A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global Optimization and Data Clustering Applications

As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Symmetry (Basel) Ročník 14; číslo 5; s. 1021
Hlavní autori: Aldosari, Fahd, Abualigah, Laith, Almotairi, Khaled H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2022
Predmet:
ISSN:2073-8994, 2073-8994
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clusters; in other words, it finds symmetric and asymmetric objects. In this study, we developed a novel strategy that uses intelligent optimization algorithms to tackle a group of issues requiring sophisticated methods to solve. Three primary components are employed in the suggested technique, named GNDDMOA: Dwarf Mongoose Optimization Algorithm (DMOA), Generalized Normal Distribution (GNF), and Opposition-based Learning Strategy (OBL). These parts are used to organize the executions of the proposed method during the optimization process based on a unique transition mechanism to address the critical limitations of the original methods. Twenty-three test functions and eight data clustering tasks were utilized to evaluate the performance of the suggested method. The suggested method’s findings were compared to other well-known approaches. In all of the benchmark functions examined, the suggested GNDDMOA approach produced the best results. It performed very well in data clustering applications showing promising performance.
AbstractList As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clusters; in other words, it finds symmetric and asymmetric objects. In this study, we developed a novel strategy that uses intelligent optimization algorithms to tackle a group of issues requiring sophisticated methods to solve. Three primary components are employed in the suggested technique, named GNDDMOA: Dwarf Mongoose Optimization Algorithm (DMOA), Generalized Normal Distribution (GNF), and Opposition-based Learning Strategy (OBL). These parts are used to organize the executions of the proposed method during the optimization process based on a unique transition mechanism to address the critical limitations of the original methods. Twenty-three test functions and eight data clustering tasks were utilized to evaluate the performance of the suggested method. The suggested method’s findings were compared to other well-known approaches. In all of the benchmark functions examined, the suggested GNDDMOA approach produced the best results. It performed very well in data clustering applications showing promising performance.
Author Aldosari, Fahd
Abualigah, Laith
Almotairi, Khaled H.
Author_xml – sequence: 1
  givenname: Fahd
  surname: Aldosari
  fullname: Aldosari, Fahd
– sequence: 2
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
– sequence: 3
  givenname: Khaled H.
  orcidid: 0000-0002-5961-183X
  surname: Almotairi
  fullname: Almotairi, Khaled H.
BookMark eNptkM1OwzAQhC1UJErpiRewxBEF_JM49jFqoSAVeoFz5KR2cZXYwXaEytMTWg4FsZddab-ZXc05GFlnFQCXGN1QKtBt2LU4RRlGBJ-AMUE5TbgQ6ehoPgPTELZoqAxlKUNjEAr47HwrGzg3IXpT9VGt4fxDeg2fnN04FxRcddG05lNG4ywsmo3zJr61UDsPF42rBvEvQtrBQUYJZ00fovLGbmDRdY2p9_twAU61bIKa_vQJeL2_e5k9JMvV4nFWLJOaCB4TphQWnOlaU57mkgvEWcVwTQjjjPI6YypHUmhKlZCiIjmVmlQZFUxgJtYVnYCrg2_n3XuvQiy3rvd2OFkSliPMKCFioPCBqr0LwStd1ibuH41emqbEqPyOtzyKd9Bc_9F03rTS7_6lvwCSnH4x
CitedBy_id crossref_primary_10_1016_j_egyr_2025_08_043
crossref_primary_10_1080_10255842_2024_2399025
crossref_primary_10_1080_13682199_2023_2218224
crossref_primary_10_1007_s12530_024_09627_z
crossref_primary_10_1007_s12652_023_04707_5
crossref_primary_10_1007_s00521_024_09436_0
crossref_primary_10_1007_s10462_024_10821_3
crossref_primary_10_1080_10589759_2024_2378908
crossref_primary_10_1142_S0219467825500330
crossref_primary_10_1177_09544062231221003
crossref_primary_10_1007_s00500_023_08569_z
crossref_primary_10_1007_s00477_022_02361_5
crossref_primary_10_1177_18724981251332564
crossref_primary_10_1109_ACCESS_2023_3280857
crossref_primary_10_1049_cit2_12235
crossref_primary_10_1016_j_engappai_2023_106071
crossref_primary_10_1002_ett_70084
crossref_primary_10_1007_s10639_024_13279_6
crossref_primary_10_1016_j_engappai_2023_106954
crossref_primary_10_3390_math10203821
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_32604_csse_2023_037311
crossref_primary_10_1007_s42452_025_07008_y
crossref_primary_10_1109_ACCESS_2023_3346533
crossref_primary_10_3390_math11153297
crossref_primary_10_1155_2022_2819378
crossref_primary_10_3390_drones6090247
crossref_primary_10_1007_s10115_024_02177_5
crossref_primary_10_3390_electronics12244990
crossref_primary_10_1007_s42235_024_00524_4
crossref_primary_10_1007_s43926_023_00036_3
crossref_primary_10_1007_s10489_022_04064_4
crossref_primary_10_1016_j_ijhydene_2024_01_356
Cites_doi 10.1016/j.cma.2021.114194
10.1007/s13369-022-06605-y
10.1016/j.engappai.2021.104314
10.1155/2021/6379469
10.3390/su13031551
10.3390/sym11060835
10.1109/ACCESS.2021.3106487
10.1007/978-3-030-10674-4
10.1016/j.cma.2022.114570
10.3390/electronics10020101
10.1080/08839514.2020.1842109
10.1007/s10462-013-9400-4
10.1007/s12652-021-03372-w
10.1109/TSMC.2018.2876202
10.1007/s00500-022-06873-8
10.1016/j.est.2022.104343
10.1007/s00521-020-05107-y
10.1016/j.eswa.2021.116026
10.3390/pr10020360
10.1109/TII.2022.3148288
10.1007/s00500-019-04631-x
10.1007/s00366-020-01179-5
10.1016/j.engappai.2022.104743
10.1016/j.apenergy.2022.118851
10.1007/s00521-015-1920-1
10.1016/j.cma.2022.114616
10.3390/sym13122388
10.1016/j.asoc.2019.105583
10.3390/s21155214
10.1016/j.patcog.2021.107996
10.1016/j.cnsns.2013.08.027
10.1007/978-3-662-08968-2_16
10.1002/int.22535
10.3390/a13120345
10.1016/j.ins.2020.06.037
10.3390/sym14030458
10.1109/ACCESS.2022.3147821
10.1016/j.cose.2021.102571
10.1016/j.enganabound.2022.01.014
10.1016/j.eswa.2021.116158
10.1007/s11432-012-4548-0
10.1007/978-981-16-7167-8_72
10.1109/ACCESS.2019.2907012
10.1023/A:1021394316112
10.1109/ICITECH.2017.8079955
10.1111/exsy.12657
10.3390/sym14020372
10.3390/a14120358
10.3390/sym14030623
10.1109/ICCOINS.2016.7783219
10.1016/j.matcom.2021.10.032
10.3390/s21124086
10.1016/j.knosys.2015.12.022
10.1109/JEEIT.2019.8717513
10.3390/sym14040793
10.1016/j.cie.2021.107250
10.1109/TEVC.2009.2011992
10.35378/gujs.484643
10.3390/sym12081274
10.1016/j.advengsoft.2013.12.007
10.1348/000711005X48266
10.1016/j.advengsoft.2016.01.008
10.1016/j.cma.2020.113609
10.1016/j.eswa.2021.115205
10.1007/s10489-021-02985-0
10.1016/j.enconman.2020.113301
10.1007/s00366-017-0569-z
10.1016/j.knosys.2020.105709
10.3390/sym12091460
10.3390/math10030464
10.1016/j.eswa.2020.113917
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym14051021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym14051021
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-6ee1986fcf3847a89086b61c2268638c56e70a9f33e9a9b273af2b53969169db3
IEDL.DBID M7S
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000801754700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 12:00:07 EDT 2025
Sat Nov 29 07:16:50 EST 2025
Tue Nov 18 21:59:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-6ee1986fcf3847a89086b61c2268638c56e70a9f33e9a9b273af2b53969169db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2203-4549
0000-0002-5961-183X
OpenAccessLink https://www.proquest.com/docview/2670163229?pq-origsite=%requestingapplication%
PQID 2670163229
PQPubID 2032326
ParticipantIDs proquest_journals_2670163229
crossref_citationtrail_10_3390_sym14051021
crossref_primary_10_3390_sym14051021
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Wang (ref_7) 2021; 2021
Azizyan (ref_45) 2019; 11
ref_57
Mirjalili (ref_74) 2016; 95
ref_55
ref_10
Ahmadianfar (ref_28) 2020; 540
ref_53
Kharrich (ref_11) 2022; 51
ref_19
ref_18
Khodadadi (ref_35) 2021; 9
ref_17
ref_16
Oyelade (ref_29) 2022; 10
Mahajan (ref_15) 2022; 26
ref_59
Abualigah (ref_25) 2021; 157
MiarNaeimi (ref_34) 2018; 34
Mirjalili (ref_75) 2014; 69
Wang (ref_32) 2012; 55
Zhao (ref_42) 2022; 388
ref_61
Fakhouri (ref_1) 2020; 24
Askari (ref_44) 2020; 195
ref_69
ref_67
Wang (ref_65) 2022; 113
ref_21
Esmin (ref_52) 2015; 44
ref_20
ref_64
ref_63
ref_62
Zamani (ref_39) 2019; 85
Abualigah (ref_54) 2021; 33
Mirjalili (ref_71) 2016; 96
Zhang (ref_23) 2020; 224
ref_72
ref_70
Agushaka (ref_22) 2022; 391
Abualigah (ref_12) 2022; 138
ref_36
ref_76
ref_31
Hassan (ref_6) 2021; 182
He (ref_26) 2009; 13
Steinley (ref_60) 2006; 59
Mirjalili (ref_73) 2016; 27
Abualigah (ref_27) 2022; 191
Ahmadi (ref_51) 2021; 35
Taghian (ref_40) 2021; 166
Huang (ref_68) 2021; 117
Zamani (ref_38) 2021; 104
Ewees (ref_14) 2022; 314
Abdollahzadeh (ref_77) 2021; 36
Jiang (ref_48) 2021; 188
Jung (ref_56) 2003; 25
Singh (ref_66) 2021; 38
Askarzadeh (ref_30) 2014; 19
Abualigah (ref_24) 2021; 376
ref_46
Abdullah (ref_41) 2019; 7
ref_3
Pan (ref_37) 2022; 193
ref_2
ref_49
ref_9
ref_8
Dehghani (ref_33) 2020; 13
Zamani (ref_47) 2022; 392
Huang (ref_58) 2018; 51
ref_5
ref_4
Ezugwu (ref_13) 2022; 110
Dehghani (ref_43) 2019; 32
References_xml – volume: 388
  start-page: 114194
  year: 2022
  ident: ref_42
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114194
– volume: 11
  start-page: 177
  year: 2019
  ident: ref_45
  article-title: Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
  publication-title: Iran. J. Optim.
– ident: ref_17
  doi: 10.1007/s13369-022-06605-y
– volume: 104
  start-page: 104314
  year: 2021
  ident: ref_38
  article-title: QANA: Quantum-based avian navigation optimizer algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104314
– volume: 2021
  start-page: 6379469
  year: 2021
  ident: ref_7
  article-title: A Hybrid SSA and SMA with Mutation Opposition-Based Learning for Constrained Engineering Problems
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/6379469
– ident: ref_18
  doi: 10.3390/su13031551
– ident: ref_76
  doi: 10.3390/sym11060835
– volume: 9
  start-page: 117795
  year: 2021
  ident: ref_35
  article-title: Multi-Objective Crystal Structure Algorithm (MOCryStAl): Introduction and Performance Evaluation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106487
– ident: ref_3
  doi: 10.1007/978-3-030-10674-4
– volume: 391
  start-page: 114570
  year: 2022
  ident: ref_22
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114570
– ident: ref_63
  doi: 10.3390/electronics10020101
– volume: 35
  start-page: 63
  year: 2021
  ident: ref_51
  article-title: A Modified Grey Wolf Optimizer Based Data Clustering Algorithm
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2020.1842109
– volume: 44
  start-page: 23
  year: 2015
  ident: ref_52
  article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9400-4
– ident: ref_4
  doi: 10.1007/s12652-021-03372-w
– volume: 51
  start-page: 508
  year: 2018
  ident: ref_58
  article-title: Enhanced ensemble clustering via fast propagation of cluster-wise similarities
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2018.2876202
– volume: 26
  start-page: 4863
  year: 2022
  ident: ref_15
  article-title: Hybrid Aquila optimizer with arithmetic optimization algorithm for global optimization tasks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06873-8
– volume: 51
  start-page: 104343
  year: 2022
  ident: ref_11
  article-title: An Improved Arithmetic Optimization Algorithm for design of a microgrid with energy storage system: Case study of El Kharga Oasis, Egypt
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104343
– volume: 33
  start-page: 2949
  year: 2021
  ident: ref_54
  article-title: Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05107-y
– volume: 188
  start-page: 116026
  year: 2021
  ident: ref_48
  article-title: Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116026
– ident: ref_9
  doi: 10.3390/pr10020360
– ident: ref_8
  doi: 10.1109/TII.2022.3148288
– volume: 24
  start-page: 11695
  year: 2020
  ident: ref_1
  article-title: Multivector particle swarm optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04631-x
– ident: ref_69
– ident: ref_36
  doi: 10.1007/s00366-020-01179-5
– volume: 110
  start-page: 104743
  year: 2022
  ident: ref_13
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104743
– volume: 314
  start-page: 118851
  year: 2022
  ident: ref_14
  article-title: Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118851
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_73
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 392
  start-page: 114616
  year: 2022
  ident: ref_47
  article-title: Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114616
– ident: ref_72
– ident: ref_20
  doi: 10.3390/sym13122388
– volume: 85
  start-page: 105583
  year: 2019
  ident: ref_39
  article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105583
– ident: ref_46
  doi: 10.3390/s21155214
– volume: 117
  start-page: 107996
  year: 2021
  ident: ref_68
  article-title: Robust deep k-means: An effective and simple method for data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107996
– volume: 19
  start-page: 1213
  year: 2014
  ident: ref_30
  article-title: Bird mating optimizer: An optimization algorithm inspired by bird mating strategies
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.08.027
– ident: ref_59
  doi: 10.1007/978-3-662-08968-2_16
– volume: 36
  start-page: 5887
  year: 2021
  ident: ref_77
  article-title: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22535
– ident: ref_55
  doi: 10.3390/a13120345
– volume: 540
  start-page: 131
  year: 2020
  ident: ref_28
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.06.037
– ident: ref_62
  doi: 10.3390/sym14030458
– volume: 10
  start-page: 16150
  year: 2022
  ident: ref_29
  article-title: Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147821
– volume: 113
  start-page: 102571
  year: 2022
  ident: ref_65
  article-title: Open-Set source camera identification based on envelope of data clustering optimization (EDCO)
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102571
– volume: 138
  start-page: 13
  year: 2022
  ident: ref_12
  article-title: Enhanced Flow Direction Arithmetic Optimization Algorithm for mathematical optimization problems with applications of data clustering
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2022.01.014
– volume: 191
  start-page: 116158
  year: 2022
  ident: ref_27
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 55
  start-page: 2369
  year: 2012
  ident: ref_32
  article-title: Lion pride optimizer: An optimization algorithm inspired by lion pride behavior
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-012-4548-0
– ident: ref_67
  doi: 10.1007/978-981-16-7167-8_72
– volume: 7
  start-page: 43473
  year: 2019
  ident: ref_41
  article-title: Fitness dependent optimizer: Inspired by the bee swarming reproductive process
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907012
– volume: 25
  start-page: 91
  year: 2003
  ident: ref_56
  article-title: A decision criterion for the optimal number of clusters in hierarchical clustering
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1021394316112
– volume: 13
  start-page: 286
  year: 2020
  ident: ref_33
  article-title: Darts game optimizer: A new optimization technique based on darts game
  publication-title: Int. J. Intell. Eng. Syst
– ident: ref_19
  doi: 10.1109/ICITECH.2017.8079955
– volume: 38
  start-page: e12657
  year: 2021
  ident: ref_66
  article-title: A novel data clustering approach based on whale optimization algorithm
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12657
– ident: ref_21
  doi: 10.3390/sym14020372
– ident: ref_10
  doi: 10.3390/a14120358
– ident: ref_50
  doi: 10.3390/sym14030623
– ident: ref_16
  doi: 10.1109/ICCOINS.2016.7783219
– volume: 193
  start-page: 509
  year: 2022
  ident: ref_37
  article-title: Golden eagle optimizer with double learning strategies for 3D path planning of UAV in power inspection
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.10.032
– ident: ref_64
  doi: 10.3390/s21124086
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_71
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– ident: ref_31
  doi: 10.1109/JEEIT.2019.8717513
– ident: ref_49
  doi: 10.3390/sym14040793
– volume: 157
  start-page: 107250
  year: 2021
  ident: ref_25
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 13
  start-page: 973
  year: 2009
  ident: ref_26
  article-title: Group search optimizer: An optimization algorithm inspired by animal searching behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2011992
– volume: 32
  start-page: 871
  year: 2019
  ident: ref_43
  article-title: DGO: Dice game optimizer
  publication-title: Gazi Univ. J. Sci.
  doi: 10.35378/gujs.484643
– ident: ref_53
  doi: 10.3390/sym12081274
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_75
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 59
  start-page: 1
  year: 2006
  ident: ref_60
  article-title: K-means clustering: A half-century synthesis
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711005X48266
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_74
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 376
  start-page: 113609
  year: 2021
  ident: ref_24
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: 182
  start-page: 115205
  year: 2021
  ident: ref_6
  article-title: Development and application of slime mould algorithm for optimal economic emission dispatch
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115205
– ident: ref_61
  doi: 10.1007/s10489-021-02985-0
– ident: ref_70
– volume: 224
  start-page: 113301
  year: 2020
  ident: ref_23
  article-title: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113301
– volume: 34
  start-page: 719
  year: 2018
  ident: ref_34
  article-title: Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0569-z
– volume: 195
  start-page: 105709
  year: 2020
  ident: ref_44
  article-title: Political Optimizer: A novel socio-inspired meta-heuristic for global optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105709
– ident: ref_57
– ident: ref_2
  doi: 10.3390/sym12091460
– ident: ref_5
  doi: 10.3390/math10030464
– volume: 166
  start-page: 113917
  year: 2021
  ident: ref_40
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113917
SSID ssj0000505460
Score 2.4420068
Snippet As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1021
SubjectTerms Algorithms
Artificial intelligence
Clustering
Data mining
Datasets
Ebola virus
Global optimization
Heuristic
Machine learning
Methods
Normal distribution
Optimization algorithms
Performance evaluation
Title A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global Optimization and Data Clustering Applications
URI https://www.proquest.com/docview/2670163229
Volume 14
WOSCitedRecordID wos000801754700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oePDi24gi2QMHNWmgXbrtngzyiB5E4iPBU7O73aIJFKRF48Xf7mxZEBLjxUsP7aRtMjsz3-zj-xAqh47yKHc8SxLuWDU_8i1OpbDc0K-xiCrbJiITm_A6Hb_XY10z4ZaYbZXznJgl6nAk9Rx5xaEeoBMYfuxy_GZp1Si9umokNNZRXrMk2NnWvYfFHItWaavR6uxYHoHuvpJ8DqGjcLWe9WohWs3DWXFpb__3t3bQloGVuD4bB7toTcV7aNcEboLPDLv0-T5K6rijceoANzVnrpa7UiFufvBJhCHA-6NRovAdJJKhOaGJ64M-fDF9GWIAuHgmErBqwWN4A085bgymmngByiGuL62MH6CnduuxcW0Z5QVLOsxPLaqUzXwayYhA9eI-g8ZHUFsCVvMhYKVLlVflLCJEMc4EQCAeOcIljALaZKEghygXj2J1hDAXgnMReZrYEGqfArzJlCSOAqRBoIQW0MXcDYE0tORaHWMQQHuifRYs-ayAygvj8YyN43ez4txZgQnJJPjx1PHfj0_QpqPPOGS7Gosol06m6hRtyPf0NZmUUP6q1enel7KRpq9fLbjXvbntPn8DtRLgpQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSgMxFL3UKujGt_iomoWCCoNt0mYmC5HSKopaBRXcjUkmo0If2pkq_pTf6M08qgVx58L1hEAmh3PPTXLvAdgKqHG5pK6jmaRO1Qs9R3KtnFrgVUXITaXCVGI24bZa3t2duCrAR14LY59V5pyYEHXQ0_aMfJ9yF9UJwk8cPr841jXK3q7mFhopLM7M-xumbNHBaRP3d5vS46ObxomTuQo4mgovdrgxmGjzUIcMmVl6AkW94hWNOsRDMOoaN25ZipAxI6RQGN5lSFWNCY5KSgSK4bxjMI4ygorkqeD18EzHusJVeTktA2RMlPej9w5mMDXrnz0a-EZ5PwlmxzP_7TfMwnQmm0k9xfkcFEx3HuYyYorITtY9e3cBojppWR3eJk3bE9jaeZmANN9kPyRIYA-9XmTIJRJlJ6tAJfX2A64wfuwQFPAkNUEYHSG7OIOMJWm0B7axBIZ7Uv92878It3-y-CUodntdswxEKiWlCl3buBFju0E9LYxm1KCSYigRVmAv33ZfZ23XrftH28f0y2LE_4aRFdgaDn5Ou438PKyUg8PPKCfyv5Cx-vvnTZg8ubk4989PW2drMEVtPUfygrMExbg_MOswoV_jp6i_kaCbwP1f4-gTQRQ3OQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT-MwEB2xBa248LGA-F4fWIldKWprt058QKiiVFsBpQdWYk_BduyC1A9oAoi_xq9j3DhAJbQ3DnuOFcnJy5s3zsw8gL2EmpBLGgaaSRrUIhsFkmsV1JOoJiw31SpTE7OJsNOJLi9Fdwaei14YV1ZZcOKEqJORdmfkZcpDVCcIP1G2viyi22wd3t4FzkHK_Wkt7DRyiJyYp0dM39KDdhPf9Q9KW8cXR78D7zAQaCqiLODGYNLNrbYMWVpGAgW-4lWNmiRCYOo6N2FFCsuYEVIoDPXSUlVngqOqEolieN8vMIuSvEZLMNttn3X_vp7wOI-4Gq_kTYGMiUo5fRpgPlN3btrTYXA6CkxCW2vxf34oS7DgBTVp5F_AMsyY4TdY9pSVkn0_V_vnCqQN0nEKvU-ablqwM_oyCWk-yrElSG290Sg15BwpdOB7U0mj38MdZtcDgtKe5PYI0yvkEO8gM0mO-vdu5AQKAdJ4VxOwCn8-ZfNrUBqOhmYdiFRKSmVDN9IRo75BpS2MZtSgxmIoHjbgVwGBWPuB7M4XpB9jYubwEr_DywbsvS6-zeeQfLxsuwBK7Mkojd9Qsvnvy9_hK8InPm13TrZgnrpGj0lp5zaUsvG92YE5_ZDdpONdD3UCV58NpBcefUFv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Normal+Distributed+Dwarf+Mongoose+Optimization+Algorithm+for+Global+Optimization+and+Data+Clustering+Applications&rft.jtitle=Symmetry+%28Basel%29&rft.au=Aldosari%2C+Fahd&rft.au=Abualigah%2C+Laith&rft.au=Almotairi%2C+Khaled+H.&rft.date=2022-05-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=14&rft.issue=5&rft.spage=1021&rft_id=info:doi/10.3390%2Fsym14051021&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym14051021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon