Hybrid Reptile Search Algorithm and Remora Optimization Algorithm for Optimization Tasks and Data Clustering

Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds symmetric and asymmetric objects. Various optimization methods have been used to solve different machine learning problems. They usually suff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) Jg. 14; H. 3; S. 458
Hauptverfasser: Almotairi, Khaled H., Abualigah, Laith
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2022
Schlagworte:
ISSN:2073-8994, 2073-8994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds symmetric and asymmetric objects. Various optimization methods have been used to solve different machine learning problems. They usually suffer from local optimal problems and unbalance between the search mechanisms. This paper proposes a novel hybrid optimization method for solving various optimization problems. The proposed method is called HRSA, which combines the original Reptile Search Algorithm (RSA) and Remora Optimization Algorithm (ROA) and handles these mechanisms’ search processes by a novel transition method. The proposed HRSA method aims to avoid the main weaknesses raised by the original methods and find better solutions. The proposed HRSA is tested on solving various complicated optimization problems—twenty-three benchmark test functions and eight data clustering problems. The obtained results illustrate that the proposed HRSA method performs significantly better than the original and comparative state-of-the-art methods. The proposed method overwhelmed all the comparative methods according to the mathematical problems. It obtained promising results in solving the clustering problems. Thus, HRSA has a remarkable efficacy when employed for various clustering problems.
AbstractList Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds symmetric and asymmetric objects. Various optimization methods have been used to solve different machine learning problems. They usually suffer from local optimal problems and unbalance between the search mechanisms. This paper proposes a novel hybrid optimization method for solving various optimization problems. The proposed method is called HRSA, which combines the original Reptile Search Algorithm (RSA) and Remora Optimization Algorithm (ROA) and handles these mechanisms’ search processes by a novel transition method. The proposed HRSA method aims to avoid the main weaknesses raised by the original methods and find better solutions. The proposed HRSA is tested on solving various complicated optimization problems—twenty-three benchmark test functions and eight data clustering problems. The obtained results illustrate that the proposed HRSA method performs significantly better than the original and comparative state-of-the-art methods. The proposed method overwhelmed all the comparative methods according to the mathematical problems. It obtained promising results in solving the clustering problems. Thus, HRSA has a remarkable efficacy when employed for various clustering problems.
Author Abualigah, Laith
Almotairi, Khaled H.
Author_xml – sequence: 1
  givenname: Khaled H.
  orcidid: 0000-0002-5961-183X
  surname: Almotairi
  fullname: Almotairi, Khaled H.
– sequence: 2
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
BookMark eNptkE9PwzAMxSM0JMbYiS9QiSMqJE2aNcdp_BnSpEkwzpXTpltG2wwnO4xPT7dxGAhfbOn9ni2_S9JrXWsIuWb0jnNF7_2uYYJyKtLsjPQTOuJxppToncwXZOj9mnaV0lRI2if1dKfRltGr2QRbm-jNABaraFwvHdqwaiJo92LjEKJ5hzT2C4J17QlROfwtLcB_-IPxAQJEk3rrg0HbLq_IeQW1N8OfPiDvT4-LyTSezZ9fJuNZXCQqC7FSRUallKXmPFWa6xEY0EaVwDlIXZpU0oIrDonWoKuqTDIjtBiVSmpGmeEDcnPcu0H3uTU-5Gu3xbY7mSdSJFIySdOOuj1SBTrv0VT5Bm0DuMsZzfeJ5ieJdjT7Qxc2HP4NCLb-1_MNcup9KQ
CitedBy_id crossref_primary_10_1007_s42484_023_00110_7
crossref_primary_10_1016_j_knosys_2022_108833
crossref_primary_10_1002_oca_3230
crossref_primary_10_1016_j_scitotenv_2024_172195
crossref_primary_10_1080_1448837X_2024_2413226
crossref_primary_10_1016_j_bspc_2025_108513
crossref_primary_10_1007_s42235_023_00332_2
crossref_primary_10_3390_sym14051021
crossref_primary_10_3390_biomimetics8080615
crossref_primary_10_3390_sym15071432
crossref_primary_10_1007_s00521_023_09023_9
crossref_primary_10_1007_s00521_023_08242_4
crossref_primary_10_1093_jcde_qwad048
crossref_primary_10_32604_ee_2023_045270
crossref_primary_10_3390_biomedicines11030679
crossref_primary_10_1007_s11227_023_05822_y
crossref_primary_10_1007_s11831_023_09990_1
crossref_primary_10_1007_s41870_023_01331_6
crossref_primary_10_1093_jcde_qwad044
crossref_primary_10_3390_en16031177
crossref_primary_10_3390_app15105252
crossref_primary_10_1007_s40747_024_01420_4
crossref_primary_10_1155_2022_4673665
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_3390_electronics11121919
crossref_primary_10_1109_ACCESS_2024_3376629
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1016_j_rineng_2025_104584
crossref_primary_10_1002_ett_4629
crossref_primary_10_1007_s00500_023_07836_3
crossref_primary_10_1007_s00500_023_07837_2
crossref_primary_10_1007_s00521_023_08481_5
crossref_primary_10_1016_j_cie_2023_109080
crossref_primary_10_3390_sym17060932
crossref_primary_10_1007_s10489_022_04064_4
crossref_primary_10_1016_j_eswa_2023_121223
crossref_primary_10_1007_s41939_025_00761_y
crossref_primary_10_1007_s10586_024_04819_3
crossref_primary_10_32604_csse_2023_036119
Cites_doi 10.1016/j.ijepes.2021.107893
10.3390/sym13071211
10.1002/int.22602
10.3390/sym14010060
10.1007/s00521-016-2528-9
10.1016/j.eswa.2021.116158
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2019.2960925
10.1016/j.patcog.2009.11.005
10.1109/SIS.2008.4668294
10.1109/ICITECH.2017.8079955
10.1016/j.cma.2022.114570
10.3390/math9243295
10.3390/s17051034
10.1016/j.aej.2016.12.013
10.1080/15325008.2021.1970060
10.1007/s10462-020-09862-1
10.1016/j.eswa.2017.08.050
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2021.115351
10.1007/s13198-015-0365-3
10.1016/j.cie.2021.107408
10.1145/331499.331504
10.1016/j.cie.2021.107250
10.1007/s11042-020-09639-2
10.1016/j.patrec.2017.10.031
10.1016/j.jobe.2020.101603
10.1016/j.jenvman.2021.112862
10.1016/j.swevo.2017.12.008
10.1109/JEEIT.2019.8717513
10.1007/s11042-021-10594-9
10.1016/j.cma.2020.113609
10.3390/sym13112085
10.1016/j.eswa.2007.01.028
10.1109/ICRCICN.2015.7434222
10.1016/j.eswa.2021.115665
10.1109/ACCESS.2022.3147821
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym14030458
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym14030458
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-99c80666db3359b3b7aeabe9da33a6bde560c393a2bbabffd28e4b47d96b101e3
IEDL.DBID M7S
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:52:29 EDT 2025
Tue Nov 18 21:44:37 EST 2025
Sat Nov 29 07:12:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-99c80666db3359b3b7aeabe9da33a6bde560c393a2bbabffd28e4b47d96b101e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5961-183X
0000-0002-2203-4549
OpenAccessLink https://www.proquest.com/docview/2642661605?pq-origsite=%requestingapplication%
PQID 2642661605
PQPubID 2032326
ParticipantIDs proquest_journals_2642661605
crossref_primary_10_3390_sym14030458
crossref_citationtrail_10_3390_sym14030458
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Alswaitti (ref_2) 2018; 91
Yin (ref_12) 2010; 43
Mirjalili (ref_36) 2016; 95
Wang (ref_39) 2021; 33
ref_14
ref_13
Mirjalili (ref_34) 2014; 69
ref_11
ref_33
ref_10
ref_31
Abualigah (ref_27) 2022; 191
Mahapatra (ref_23) 2021; 36
ref_17
Das (ref_16) 2018; 8
Shekarappa (ref_26) 2021; 49
Kant (ref_6) 2016; 7
ref_15
Shaikh (ref_25) 2022; 138
Jain (ref_4) 1999; 31
Kushwaha (ref_5) 2018; 115
Abunama (ref_40) 2021; 293
Abdollahzadeh (ref_35) 2021; 158
Agushaka (ref_30) 2022; 391
Rahnema (ref_19) 2020; 79
Bijari (ref_20) 2018; 29
Agbaje (ref_18) 2019; 7
Chander (ref_8) 2018; 57
Jia (ref_28) 2021; 185
ref_1
ref_3
Abualigah (ref_37) 2021; 376
ref_29
Abualigah (ref_32) 2021; 157
Gupta (ref_38) 2021; 183
ref_9
Mahmoudi (ref_22) 2021; 54
Kao (ref_21) 2008; 34
Raj (ref_24) 2018; 40
ref_7
References_xml – volume: 138
  start-page: 107893
  year: 2022
  ident: ref_25
  article-title: Optimal parameter estimation of 1-phase and 3-phase transmission line for various bundle conductor’s using modified whale optimization algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107893
– ident: ref_13
  doi: 10.3390/sym13071211
– volume: 36
  start-page: 7641
  year: 2021
  ident: ref_23
  article-title: A novel ameliorated Harris hawk optimizer for solving complex engineering optimization problems
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22602
– ident: ref_3
  doi: 10.3390/sym14010060
– volume: 29
  start-page: 111
  year: 2018
  ident: ref_20
  article-title: Memory-enriched big bang–big crunch optimization algorithm for data clustering
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2528-9
– volume: 191
  start-page: 116158
  year: 2022
  ident: ref_27
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_34
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 7
  start-page: 184963
  year: 2019
  ident: ref_18
  article-title: Automatic data clustering using hybrid firefly particle swarm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960925
– volume: 8
  start-page: 948
  year: 2018
  ident: ref_16
  article-title: A new class topper optimization algorithm with an application to data clustering
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 43
  start-page: 1320
  year: 2010
  ident: ref_12
  article-title: Semi-supervised clustering with metric learning: An adaptive kernel method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.11.005
– ident: ref_17
  doi: 10.1109/SIS.2008.4668294
– ident: ref_15
  doi: 10.1109/ICITECH.2017.8079955
– volume: 391
  start-page: 114570
  year: 2022
  ident: ref_30
  article-title: Dwarf Mongoose Optimization Algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114570
– ident: ref_29
  doi: 10.3390/math9243295
– ident: ref_1
  doi: 10.3390/s17051034
– volume: 57
  start-page: 267
  year: 2018
  ident: ref_8
  article-title: Multi kernel and dynamic fractional lion optimization algorithm for data clustering
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.12.013
– volume: 49
  start-page: 421
  year: 2021
  ident: ref_26
  article-title: Voltage constrained reactive power planning problem for reactive loading variation using hybrid harris hawk particle swarm optimizer
  publication-title: Electr. Power Components Syst.
  doi: 10.1080/15325008.2021.1970060
– volume: 54
  start-page: 639
  year: 2021
  ident: ref_22
  article-title: Consensus function based on cluster-wise two level clustering
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09862-1
– volume: 91
  start-page: 170
  year: 2018
  ident: ref_2
  article-title: Density-based particle swarm optimization algorithm for data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.050
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_36
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 183
  start-page: 115351
  year: 2021
  ident: ref_38
  article-title: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115351
– volume: 7
  start-page: 222
  year: 2016
  ident: ref_6
  article-title: An improved K means clustering with Atkinson index to classify liver patient dataset
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-015-0365-3
– volume: 158
  start-page: 107408
  year: 2021
  ident: ref_35
  article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 31
  start-page: 264
  year: 1999
  ident: ref_4
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/331499.331504
– volume: 157
  start-page: 107250
  year: 2021
  ident: ref_32
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 79
  start-page: 32169
  year: 2020
  ident: ref_19
  article-title: An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09639-2
– ident: ref_33
– volume: 115
  start-page: 59
  year: 2018
  ident: ref_5
  article-title: Magnetic optimization algorithm for data clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.10.031
– ident: ref_10
– volume: 33
  start-page: 101603
  year: 2021
  ident: ref_39
  article-title: A multi-objective home energy management system based on internet of things and optimization algorithms
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101603
– volume: 293
  start-page: 112862
  year: 2021
  ident: ref_40
  article-title: Fuzzy inference optimization algorithms for enhancing the modelling accuracy of wastewater quality parameters
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112862
– volume: 40
  start-page: 131
  year: 2018
  ident: ref_24
  article-title: Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.12.008
– ident: ref_14
  doi: 10.1109/JEEIT.2019.8717513
– ident: ref_11
  doi: 10.1007/s11042-021-10594-9
– volume: 376
  start-page: 113609
  year: 2021
  ident: ref_37
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– ident: ref_7
  doi: 10.3390/sym13112085
– volume: 34
  start-page: 1754
  year: 2008
  ident: ref_21
  article-title: A hybridized approach to data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.028
– ident: ref_9
  doi: 10.1109/ICRCICN.2015.7434222
– volume: 185
  start-page: 115665
  year: 2021
  ident: ref_28
  article-title: Remora optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115665
– ident: ref_31
  doi: 10.1109/ACCESS.2022.3147821
SSID ssj0000505460
Score 2.4501958
Snippet Data clustering is a complex data mining problem that clusters a massive amount of data objects into a predefined number of clusters; in other words, it finds...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 458
SubjectTerms Cluster analysis
Clustering
Data mining
Datasets
Gene expression
Heuristic
Machine learning
Mathematical analysis
Memory
Methods
Optimization
Optimization algorithms
Optimization techniques
Parameter estimation
Reptiles
Search algorithms
Search strategies
Task complexity
Title Hybrid Reptile Search Algorithm and Remora Optimization Algorithm for Optimization Tasks and Data Clustering
URI https://www.proquest.com/docview/2642661605
Volume 14
WOSCitedRecordID wos000776379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NT8IwtFHw4EXFj4gi6cGDmizCuo31ZBAhehAJYqKnpe06NY4P2TDh4m_3vVEUEuPFyw7rW7P0fb--D0KOVUW4TEXc8mTkWaChlSWcCiBEA305VWULV2XDJmrttv_4yDsm4JaYtMq5TMwEdThUGCM_B8WNugSs74vRu4VTo_B21YzQWCV57JJQzVL37r9jLDilzfEqs7I8Bt79eTLtY4M6vB1cVkTLcjhTLq3N__7WFtkwZiWtz-igQFb0YJsUDOMm9MR0lz7dIfH1FIu0aBfTWWJNZ_nGtB4_w7bpS5-KAS72gTToHYD0TaHmAgTYuctLPZG8JdmHVyIVtBFPsP0CKMVd8tBq9hrXlhm5YCmb-6nFufLRowklYy6XTNaEFlLzUDAmPBlqMJAU40zYUgoZRaHta0c6tZB7Ephbsz2SGwwHep9QWzlRVYVh1RWA9FoFNvJ9HimwTyLfjViRnM3PP1CmHzmOxYgD8EsQWcECsopAVXPg0awNx-9gpTmWAsOLSfCDooO_lw_Juo3FDVmGWYnk0vFEH5E19ZG-JuMyyV82251uOSMxfH424V3n5rbz9AXen9-q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FfTiW3ybg4IKZbtJ220OIuKDFXUVXcFbTdJUxe662qrsn_I3OulDXRBvHjzPNJDmy8yXZB4Aa8oWLlMRtzwZeRZ6aGUJx8YF0Ygvp6aocFXWbKLebPrX1_x8AN7LXBgTVlnaxMxQh4_K3JFX0XEbX4Lse6f7ZJmuUeZ1tWyhkcPiWPfe8MiWbB_t4_quU3p40NprWEVXAUtR7qcW58o3pD2UjLlcMlkXWkjNQ8GY8GSokQMoxpmgUgoZRSH1tSOdesg9ifjVDMcdhCGkEZRnoYKXn3c6piuc49l5GiBj3K4mvbYpiGdeI_sdX7_dz5zZ4fh_-w0TMFbQZrKb43wSBnRnCiYLw5SQjaJ69uY0xI2eSUIjFyZcJ9Ykj6cmu_EtTiO9axPRMcI2Qp-coUq7SET9poE8vl_UEslDkn24L1JB9uIXU14Cnf4MXP3JrGeh0nns6DkgVDlRTYVhzRUI6rqNA_k-jxTyr8h3IzYPW-V6B6qot27afsQBnrsMOIJv4JjHXVMqd_MyIz-rLZWoCApbkwRfkFj4XbwKI43W6UlwctQ8XoRRahI5smi6Jaikzy96GYbVa3qfPK9ksCZw89cA-gACZjs_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH6CMiEubAwQZWzzYZMAKWpqJ2l8mCZEV1HBugqBBKdgOzYg0sJIAPVf21-358TZqIS4ceDsF0uOv_feZ_v9APiifBEyZbgXSRN56KGVJwIfN0QjvoK2oiJUZbOJzmAQn5zw4Qz8qXNhbFhlbRNLQ51eK3tH3kLHbX0Jsu-WcWERw27v-81vz3aQsi-tdTuNCiL7evKAx7f8W7-Le_2V0t6Po909z3UY8BTlceFxrmJL4FPJWMglkx2hhdQ8FYyJSKYa-YBinAkqpZDGpDTWgQw6KY8kYlkznHcW5pCSB7QBc8P-z-Hpvxse2yMuiPwqKZAx7rfyyciWx7Nvk9NucNoLlK6t9_Y1_5R3sOgINdmpNGAJZvT4PSw5k5WTTVdXe2sZsr2JTU8jhzaQJ9OkirQmO9k5LqO4GBExtoMjVAryC0VGLkX1kQQy_OmhI5Ff5eWHXVEIspvd2cITSAdW4PhFVr0KjfH1WK8BoSowbZWm7VAg3Ds-ThTH3ChkZiYODWvCdr33iXKV2G1DkCzBE5kFSvIIKE3Up1r4pipA8rTYRo2QxFmhPPkPj_Xnhz_DPOImOegP9j_AArUZHmWY3QY0its7_RHeqPviMr_95DBO4OylEfQXrg1FdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Reptile+Search+Algorithm+and+Remora+Optimization+Algorithm+for+Optimization+Tasks+and+Data+Clustering&rft.jtitle=Symmetry+%28Basel%29&rft.au=Almotairi%2C+Khaled+H&rft.au=Abualigah%2C+Laith&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=14&rft.issue=3&rft.spage=458&rft_id=info:doi/10.3390%2Fsym14030458&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon