A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global Optimization and Data Clustering Applications
As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clu...
Uložené v:
| Vydané v: | Symmetry (Basel) Ročník 14; číslo 5; s. 1021 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.05.2022
|
| Predmet: | |
| ISSN: | 2073-8994, 2073-8994 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clusters; in other words, it finds symmetric and asymmetric objects. In this study, we developed a novel strategy that uses intelligent optimization algorithms to tackle a group of issues requiring sophisticated methods to solve. Three primary components are employed in the suggested technique, named GNDDMOA: Dwarf Mongoose Optimization Algorithm (DMOA), Generalized Normal Distribution (GNF), and Opposition-based Learning Strategy (OBL). These parts are used to organize the executions of the proposed method during the optimization process based on a unique transition mechanism to address the critical limitations of the original methods. Twenty-three test functions and eight data clustering tasks were utilized to evaluate the performance of the suggested method. The suggested method’s findings were compared to other well-known approaches. In all of the benchmark functions examined, the suggested GNDDMOA approach produced the best results. It performed very well in data clustering applications showing promising performance. |
|---|---|
| AbstractList | As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clusters; in other words, it finds symmetric and asymmetric objects. In this study, we developed a novel strategy that uses intelligent optimization algorithms to tackle a group of issues requiring sophisticated methods to solve. Three primary components are employed in the suggested technique, named GNDDMOA: Dwarf Mongoose Optimization Algorithm (DMOA), Generalized Normal Distribution (GNF), and Opposition-based Learning Strategy (OBL). These parts are used to organize the executions of the proposed method during the optimization process based on a unique transition mechanism to address the critical limitations of the original methods. Twenty-three test functions and eight data clustering tasks were utilized to evaluate the performance of the suggested method. The suggested method’s findings were compared to other well-known approaches. In all of the benchmark functions examined, the suggested GNDDMOA approach produced the best results. It performed very well in data clustering applications showing promising performance. |
| Author | Aldosari, Fahd Abualigah, Laith Almotairi, Khaled H. |
| Author_xml | – sequence: 1 givenname: Fahd surname: Aldosari fullname: Aldosari, Fahd – sequence: 2 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith – sequence: 3 givenname: Khaled H. orcidid: 0000-0002-5961-183X surname: Almotairi fullname: Almotairi, Khaled H. |
| BookMark | eNptkM1OwzAQhC1UJErpiRewxBEF_JM49jFqoSAVeoFz5KR2cZXYwXaEytMTWg4FsZddab-ZXc05GFlnFQCXGN1QKtBt2LU4RRlGBJ-AMUE5TbgQ6ehoPgPTELZoqAxlKUNjEAr47HwrGzg3IXpT9VGt4fxDeg2fnN04FxRcddG05lNG4ywsmo3zJr61UDsPF42rBvEvQtrBQUYJZ00fovLGbmDRdY2p9_twAU61bIKa_vQJeL2_e5k9JMvV4nFWLJOaCB4TphQWnOlaU57mkgvEWcVwTQjjjPI6YypHUmhKlZCiIjmVmlQZFUxgJtYVnYCrg2_n3XuvQiy3rvd2OFkSliPMKCFioPCBqr0LwStd1ibuH41emqbEqPyOtzyKd9Bc_9F03rTS7_6lvwCSnH4x |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2025_08_043 crossref_primary_10_1080_10255842_2024_2399025 crossref_primary_10_1080_13682199_2023_2218224 crossref_primary_10_1007_s12530_024_09627_z crossref_primary_10_1007_s12652_023_04707_5 crossref_primary_10_1007_s00521_024_09436_0 crossref_primary_10_1007_s10462_024_10821_3 crossref_primary_10_1080_10589759_2024_2378908 crossref_primary_10_1142_S0219467825500330 crossref_primary_10_1177_09544062231221003 crossref_primary_10_1007_s00500_023_08569_z crossref_primary_10_1007_s00477_022_02361_5 crossref_primary_10_1177_18724981251332564 crossref_primary_10_1109_ACCESS_2023_3280857 crossref_primary_10_1049_cit2_12235 crossref_primary_10_1016_j_engappai_2023_106071 crossref_primary_10_1002_ett_70084 crossref_primary_10_1007_s10639_024_13279_6 crossref_primary_10_1016_j_engappai_2023_106954 crossref_primary_10_3390_math10203821 crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_32604_csse_2023_037311 crossref_primary_10_1007_s42452_025_07008_y crossref_primary_10_1109_ACCESS_2023_3346533 crossref_primary_10_3390_math11153297 crossref_primary_10_1155_2022_2819378 crossref_primary_10_3390_drones6090247 crossref_primary_10_1007_s10115_024_02177_5 crossref_primary_10_3390_electronics12244990 crossref_primary_10_1007_s42235_024_00524_4 crossref_primary_10_1007_s43926_023_00036_3 crossref_primary_10_1007_s10489_022_04064_4 crossref_primary_10_1016_j_ijhydene_2024_01_356 |
| Cites_doi | 10.1016/j.cma.2021.114194 10.1007/s13369-022-06605-y 10.1016/j.engappai.2021.104314 10.1155/2021/6379469 10.3390/su13031551 10.3390/sym11060835 10.1109/ACCESS.2021.3106487 10.1007/978-3-030-10674-4 10.1016/j.cma.2022.114570 10.3390/electronics10020101 10.1080/08839514.2020.1842109 10.1007/s10462-013-9400-4 10.1007/s12652-021-03372-w 10.1109/TSMC.2018.2876202 10.1007/s00500-022-06873-8 10.1016/j.est.2022.104343 10.1007/s00521-020-05107-y 10.1016/j.eswa.2021.116026 10.3390/pr10020360 10.1109/TII.2022.3148288 10.1007/s00500-019-04631-x 10.1007/s00366-020-01179-5 10.1016/j.engappai.2022.104743 10.1016/j.apenergy.2022.118851 10.1007/s00521-015-1920-1 10.1016/j.cma.2022.114616 10.3390/sym13122388 10.1016/j.asoc.2019.105583 10.3390/s21155214 10.1016/j.patcog.2021.107996 10.1016/j.cnsns.2013.08.027 10.1007/978-3-662-08968-2_16 10.1002/int.22535 10.3390/a13120345 10.1016/j.ins.2020.06.037 10.3390/sym14030458 10.1109/ACCESS.2022.3147821 10.1016/j.cose.2021.102571 10.1016/j.enganabound.2022.01.014 10.1016/j.eswa.2021.116158 10.1007/s11432-012-4548-0 10.1007/978-981-16-7167-8_72 10.1109/ACCESS.2019.2907012 10.1023/A:1021394316112 10.1109/ICITECH.2017.8079955 10.1111/exsy.12657 10.3390/sym14020372 10.3390/a14120358 10.3390/sym14030623 10.1109/ICCOINS.2016.7783219 10.1016/j.matcom.2021.10.032 10.3390/s21124086 10.1016/j.knosys.2015.12.022 10.1109/JEEIT.2019.8717513 10.3390/sym14040793 10.1016/j.cie.2021.107250 10.1109/TEVC.2009.2011992 10.35378/gujs.484643 10.3390/sym12081274 10.1016/j.advengsoft.2013.12.007 10.1348/000711005X48266 10.1016/j.advengsoft.2016.01.008 10.1016/j.cma.2020.113609 10.1016/j.eswa.2021.115205 10.1007/s10489-021-02985-0 10.1016/j.enconman.2020.113301 10.1007/s00366-017-0569-z 10.1016/j.knosys.2020.105709 10.3390/sym12091460 10.3390/math10030464 10.1016/j.eswa.2020.113917 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym14051021 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym14051021 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c298t-6ee1986fcf3847a89086b61c2268638c56e70a9f33e9a9b273af2b53969169db3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801754700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 12:00:07 EDT 2025 Sat Nov 29 07:16:50 EST 2025 Tue Nov 18 21:59:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-6ee1986fcf3847a89086b61c2268638c56e70a9f33e9a9b273af2b53969169db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2203-4549 0000-0002-5961-183X |
| OpenAccessLink | https://www.proquest.com/docview/2670163229?pq-origsite=%requestingapplication% |
| PQID | 2670163229 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2670163229 crossref_citationtrail_10_3390_sym14051021 crossref_primary_10_3390_sym14051021 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Wang (ref_7) 2021; 2021 Azizyan (ref_45) 2019; 11 ref_57 Mirjalili (ref_74) 2016; 95 ref_55 ref_10 Ahmadianfar (ref_28) 2020; 540 ref_53 Kharrich (ref_11) 2022; 51 ref_19 ref_18 Khodadadi (ref_35) 2021; 9 ref_17 ref_16 Oyelade (ref_29) 2022; 10 Mahajan (ref_15) 2022; 26 ref_59 Abualigah (ref_25) 2021; 157 MiarNaeimi (ref_34) 2018; 34 Mirjalili (ref_75) 2014; 69 Wang (ref_32) 2012; 55 Zhao (ref_42) 2022; 388 ref_61 Fakhouri (ref_1) 2020; 24 Askari (ref_44) 2020; 195 ref_69 ref_67 Wang (ref_65) 2022; 113 ref_21 Esmin (ref_52) 2015; 44 ref_20 ref_64 ref_63 ref_62 Zamani (ref_39) 2019; 85 Abualigah (ref_54) 2021; 33 Mirjalili (ref_71) 2016; 96 Zhang (ref_23) 2020; 224 ref_72 ref_70 Agushaka (ref_22) 2022; 391 Abualigah (ref_12) 2022; 138 ref_36 ref_76 ref_31 Hassan (ref_6) 2021; 182 He (ref_26) 2009; 13 Steinley (ref_60) 2006; 59 Mirjalili (ref_73) 2016; 27 Abualigah (ref_27) 2022; 191 Ahmadi (ref_51) 2021; 35 Taghian (ref_40) 2021; 166 Huang (ref_68) 2021; 117 Zamani (ref_38) 2021; 104 Ewees (ref_14) 2022; 314 Abdollahzadeh (ref_77) 2021; 36 Jiang (ref_48) 2021; 188 Jung (ref_56) 2003; 25 Singh (ref_66) 2021; 38 Askarzadeh (ref_30) 2014; 19 Abualigah (ref_24) 2021; 376 ref_46 Abdullah (ref_41) 2019; 7 ref_3 Pan (ref_37) 2022; 193 ref_2 ref_49 ref_9 ref_8 Dehghani (ref_33) 2020; 13 Zamani (ref_47) 2022; 392 Huang (ref_58) 2018; 51 ref_5 ref_4 Ezugwu (ref_13) 2022; 110 Dehghani (ref_43) 2019; 32 |
| References_xml | – volume: 388 start-page: 114194 year: 2022 ident: ref_42 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114194 – volume: 11 start-page: 177 year: 2019 ident: ref_45 article-title: Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems publication-title: Iran. J. Optim. – ident: ref_17 doi: 10.1007/s13369-022-06605-y – volume: 104 start-page: 104314 year: 2021 ident: ref_38 article-title: QANA: Quantum-based avian navigation optimizer algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104314 – volume: 2021 start-page: 6379469 year: 2021 ident: ref_7 article-title: A Hybrid SSA and SMA with Mutation Opposition-Based Learning for Constrained Engineering Problems publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/6379469 – ident: ref_18 doi: 10.3390/su13031551 – ident: ref_76 doi: 10.3390/sym11060835 – volume: 9 start-page: 117795 year: 2021 ident: ref_35 article-title: Multi-Objective Crystal Structure Algorithm (MOCryStAl): Introduction and Performance Evaluation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106487 – ident: ref_3 doi: 10.1007/978-3-030-10674-4 – volume: 391 start-page: 114570 year: 2022 ident: ref_22 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114570 – ident: ref_63 doi: 10.3390/electronics10020101 – volume: 35 start-page: 63 year: 2021 ident: ref_51 article-title: A Modified Grey Wolf Optimizer Based Data Clustering Algorithm publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2020.1842109 – volume: 44 start-page: 23 year: 2015 ident: ref_52 article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9400-4 – ident: ref_4 doi: 10.1007/s12652-021-03372-w – volume: 51 start-page: 508 year: 2018 ident: ref_58 article-title: Enhanced ensemble clustering via fast propagation of cluster-wise similarities publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2018.2876202 – volume: 26 start-page: 4863 year: 2022 ident: ref_15 article-title: Hybrid Aquila optimizer with arithmetic optimization algorithm for global optimization tasks publication-title: Soft Comput. doi: 10.1007/s00500-022-06873-8 – volume: 51 start-page: 104343 year: 2022 ident: ref_11 article-title: An Improved Arithmetic Optimization Algorithm for design of a microgrid with energy storage system: Case study of El Kharga Oasis, Egypt publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104343 – volume: 33 start-page: 2949 year: 2021 ident: ref_54 article-title: Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05107-y – volume: 188 start-page: 116026 year: 2021 ident: ref_48 article-title: Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116026 – ident: ref_9 doi: 10.3390/pr10020360 – ident: ref_8 doi: 10.1109/TII.2022.3148288 – volume: 24 start-page: 11695 year: 2020 ident: ref_1 article-title: Multivector particle swarm optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-019-04631-x – ident: ref_69 – ident: ref_36 doi: 10.1007/s00366-020-01179-5 – volume: 110 start-page: 104743 year: 2022 ident: ref_13 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104743 – volume: 314 start-page: 118851 year: 2022 ident: ref_14 article-title: Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118851 – volume: 27 start-page: 1053 year: 2016 ident: ref_73 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 392 start-page: 114616 year: 2022 ident: ref_47 article-title: Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114616 – ident: ref_72 – ident: ref_20 doi: 10.3390/sym13122388 – volume: 85 start-page: 105583 year: 2019 ident: ref_39 article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105583 – ident: ref_46 doi: 10.3390/s21155214 – volume: 117 start-page: 107996 year: 2021 ident: ref_68 article-title: Robust deep k-means: An effective and simple method for data clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107996 – volume: 19 start-page: 1213 year: 2014 ident: ref_30 article-title: Bird mating optimizer: An optimization algorithm inspired by bird mating strategies publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.08.027 – ident: ref_59 doi: 10.1007/978-3-662-08968-2_16 – volume: 36 start-page: 5887 year: 2021 ident: ref_77 article-title: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – ident: ref_55 doi: 10.3390/a13120345 – volume: 540 start-page: 131 year: 2020 ident: ref_28 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.06.037 – ident: ref_62 doi: 10.3390/sym14030458 – volume: 10 start-page: 16150 year: 2022 ident: ref_29 article-title: Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147821 – volume: 113 start-page: 102571 year: 2022 ident: ref_65 article-title: Open-Set source camera identification based on envelope of data clustering optimization (EDCO) publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102571 – volume: 138 start-page: 13 year: 2022 ident: ref_12 article-title: Enhanced Flow Direction Arithmetic Optimization Algorithm for mathematical optimization problems with applications of data clustering publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2022.01.014 – volume: 191 start-page: 116158 year: 2022 ident: ref_27 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 55 start-page: 2369 year: 2012 ident: ref_32 article-title: Lion pride optimizer: An optimization algorithm inspired by lion pride behavior publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-012-4548-0 – ident: ref_67 doi: 10.1007/978-981-16-7167-8_72 – volume: 7 start-page: 43473 year: 2019 ident: ref_41 article-title: Fitness dependent optimizer: Inspired by the bee swarming reproductive process publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907012 – volume: 25 start-page: 91 year: 2003 ident: ref_56 article-title: A decision criterion for the optimal number of clusters in hierarchical clustering publication-title: J. Glob. Optim. doi: 10.1023/A:1021394316112 – volume: 13 start-page: 286 year: 2020 ident: ref_33 article-title: Darts game optimizer: A new optimization technique based on darts game publication-title: Int. J. Intell. Eng. Syst – ident: ref_19 doi: 10.1109/ICITECH.2017.8079955 – volume: 38 start-page: e12657 year: 2021 ident: ref_66 article-title: A novel data clustering approach based on whale optimization algorithm publication-title: Expert Syst. doi: 10.1111/exsy.12657 – ident: ref_21 doi: 10.3390/sym14020372 – ident: ref_10 doi: 10.3390/a14120358 – ident: ref_50 doi: 10.3390/sym14030623 – ident: ref_16 doi: 10.1109/ICCOINS.2016.7783219 – volume: 193 start-page: 509 year: 2022 ident: ref_37 article-title: Golden eagle optimizer with double learning strategies for 3D path planning of UAV in power inspection publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.10.032 – ident: ref_64 doi: 10.3390/s21124086 – volume: 96 start-page: 120 year: 2016 ident: ref_71 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – ident: ref_31 doi: 10.1109/JEEIT.2019.8717513 – ident: ref_49 doi: 10.3390/sym14040793 – volume: 157 start-page: 107250 year: 2021 ident: ref_25 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 13 start-page: 973 year: 2009 ident: ref_26 article-title: Group search optimizer: An optimization algorithm inspired by animal searching behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2011992 – volume: 32 start-page: 871 year: 2019 ident: ref_43 article-title: DGO: Dice game optimizer publication-title: Gazi Univ. J. Sci. doi: 10.35378/gujs.484643 – ident: ref_53 doi: 10.3390/sym12081274 – volume: 69 start-page: 46 year: 2014 ident: ref_75 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 59 start-page: 1 year: 2006 ident: ref_60 article-title: K-means clustering: A half-century synthesis publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711005X48266 – volume: 95 start-page: 51 year: 2016 ident: ref_74 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 376 start-page: 113609 year: 2021 ident: ref_24 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 182 start-page: 115205 year: 2021 ident: ref_6 article-title: Development and application of slime mould algorithm for optimal economic emission dispatch publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115205 – ident: ref_61 doi: 10.1007/s10489-021-02985-0 – ident: ref_70 – volume: 224 start-page: 113301 year: 2020 ident: ref_23 article-title: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113301 – volume: 34 start-page: 719 year: 2018 ident: ref_34 article-title: Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems publication-title: Eng. Comput. doi: 10.1007/s00366-017-0569-z – volume: 195 start-page: 105709 year: 2020 ident: ref_44 article-title: Political Optimizer: A novel socio-inspired meta-heuristic for global optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105709 – ident: ref_57 – ident: ref_2 doi: 10.3390/sym12091460 – ident: ref_5 doi: 10.3390/math10030464 – volume: 166 start-page: 113917 year: 2021 ident: ref_40 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113917 |
| SSID | ssj0000505460 |
| Score | 2.4420068 |
| Snippet | As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1021 |
| SubjectTerms | Algorithms Artificial intelligence Clustering Data mining Datasets Ebola virus Global optimization Heuristic Machine learning Methods Normal distribution Optimization algorithms Performance evaluation |
| Title | A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global Optimization and Data Clustering Applications |
| URI | https://www.proquest.com/docview/2670163229 |
| Volume | 14 |
| WOSCitedRecordID | wos000801754700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oePDi24gi2QMHNWmgXbrtngzyiB5E4iPBU7O73aIJFKRF48Xf7mxZEBLjxUsP7aRtMjsz3-zj-xAqh47yKHc8SxLuWDU_8i1OpbDc0K-xiCrbJiITm_A6Hb_XY10z4ZaYbZXznJgl6nAk9Rx5xaEeoBMYfuxy_GZp1Si9umokNNZRXrMk2NnWvYfFHItWaavR6uxYHoHuvpJ8DqGjcLWe9WohWs3DWXFpb__3t3bQloGVuD4bB7toTcV7aNcEboLPDLv0-T5K6rijceoANzVnrpa7UiFufvBJhCHA-6NRovAdJJKhOaGJ64M-fDF9GWIAuHgmErBqwWN4A085bgymmngByiGuL62MH6CnduuxcW0Z5QVLOsxPLaqUzXwayYhA9eI-g8ZHUFsCVvMhYKVLlVflLCJEMc4EQCAeOcIljALaZKEghygXj2J1hDAXgnMReZrYEGqfArzJlCSOAqRBoIQW0MXcDYE0tORaHWMQQHuifRYs-ayAygvj8YyN43ez4txZgQnJJPjx1PHfj0_QpqPPOGS7Gosol06m6hRtyPf0NZmUUP6q1enel7KRpq9fLbjXvbntPn8DtRLgpQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSgMxFL3UKujGt_iomoWCCoNt0mYmC5HSKopaBRXcjUkmo0If2pkq_pTf6M08qgVx58L1hEAmh3PPTXLvAdgKqHG5pK6jmaRO1Qs9R3KtnFrgVUXITaXCVGI24bZa3t2duCrAR14LY59V5pyYEHXQ0_aMfJ9yF9UJwk8cPr841jXK3q7mFhopLM7M-xumbNHBaRP3d5vS46ObxomTuQo4mgovdrgxmGjzUIcMmVl6AkW94hWNOsRDMOoaN25ZipAxI6RQGN5lSFWNCY5KSgSK4bxjMI4ygorkqeD18EzHusJVeTktA2RMlPej9w5mMDXrnz0a-EZ5PwlmxzP_7TfMwnQmm0k9xfkcFEx3HuYyYorITtY9e3cBojppWR3eJk3bE9jaeZmANN9kPyRIYA-9XmTIJRJlJ6tAJfX2A64wfuwQFPAkNUEYHSG7OIOMJWm0B7axBIZ7Uv92878It3-y-CUodntdswxEKiWlCl3buBFju0E9LYxm1KCSYigRVmAv33ZfZ23XrftH28f0y2LE_4aRFdgaDn5Ou438PKyUg8PPKCfyv5Cx-vvnTZg8ubk4989PW2drMEVtPUfygrMExbg_MOswoV_jp6i_kaCbwP1f4-gTQRQ3OQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT-MwEB2xBa248LGA-F4fWIldKWprt058QKiiVFsBpQdWYk_BduyC1A9oAoi_xq9j3DhAJbQ3DnuOFcnJy5s3zsw8gL2EmpBLGgaaSRrUIhsFkmsV1JOoJiw31SpTE7OJsNOJLi9Fdwaei14YV1ZZcOKEqJORdmfkZcpDVCcIP1G2viyi22wd3t4FzkHK_Wkt7DRyiJyYp0dM39KDdhPf9Q9KW8cXR78D7zAQaCqiLODGYNLNrbYMWVpGAgW-4lWNmiRCYOo6N2FFCsuYEVIoDPXSUlVngqOqEolieN8vMIuSvEZLMNttn3X_vp7wOI-4Gq_kTYGMiUo5fRpgPlN3btrTYXA6CkxCW2vxf34oS7DgBTVp5F_AMsyY4TdY9pSVkn0_V_vnCqQN0nEKvU-ablqwM_oyCWk-yrElSG290Sg15BwpdOB7U0mj38MdZtcDgtKe5PYI0yvkEO8gM0mO-vdu5AQKAdJ4VxOwCn8-ZfNrUBqOhmYdiFRKSmVDN9IRo75BpS2MZtSgxmIoHjbgVwGBWPuB7M4XpB9jYubwEr_DywbsvS6-zeeQfLxsuwBK7Mkojd9Qsvnvy9_hK8InPm13TrZgnrpGj0lp5zaUsvG92YE5_ZDdpONdD3UCV58NpBcefUFv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Normal+Distributed+Dwarf+Mongoose+Optimization+Algorithm+for+Global+Optimization+and+Data+Clustering+Applications&rft.jtitle=Symmetry+%28Basel%29&rft.au=Aldosari%2C+Fahd&rft.au=Abualigah%2C+Laith&rft.au=Almotairi%2C+Khaled+H.&rft.date=2022-05-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=14&rft.issue=5&rft.spage=1021&rft_id=info:doi/10.3390%2Fsym14051021&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym14051021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |