Hybrid Reptile Search Algorithm and Remora Optimization Algorithm for Optimization Tasks and Data Clustering
Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds symmetric and asymmetric objects. Various optimization methods have been used to solve different machine learning problems. They usually suff...
Saved in:
| Published in: | Symmetry (Basel) Vol. 14; no. 3; p. 458 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.03.2022
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds symmetric and asymmetric objects. Various optimization methods have been used to solve different machine learning problems. They usually suffer from local optimal problems and unbalance between the search mechanisms. This paper proposes a novel hybrid optimization method for solving various optimization problems. The proposed method is called HRSA, which combines the original Reptile Search Algorithm (RSA) and Remora Optimization Algorithm (ROA) and handles these mechanisms’ search processes by a novel transition method. The proposed HRSA method aims to avoid the main weaknesses raised by the original methods and find better solutions. The proposed HRSA is tested on solving various complicated optimization problems—twenty-three benchmark test functions and eight data clustering problems. The obtained results illustrate that the proposed HRSA method performs significantly better than the original and comparative state-of-the-art methods. The proposed method overwhelmed all the comparative methods according to the mathematical problems. It obtained promising results in solving the clustering problems. Thus, HRSA has a remarkable efficacy when employed for various clustering problems. |
|---|---|
| AbstractList | Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds symmetric and asymmetric objects. Various optimization methods have been used to solve different machine learning problems. They usually suffer from local optimal problems and unbalance between the search mechanisms. This paper proposes a novel hybrid optimization method for solving various optimization problems. The proposed method is called HRSA, which combines the original Reptile Search Algorithm (RSA) and Remora Optimization Algorithm (ROA) and handles these mechanisms’ search processes by a novel transition method. The proposed HRSA method aims to avoid the main weaknesses raised by the original methods and find better solutions. The proposed HRSA is tested on solving various complicated optimization problems—twenty-three benchmark test functions and eight data clustering problems. The obtained results illustrate that the proposed HRSA method performs significantly better than the original and comparative state-of-the-art methods. The proposed method overwhelmed all the comparative methods according to the mathematical problems. It obtained promising results in solving the clustering problems. Thus, HRSA has a remarkable efficacy when employed for various clustering problems. |
| Author | Abualigah, Laith Almotairi, Khaled H. |
| Author_xml | – sequence: 1 givenname: Khaled H. orcidid: 0000-0002-5961-183X surname: Almotairi fullname: Almotairi, Khaled H. – sequence: 2 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith |
| BookMark | eNptkE9PwzAMxSM0JMbYiS9QiSMqJE2aNcdp_BnSpEkwzpXTpltG2wwnO4xPT7dxGAhfbOn9ni2_S9JrXWsIuWb0jnNF7_2uYYJyKtLsjPQTOuJxppToncwXZOj9mnaV0lRI2if1dKfRltGr2QRbm-jNABaraFwvHdqwaiJo92LjEKJ5hzT2C4J17QlROfwtLcB_-IPxAQJEk3rrg0HbLq_IeQW1N8OfPiDvT4-LyTSezZ9fJuNZXCQqC7FSRUallKXmPFWa6xEY0EaVwDlIXZpU0oIrDonWoKuqTDIjtBiVSmpGmeEDcnPcu0H3uTU-5Gu3xbY7mSdSJFIySdOOuj1SBTrv0VT5Bm0DuMsZzfeJ5ieJdjT7Qxc2HP4NCLb-1_MNcup9KQ |
| CitedBy_id | crossref_primary_10_1007_s42484_023_00110_7 crossref_primary_10_1016_j_knosys_2022_108833 crossref_primary_10_1002_oca_3230 crossref_primary_10_1016_j_scitotenv_2024_172195 crossref_primary_10_1080_1448837X_2024_2413226 crossref_primary_10_1016_j_bspc_2025_108513 crossref_primary_10_1007_s42235_023_00332_2 crossref_primary_10_3390_sym14051021 crossref_primary_10_3390_biomimetics8080615 crossref_primary_10_3390_sym15071432 crossref_primary_10_1007_s00521_023_09023_9 crossref_primary_10_1007_s00521_023_08242_4 crossref_primary_10_1093_jcde_qwad048 crossref_primary_10_32604_ee_2023_045270 crossref_primary_10_3390_biomedicines11030679 crossref_primary_10_1007_s11227_023_05822_y crossref_primary_10_1007_s11831_023_09990_1 crossref_primary_10_1007_s41870_023_01331_6 crossref_primary_10_1093_jcde_qwad044 crossref_primary_10_3390_en16031177 crossref_primary_10_3390_app15105252 crossref_primary_10_1007_s40747_024_01420_4 crossref_primary_10_1155_2022_4673665 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_3390_electronics11121919 crossref_primary_10_1109_ACCESS_2024_3376629 crossref_primary_10_1016_j_compbiomed_2022_105458 crossref_primary_10_1016_j_rineng_2025_104584 crossref_primary_10_1002_ett_4629 crossref_primary_10_1007_s00500_023_07836_3 crossref_primary_10_1007_s00500_023_07837_2 crossref_primary_10_1007_s00521_023_08481_5 crossref_primary_10_1016_j_cie_2023_109080 crossref_primary_10_3390_sym17060932 crossref_primary_10_1007_s10489_022_04064_4 crossref_primary_10_1016_j_eswa_2023_121223 crossref_primary_10_1007_s41939_025_00761_y crossref_primary_10_1007_s10586_024_04819_3 crossref_primary_10_32604_csse_2023_036119 |
| Cites_doi | 10.1016/j.ijepes.2021.107893 10.3390/sym13071211 10.1002/int.22602 10.3390/sym14010060 10.1007/s00521-016-2528-9 10.1016/j.eswa.2021.116158 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2019.2960925 10.1016/j.patcog.2009.11.005 10.1109/SIS.2008.4668294 10.1109/ICITECH.2017.8079955 10.1016/j.cma.2022.114570 10.3390/math9243295 10.3390/s17051034 10.1016/j.aej.2016.12.013 10.1080/15325008.2021.1970060 10.1007/s10462-020-09862-1 10.1016/j.eswa.2017.08.050 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2021.115351 10.1007/s13198-015-0365-3 10.1016/j.cie.2021.107408 10.1145/331499.331504 10.1016/j.cie.2021.107250 10.1007/s11042-020-09639-2 10.1016/j.patrec.2017.10.031 10.1016/j.jobe.2020.101603 10.1016/j.jenvman.2021.112862 10.1016/j.swevo.2017.12.008 10.1109/JEEIT.2019.8717513 10.1007/s11042-021-10594-9 10.1016/j.cma.2020.113609 10.3390/sym13112085 10.1016/j.eswa.2007.01.028 10.1109/ICRCICN.2015.7434222 10.1016/j.eswa.2021.115665 10.1109/ACCESS.2022.3147821 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym14030458 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym14030458 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c298t-99c80666db3359b3b7aeabe9da33a6bde560c393a2bbabffd28e4b47d96b101e3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 11:52:29 EDT 2025 Tue Nov 18 21:44:37 EST 2025 Sat Nov 29 07:12:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-99c80666db3359b3b7aeabe9da33a6bde560c393a2bbabffd28e4b47d96b101e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5961-183X 0000-0002-2203-4549 |
| OpenAccessLink | https://www.proquest.com/docview/2642661605?pq-origsite=%requestingapplication% |
| PQID | 2642661605 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2642661605 crossref_primary_10_3390_sym14030458 crossref_citationtrail_10_3390_sym14030458 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Alswaitti (ref_2) 2018; 91 Yin (ref_12) 2010; 43 Mirjalili (ref_36) 2016; 95 Wang (ref_39) 2021; 33 ref_14 ref_13 Mirjalili (ref_34) 2014; 69 ref_11 ref_33 ref_10 ref_31 Abualigah (ref_27) 2022; 191 Mahapatra (ref_23) 2021; 36 ref_17 Das (ref_16) 2018; 8 Shekarappa (ref_26) 2021; 49 Kant (ref_6) 2016; 7 ref_15 Shaikh (ref_25) 2022; 138 Jain (ref_4) 1999; 31 Kushwaha (ref_5) 2018; 115 Abunama (ref_40) 2021; 293 Abdollahzadeh (ref_35) 2021; 158 Agushaka (ref_30) 2022; 391 Rahnema (ref_19) 2020; 79 Bijari (ref_20) 2018; 29 Agbaje (ref_18) 2019; 7 Chander (ref_8) 2018; 57 Jia (ref_28) 2021; 185 ref_1 ref_3 Abualigah (ref_37) 2021; 376 ref_29 Abualigah (ref_32) 2021; 157 Gupta (ref_38) 2021; 183 ref_9 Mahmoudi (ref_22) 2021; 54 Kao (ref_21) 2008; 34 Raj (ref_24) 2018; 40 ref_7 |
| References_xml | – volume: 138 start-page: 107893 year: 2022 ident: ref_25 article-title: Optimal parameter estimation of 1-phase and 3-phase transmission line for various bundle conductor’s using modified whale optimization algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107893 – ident: ref_13 doi: 10.3390/sym13071211 – volume: 36 start-page: 7641 year: 2021 ident: ref_23 article-title: A novel ameliorated Harris hawk optimizer for solving complex engineering optimization problems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22602 – ident: ref_3 doi: 10.3390/sym14010060 – volume: 29 start-page: 111 year: 2018 ident: ref_20 article-title: Memory-enriched big bang–big crunch optimization algorithm for data clustering publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2528-9 – volume: 191 start-page: 116158 year: 2022 ident: ref_27 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 69 start-page: 46 year: 2014 ident: ref_34 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 7 start-page: 184963 year: 2019 ident: ref_18 article-title: Automatic data clustering using hybrid firefly particle swarm optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960925 – volume: 8 start-page: 948 year: 2018 ident: ref_16 article-title: A new class topper optimization algorithm with an application to data clustering publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 43 start-page: 1320 year: 2010 ident: ref_12 article-title: Semi-supervised clustering with metric learning: An adaptive kernel method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.11.005 – ident: ref_17 doi: 10.1109/SIS.2008.4668294 – ident: ref_15 doi: 10.1109/ICITECH.2017.8079955 – volume: 391 start-page: 114570 year: 2022 ident: ref_30 article-title: Dwarf Mongoose Optimization Algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114570 – ident: ref_29 doi: 10.3390/math9243295 – ident: ref_1 doi: 10.3390/s17051034 – volume: 57 start-page: 267 year: 2018 ident: ref_8 article-title: Multi kernel and dynamic fractional lion optimization algorithm for data clustering publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.12.013 – volume: 49 start-page: 421 year: 2021 ident: ref_26 article-title: Voltage constrained reactive power planning problem for reactive loading variation using hybrid harris hawk particle swarm optimizer publication-title: Electr. Power Components Syst. doi: 10.1080/15325008.2021.1970060 – volume: 54 start-page: 639 year: 2021 ident: ref_22 article-title: Consensus function based on cluster-wise two level clustering publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09862-1 – volume: 91 start-page: 170 year: 2018 ident: ref_2 article-title: Density-based particle swarm optimization algorithm for data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.050 – volume: 95 start-page: 51 year: 2016 ident: ref_36 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 183 start-page: 115351 year: 2021 ident: ref_38 article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115351 – volume: 7 start-page: 222 year: 2016 ident: ref_6 article-title: An improved K means clustering with Atkinson index to classify liver patient dataset publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-015-0365-3 – volume: 158 start-page: 107408 year: 2021 ident: ref_35 article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 31 start-page: 264 year: 1999 ident: ref_4 article-title: Data clustering: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/331499.331504 – volume: 157 start-page: 107250 year: 2021 ident: ref_32 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 79 start-page: 32169 year: 2020 ident: ref_19 article-title: An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09639-2 – ident: ref_33 – volume: 115 start-page: 59 year: 2018 ident: ref_5 article-title: Magnetic optimization algorithm for data clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.10.031 – ident: ref_10 – volume: 33 start-page: 101603 year: 2021 ident: ref_39 article-title: A multi-objective home energy management system based on internet of things and optimization algorithms publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101603 – volume: 293 start-page: 112862 year: 2021 ident: ref_40 article-title: Fuzzy inference optimization algorithms for enhancing the modelling accuracy of wastewater quality parameters publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112862 – volume: 40 start-page: 131 year: 2018 ident: ref_24 article-title: Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.12.008 – ident: ref_14 doi: 10.1109/JEEIT.2019.8717513 – ident: ref_11 doi: 10.1007/s11042-021-10594-9 – volume: 376 start-page: 113609 year: 2021 ident: ref_37 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – ident: ref_7 doi: 10.3390/sym13112085 – volume: 34 start-page: 1754 year: 2008 ident: ref_21 article-title: A hybridized approach to data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.028 – ident: ref_9 doi: 10.1109/ICRCICN.2015.7434222 – volume: 185 start-page: 115665 year: 2021 ident: ref_28 article-title: Remora optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115665 – ident: ref_31 doi: 10.1109/ACCESS.2022.3147821 |
| SSID | ssj0000505460 |
| Score | 2.4501958 |
| Snippet | Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 458 |
| SubjectTerms | Cluster analysis Clustering Data mining Datasets Gene expression Heuristic Machine learning Mathematical analysis Memory Methods Optimization Optimization algorithms Optimization techniques Parameter estimation Reptiles Search algorithms Search strategies Task complexity |
| Title | Hybrid Reptile Search Algorithm and Remora Optimization Algorithm for Optimization Tasks and Data Clustering |
| URI | https://www.proquest.com/docview/2642661605 |
| Volume | 14 |
| WOSCitedRecordID | wos000776379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oePDi24gPsgcOatJAu7XsngwqBBNFgmjw1OwLNZaHtJhw8be7UxaFxHjx0kN32jSdnefOfINQgYsyDVzhO54fEGjJKTmUCu0wqlwV-CVNUySmx5tyo0E7Hda0CbfYllXOdGKqqNVAQo68aAw32BLjfZ8P3x2YGgWnq3aExjLKAkqCm5bu3X_nWGBKmx-Upm15xET3xXjSA4A6OB1cNESLejg1LrX1_37WBlqzbiWuTPfBJlrS_S20aQU3xscWXfpkG0X1CTRp4RaUs0QaT-uNcSV6Nq9NXnqY92GxZ7YGvjMkPduoOUdh_NzFpTaP3-L0wSuecHwZjQF-wRjFHfRQq7Yv644dueBIj9HEYUxSiGiUIOSMCSLKXHOhmeKE8EAobRwkSRjhnhBcdLvKo9oXflmxQBjh1mQXZfqDvt5DuMSEhDNBoU0U1hXQ0epy43DJLlGu9LwcOp39_1BaPHIYixGFJi4BZoVzzMqhwjfxcArD8TvZ4YxLoZXFOPxh0f7fywdo1YPmhrTC7BBlktFYH6EV-ZG8xqM8yl5UG81WPt1icP2smnvN69vm0xeP-N6N |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RWqlcoFAQgdD6AFJbaZVde9nYB1QhKEpESCtIEbfFrwBiEx67aZU_1d-IZx8pkRA3Dpw9a8nrTzOf7flmADalavIoUKFHw4ihJMf3OFfWE9wEJgp9y_NKTKedZrfLz87Erxn4V2lhMK2y8om5ozY3Gu_IGy5wYyxx7Pv77Z2HXaPwdbVqoVHA4tCO_7ojW7rT3nf7u0XpwY_eXssruwp4mgqeeUJojqTdKMa2hWKqKa1UVhjJmIyUsY4DaCaYpEpJ1e8bym2owqYRkXL4tczN-wbeOhpBRZ4qeDK508GucGHkFzJAxoTfSMcDLIiHr5HTgW_a7-fB7GDhtf2GDzBf0mayW-B8EWbscAkWS8eUki9l9eyvHyFpjVGERo4xXSexpMinJrvJhVtGdjkgcoiDAwd98tOZDEoh6iMLx-Onh3oyvU7zD_dlJsleMsLyEi7oL8PvF1n1CswOb4Z2FYgvlMY3T2XdKbOvULEbSEcodZ-ZQFNag2_Vfse6rLeObT-S2J27EBzxI3DUYHNifFuUGXnarF6hIi59TRr_h8Ta88Of4X2rd9SJO-3u4TrMURRy5Nl0dZjN7kd2A97pP9lVev8phzWB85cG0AO8rDoi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJcgPIQpS34UCRAijZrh6x9QKjqsuqqZVmhgsop9Su0Irt9JAXtX-PXdSZxSldC3Hrg7EkkJ59nPtvzzQBsatOXac8kEU9SQZKcOJLS-EhJ13NpEntZV2L6utcfj-XBgZoswe9WC0Npla1PrB21O7F0Rt7FwE2xBNl3Nw9pEZPB8P3pWUQdpOimtW2n0UBk189_4fatfDca4L9-yfnww_72ThQ6DESWK1lFSllJBN4ZId4qI0xfe228cloInRrnkQ9YoYTmxmiT545Ln5ik71RqEMte4HtvwTJS8oR3YHky-jj5dnXCQz3ikjRuRIFCqLhbzqdUHo_uJhfD4GIUqEPb8P7__FEewL1AqNlWswJWYMnPHsJKcFklexXqar9-BMXOnORp7DMl8hSeNZnWbKv4jtOojqZMz2hwiouCfUKTaZCoXrNAhr84tK_LH2X94EBXmm0XF1R4AunAY_hyI7N-Ap3Zycw_BRYrY-k21Hjcf-aGtLw9jVTT5sL1LOer8Kb995kNldipIUiR4Y6MgJJdA8oqbF4ZnzYFSP5utt4iJAteqMz-wOPZv4dfwB3ETbY3Gu-uwV1OCo86zW4dOtX5hd-A2_ZndVyePw8YZ3B40wi6BFYbRFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Reptile+Search+Algorithm+and+Remora+Optimization+Algorithm+for+Optimization+Tasks+and+Data+Clustering&rft.jtitle=Symmetry+%28Basel%29&rft.au=Almotairi%2C+Khaled+H&rft.au=Abualigah%2C+Laith&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=14&rft.issue=3&rft.spage=458&rft_id=info:doi/10.3390%2Fsym14030458&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |