_10_3390_fractalfract5040277 crossref_primary_10_1007_s13369_022_06925_z crossref_primary_10_1109_ACCESS_2022_3159813 crossref_primary_10_1140_epjp_s13360_021_02248_4 crossref_primary_10_32604_cmes_2021_016622 crossref_primary_10_1016_j_chaos_2021_111404 crossref_primary_10_1080_17455030_2022_2152905 crossref_primary_10_1007_s00521_024_10361_5 crossref_primary_10_1155_2022_5755885 crossref_primary_10_1016_j_icheatmasstransfer_2021_105544 crossref_primary_10_1080_17455030_2022_2128228 crossref_primary_10_4081_jphr_2021_2130 crossref_primary_10_32604_cmc_2022_030888 crossref_primary_10_32604_cmes_2023_025647 crossref_primary_10_3390_math11173792 crossref_primary_10_1109_ACCESS_2024_3429279 crossref_primary_10_1080_00207160_2024_2326926 crossref_primary_10_1016_j_compbiolchem_2024_108234 crossref_primary_10_1007_s11042_024_20357_x crossref_primary_10_1080_17455030_2022_2028933 crossref_primary_10_3390_s21196567 crossref_primary_10_1080_00207160_2023_2248286 crossref_primary_10_1016_j_heliyon_2024_e28890 crossref_primary_10_32604_cmes_2021_016611 crossref_primary_10_1109_ACCESS_2024_3417647 crossref_primary_10_1016_j_imu_2022_101081 crossref_primary_10_1038_s41598_022_15376_3 crossref_primary_10_1038_s41598_021_83990_8 crossref_primary_10_1080_17455030_2023_2193852 crossref_primary_10_32604_cmc_2022_029166 crossref_primary_10_1007_s11071_021_06901_6 crossref_primary_10_1016_j_matcom_2023_04_034 crossref_primary_10_1016_j_asoc_2024_111540 crossref_primary_10_1016_j_asoc_2024_112503 crossref_primary_10_32604_cmc_2022_029437 crossref_primary_10_1016_j_eij_2024_100606 |
| Cites_doi | 10.1140/epjp/s13360-020-00424-6 10.1142/S0218348X20400265 10.1155/2020/9704968 10.1115/1.4046496 10.1007/s00521-019-04133-9 10.1109/ACCESS.2020.3002714 10.1016/j.asoc.2018.02.024 10.1007/s00521-016-2677-x 10.1016/j.asoc.2018.08.027 10.1007/s00521-020-05143-8 10.1016/j.aej.2020.02.033 10.1007/s00521-017-3110-9 10.1016/j.amc.2019.124605 10.1155/2020/2010568 10.1155/2019/9860471 10.1016/j.matcom.2016.08.002 10.1186/s13662-017-1461-2 10.1162/evco.1994.2.3.221 10.1140/epjp/s13360-019-00066-3 10.1016/j.asoc.2017.03.028 10.1155/2019/1490571 10.1016/j.jfoodeng.2016.08.010 10.1109/ACCESS.2020.2985763 10.1007/s00521-019-04573-3 10.2298/TSCI190625339U 10.1007/s00521-017-3318-8 10.1016/j.aej.2019.12.011 10.1140/epjp/i2019-12530-5 10.1140/epjp/s13360-020-00417-5 10.3389/fphy.2020.00224 10.1007/s11277-019-06892-z 10.2298/TSCI170717292K 10.1038/scientificamerican0792-66 10.1140/epjp/i2019-12654-6 10.1140/epjp/s13360-020-00557-8 10.1016/j.matcom.2020.06.021 10.1016/j.matcom.2020.01.005 10.1140/epjp/s13360-020-00440-6 10.1007/s10472-010-9222-x 10.1016/j.apacoust.2018.11.024 10.1140/epjp/i2019-12785-8 10.1016/j.asoc.2018.01.009 10.1007/s40314-020-01330-4 10.1016/j.asoc.2019.04.022 10.1140/epjp/i2018-11917-0 10.1016/j.chaos.2017.06.030 10.1007/s00500-017-3002-z 10.1007/s00521-019-04203-y 10.1080/09540091.2014.907555 10.1016/j.jtice.2018.05.046 10.1016/j.asoc.2016.10.009 10.1007/s00521-017-2991-y 10.3390/en12132568 10.1016/j.asoc.2019.105826 10.1140/epjp/i2018-12153-4 10.1016/j.apm.2014.11.024 10.1016/j.future.2019.12.053 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.3390/sym12101628 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym12101628 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC COVID DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c298t-9fbead93d0b14142d0f816c2cc64c4bf3f9c56b69f89a38adc230f6a3257e3433 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 135 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000585153000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 09:32:32 EDT 2025 Sat Nov 29 07:21:46 EST 2025 Tue Nov 18 22:35:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-9fbead93d0b14142d0f816c2cc64c4bf3f9c56b69f89a38adc230f6a3257e3433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9953-822X 0000-0002-4228-2355 0000-0001-8295-9861 0000-0002-4274-4927 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2550273230?pq-origsite=%requestingapplication% |
| PQID | 2550273230 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2550273230 crossref_primary_10_3390_sym12101628 crossref_citationtrail_10_3390_sym12101628 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Sabir (ref_5) 2020; 178 Sabir (ref_17) 2020; 135 Khan (ref_32) 2018; 22 Zameer (ref_37) 2018; 23 Raja (ref_30) 2010; 60 Raja (ref_31) 2017; 132 Raja (ref_52) 2019; 134 Ugalde (ref_4) 2017; 103 Ara (ref_33) 2018; 2018 Chaudhary (ref_51) 2019; 134 Bukhari (ref_9) 2020; 8 Sabir (ref_49) 2020; 2020 Srinivas (ref_35) 1994; 2 Raja (ref_18) 2017; 52 Sabir (ref_48) 2019; 2019 Sabir (ref_16) 2019; 363 Hassan (ref_13) 2019; 134 Raja (ref_22) 2017; 31 Raja (ref_43) 2014; 26 ref_24 ref_21 Khan (ref_41) 2019; 146 Ahmad (ref_23) 2019; 31 Ahmad (ref_26) 2020; 135 Sabir (ref_61) 2020; 2020 Zaman (ref_57) 2019; 111 Umar (ref_12) 2019; 80 Tan (ref_39) 2017; 193 Muhammad (ref_54) 2020; 8 Umar (ref_50) 2019; 2019 Sabir (ref_58) 2020; 2020 Mehmood (ref_19) 2018; 67 Sabir (ref_55) 2020; 2020 ref_34 Ugalde (ref_7) 2018; 133 Lodhi (ref_29) 2017; 31 Masood (ref_53) 2020; 106 Sabir (ref_28) 2020; 135 Majeed (ref_14) 2017; 56 Raja (ref_38) 2016; 29 Mehmood (ref_42) 2019; 32 Bukhari (ref_11) 2020; 59 Umar (ref_46) 2020; 24 Holland (ref_36) 1992; 267 Mehmood (ref_15) 2018; 91 ref_47 Umar (ref_59) 2020; 135 Sabir (ref_6) 2020; 172 ref_44 Khan (ref_45) 2018; 73 Akbar (ref_56) 2018; 31 ref_40 ref_1 Sabir (ref_10) 2018; 65 Umar (ref_20) 2019; 85 ref_3 ref_2 Raja (ref_27) 2015; 39 ref_8 Umar (ref_60) 2020; 135 Raja (ref_25) 2018; 133 |
| References_xml | – volume: 135 start-page: 410 year: 2020 ident: ref_28 article-title: Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden–Fowler equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00424-6 – ident: ref_34 doi: 10.1142/S0218348X20400265 – volume: 2020 start-page: 9704968 year: 2020 ident: ref_58 article-title: Design of a Novel Second-Order Prediction Differential Model Solved by Using Adams and Explicit Runge–Kutta Numerical Methods publication-title: Math. Probl. Eng. doi: 10.1155/2020/9704968 – ident: ref_44 doi: 10.1115/1.4046496 – volume: 32 start-page: 6253 year: 2019 ident: ref_42 article-title: Novel computing paradigms for parameter estimation in power signal models publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04133-9 – volume: 8 start-page: 111401 year: 2020 ident: ref_54 article-title: Design of Fractional Swarm Intelligent Computing With Entropy Evolution for Optimal Power Flow Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002714 – volume: 67 start-page: 8 year: 2018 ident: ref_19 article-title: Intelligent computing to analyze the dynamics of Magnetohydrodynamic flow over stretchable rotating disk model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.024 – volume: 29 start-page: 1455 year: 2016 ident: ref_38 article-title: Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2677-x – ident: ref_1 – volume: 73 start-page: 666 year: 2018 ident: ref_45 article-title: Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.08.027 – ident: ref_8 doi: 10.1007/s00521-020-05143-8 – ident: ref_2 doi: 10.1016/j.aej.2020.02.033 – volume: 31 start-page: 793 year: 2017 ident: ref_22 article-title: Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3110-9 – volume: 363 start-page: 124605 year: 2019 ident: ref_16 article-title: Stochastic numerical approach for solving second order nonlinear singular functional differential equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2019.124605 – volume: 2020 start-page: 5063271 year: 2020 ident: ref_61 article-title: Analytical and Approximate Solutions of a Novel Nervous Stomach Mathematical Model publication-title: Discret. Dyn. Nat. Soc. – volume: 2020 start-page: 1 year: 2020 ident: ref_49 article-title: The Effects of Activation Energy and Thermophoretic Diffusion of Nanoparticles on Steady Micropolar Fluid along with Brownian Motion publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2020/2010568 – volume: 2019 start-page: 1 year: 2019 ident: ref_50 article-title: Numerical Treatment for the Three-Dimensional Eyring-Powell Fluid Flow over a Stretching Sheet with Velocity Slip and Activation Energy publication-title: Adv. Math. Phys. doi: 10.1155/2019/9860471 – volume: 2020 start-page: 1 year: 2020 ident: ref_55 article-title: On a New Model Based on Third-Order Nonlinear Multisingular Functional Differential Equations publication-title: Math. Probl. Eng. – volume: 132 start-page: 139 year: 2017 ident: ref_31 article-title: Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2016.08.002 – volume: 2018 start-page: 8 year: 2018 ident: ref_33 article-title: Wavelets optimization method for evaluation of fractional partial differential equations: An application to financial modelling publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-017-1461-2 – volume: 2 start-page: 221 year: 1994 ident: ref_35 article-title: Muilti-objective optimization using no dominated sorting in genetic algorithms publication-title: Evolut. Comput. doi: 10.1162/evco.1994.2.3.221 – volume: 135 start-page: 55 year: 2020 ident: ref_26 article-title: A new heuristic computational solver for nonlinear singular Thomas–Fermi system using evolutionary optimized cubic splines publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-019-00066-3 – volume: 56 start-page: 420 year: 2017 ident: ref_14 article-title: A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.028 – volume: 2019 start-page: 1 year: 2019 ident: ref_48 article-title: A Computational Analysis of Two-Phase Casson Nanofluid Passing a Stretching Sheet Using Chemical Reactions and Gyrotactic Microorganisms publication-title: Math. Probl. Eng. doi: 10.1155/2019/1490571 – volume: 193 start-page: 68 year: 2017 ident: ref_39 article-title: Determination of glass transitions in boiled candies by capacitance based thermal analysis (CTA) and genetic algorithm (GA) publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2016.08.010 – volume: 8 start-page: 71326 year: 2020 ident: ref_9 article-title: Fractional Neuro-Sequential ARFIMA-LSTM for Financial Market Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985763 – ident: ref_21 doi: 10.1007/s00521-019-04573-3 – volume: 24 start-page: 2929 year: 2020 ident: ref_46 article-title: The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion publication-title: Therm. Sci. doi: 10.2298/TSCI190625339U – volume: 31 start-page: 3681 year: 2018 ident: ref_56 article-title: Novel application of FO-DPSO for 2-D parameter estimation of electromagnetic plane waves publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3318-8 – volume: 59 start-page: 101 year: 2020 ident: ref_11 article-title: Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2019.12.011 – volume: 134 start-page: 122 year: 2019 ident: ref_13 article-title: Design of cascade artificial neural networks optimized with the memetic computing paradigm for solving the nonlinear Bratu system publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12530-5 – volume: 135 start-page: 1 year: 2020 ident: ref_59 article-title: Stochastic numerical technique for solving HIV infection model of CD4+ T cells publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00417-5 – ident: ref_24 doi: 10.3389/fphy.2020.00224 – volume: 111 start-page: 909 year: 2019 ident: ref_57 article-title: Novel Computational Heuristics for Wireless Parameters Estimation in Bistatic Radar systems publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06892-z – volume: 22 start-page: 243 year: 2018 ident: ref_32 article-title: A heuristic optimization method of fractional convection reaction: An application to diffusion process publication-title: Therm. Sci. doi: 10.2298/TSCI170717292K – volume: 267 start-page: 66 year: 1992 ident: ref_36 article-title: Genetic Algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 134 start-page: 1 year: 2019 ident: ref_52 article-title: A new computing paradigm for the optimization of parameters in adaptive beamforming using fractional processing publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12654-6 – ident: ref_47 – volume: 135 start-page: 1 year: 2020 ident: ref_60 article-title: A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00557-8 – volume: 178 start-page: 534 year: 2020 ident: ref_5 article-title: Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.06.021 – volume: 172 start-page: 1 year: 2020 ident: ref_6 article-title: Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.01.005 – volume: 135 start-page: 474 year: 2020 ident: ref_17 article-title: Neuro-swarm intelligent computing to solve the second-order singular functional differential model publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/s13360-020-00440-6 – volume: 60 start-page: 229 year: 2010 ident: ref_30 article-title: A new stochastic approach for solution of Riccati differential equation of fractional order publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-010-9222-x – volume: 146 start-page: 246 year: 2019 ident: ref_41 article-title: A novel application of fireworks heuristic paradigms for reliable treatment of nonlinear active noise control publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.11.024 – volume: 134 start-page: 407 year: 2019 ident: ref_51 article-title: Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12785-8 – volume: 65 start-page: 152 year: 2018 ident: ref_10 article-title: Neuro-heuristics for nonlinear singular Thomas-Fermi systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.009 – ident: ref_3 doi: 10.1007/s40314-020-01330-4 – volume: 80 start-page: 506 year: 2019 ident: ref_12 article-title: Intelligent computing for numerical treatment of nonlinear prey–predator models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.022 – volume: 133 start-page: 75 year: 2018 ident: ref_7 article-title: New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-11917-0 – volume: 103 start-page: 382 year: 2017 ident: ref_4 article-title: Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.06.030 – volume: 23 start-page: 3449 year: 2018 ident: ref_37 article-title: Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures publication-title: Soft Comput. doi: 10.1007/s00500-017-3002-z – volume: 31 start-page: 9041 year: 2019 ident: ref_23 article-title: Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04203-y – volume: 26 start-page: 195 year: 2014 ident: ref_43 article-title: Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP publication-title: Connect. Sci. doi: 10.1080/09540091.2014.907555 – volume: 91 start-page: 57 year: 2018 ident: ref_15 article-title: Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.05.046 – volume: 52 start-page: 605 year: 2017 ident: ref_18 article-title: Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.10.009 – volume: 31 start-page: 359 year: 2017 ident: ref_29 article-title: Fractional neural network models for nonlinear Riccati systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2991-y – ident: ref_40 doi: 10.3390/en12132568 – volume: 85 start-page: 105826 year: 2019 ident: ref_20 article-title: Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105826 – volume: 133 start-page: 364 year: 2018 ident: ref_25 article-title: A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12153-4 – volume: 39 start-page: 3075 year: 2015 ident: ref_27 article-title: An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.11.024 – volume: 106 start-page: 43 year: 2020 ident: ref_53 article-title: Design of fractional order epidemic model for future generation tiny hardware implants publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.12.053 |
| SSID | ssj0000505460 |
| Score | 2.5332754 |
| Snippet | The present study aims to design stochastic intelligent computational heuristics for the numerical treatment of a nonlinear SITR system representing the... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1628 |
| SubjectTerms | Artificial intelligence Artificial neural networks Computation Coronaviruses COVID-19 vaccines Dengue fever Disease transmission Genetic algorithms Learning theory Mathematical models Neural networks Optimization techniques Parameters Quadratic programming Viral diseases |
| Title | A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics |
| URI | https://www.proquest.com/docview/2550273230 |
| Volume | 12 |
| WOSCitedRecordID | wos000585153000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PT9swFMefRsuBywYMRBlUPnBgk6wmtjH2aeJHEZWgqyggOEWOE4tJ0EITOnHZ3z6_xC1MmjjtkosTKcp7fn7Pef58AXZi5TJljKXWCUmFZCk1vm6mGTepUNGeYZVm5PXZfr-vbm70IByPLkJb5SwmVoG6pj1j37YPwp1sbHHHvOMTYQSx-Pz5--MTRQ0p_NcaBDUWoIngragBzUHvfHA733NB1TYho_qYHvfVfqd4eUCCVixRjf3twvR3XK4Wm5NP__c1l-FjSDrJQe0lK_AhH63CSpjWBdkN7Omvn-HXARmWY3tnEN9MenNeZ0lq-Qe_0BHcuiUV1IN2p8FzyWn-HJjPxKfBpF8TOMyEDHuXF6TmopOx8wPT_J4c_bjuHdNYk-OXkXnwD63B1Un38uiUBm0GaplWJdUu9T6oeRalsYgFyyKnYmmZtVJYkTrutN2TqdROacOVyaz_CE4a7kNEzgXn69AYjUf5BpD9mDEnlfXZlxHSaYPIOia5Ey6TMjIt-DYzTGIDuBz1M-4TX8CgFZM3VmzBzvzmx5rX8e_btmbmS8KkLZJXa22-P_wFlhiW3VVP3xY0yslzvg2Ldlr-LCZtaB52-4OLNraRDvH6u9sOnvgHDBztLQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB2hpVJ7aaEfKi2FOVCprWSR2MbYh6pCLGgjlu2qbBE9BceJ1UqwSzdh0f6p_kbsxNlSqeqNQ892FGn88mY8sd8D2IqlzaXWhhjLBeGCZkS7fTPJmc64jHY0rT0jT_u7g4E8O1PDJfjV3oXxxypbTqyJOp8Y3yPfdqWvl15xFfOnq5_Eu0b5v6uthUYDi6NifuO2bOXHpOvW9y2lhwej_R4JrgLEUCUromzmoqdYHmUxjznNIytjYagxghueWWaV2RGZUFYqzaTOjXunFZo5cBeM-waoo_xl7sAedWB5mBwPvy26Ot4XjououQjImIq2y_ml1-iKhfd7v5v6_mT-Op0dPvnfArECj0PhjHsN0ldhqRg_hdVATSW-C_rZ75_BzR6eVBPzXXsJakwWmqMVNhYWLlmjbz9jLUxCDmbh68NecR10q9GV8jhoVET0FE-S0RdstN1xYt3ArLjA_c-nSZfECrvzsb50Dz2Hr_cSgBfQGU_GxUvA3ZhSK6RxFaTmwirtZfeoYJbbXIhIr8GHdulTE8TXvQfIReo2YR4n6R2crMHWYvJVozny92nrLUDSQDxl-hsdr_49vAkPe6PjftpPBkev4RH1bYT6jOI6dKrpdfEGHphZ9aOcbgSMI5zfN5puAQrgO9Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOoR4AcaHGAy4D0MCJKuJ7bn2A0JjbbVoU6i2Me0tOE4skLZ2NFmn_jV-HXbilCEh3vbAsx1Fujm-X7k-B2A7lraQWhtiLBeEC5oT7epmUjCdcxntaNpoRp4eDtJUnp2pyRr87O7C-LHKzic2jrqYGd8j77vU11OvuIy5b8NYxGQ4_nj5g3gFKf-ntZPTaCFyUC6vXflWfUiG7lu_oXQ8OtnbJ0FhgBiqZE2UzZ0lFSuiPOYxp0VkZSwMNUZww3PLrDI7IhfKSqWZ1IVx77dCMwf0knHfDHXuf33AXNHTg_VPo3RytOrweI04LqL2UiBjKupXywvP1xULr_1-Mwz-GQWa0DZ-8D8b5SHcDwk17rYnYAPWyukj2Aguq8K3gVf73WO43sXjema-aU9NjcmKi7TGVtrCBXH0bWlsCEvIaBFOJe6XV4HPGl2Kj2nLLqLneJycHGHL-Y4z6xYW5TnufT5NhiRWOFxO9YV76Al8uRUDPIXedDYtnwEOYkqtkMZllpoLq7Sn46OCWW4LISK9Ce87GGQmkLJ7bZDzzBVnHjPZDcxswvZq82XLRfL3bVsdWLLgkKrsN1Ke_3v5Ndx1EMoOk_TgBdyjvrvQjC5uQa-eX5Uv4Y5Z1N-r-asAd4Svtw2mX2YeRHA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Intelligent+Computing+with+Neuro-Evolution+Heuristics+for+Nonlinear+SITR+System+of+Novel+COVID-19+Dynamics&rft.jtitle=Symmetry+%28Basel%29&rft.au=Umar%2C+Muhammad&rft.au=Sabir%2C+Zulqurnain&rft.au=Raja%2C+Muhammad+Asif+Zahoor&rft.au=Shoaib%2C+Muhammad&rft.date=2020-10-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=12&rft.issue=10&rft.spage=1628&rft_id=info:doi/10.3390%2Fsym12101628&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym12101628 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |