An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
In the present paper, an iterative algorithm is proposed for solving the generalized (P,Q)-reflexive solution group of a system of quaternion matrix equations ∑l=1M(AlsXlBls+ClsXl˜Dls)=Fs,s=1,2,…,N. A generalized (P,Q)-reflexive solution group, as well as the least Frobenius norm generalized (P,Q)-r...
Saved in:
| Published in: | Symmetry (Basel) Vol. 14; no. 4; p. 776 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.04.2022
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In the present paper, an iterative algorithm is proposed for solving the generalized (P,Q)-reflexive solution group of a system of quaternion matrix equations ∑l=1M(AlsXlBls+ClsXl˜Dls)=Fs,s=1,2,…,N. A generalized (P,Q)-reflexive solution group, as well as the least Frobenius norm generalized (P,Q)-reflexive solution group, can be derived by choosing appropriate initial matrices, respectively. Moreover, the optimal approximate generalized (P,Q)-reflexive solution group to a given matrix group can be derived by computing the least Frobenius norm generalized (P,Q)-reflexive solution group of a reestablished system of matrix equations. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2073-8994 2073-8994 |
| DOI: | 10.3390/sym14040776 |