An Improved Moth-Flame Optimization Algorithm for Engineering Problems

In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a gre...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 12; no. 8; p. 1234
Main Authors: Li, Yu, Zhu, Xinya, Liu, Jingsen
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2020
Subjects:
ISSN:2073-8994, 2073-8994
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a great global exploration ability and effective balance between the global and local search. The search strategy of Lévy flight is used as a regulator of the moth-position update mechanism of global search to maintain a good research population diversity and expand the algorithm’s global search capability, and the dimension-by-dimension evaluation mechanism is added, which can effectively improve the quality of the solution and balance the global search and local development capability. To substantiate the efficacy of the enhanced algorithm, the proposed algorithm is then tested on a set of 23 benchmark test functions. It is also used to solve four classical engineering design problems, with great progress. In terms of test functions, the experimental results and analysis show that the proposed method is effective and better than other well-known nature-inspired algorithms in terms of convergence speed and accuracy. Additionally, the results of the solution of the engineering problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces.
AbstractList In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a great global exploration ability and effective balance between the global and local search. The search strategy of Lévy flight is used as a regulator of the moth-position update mechanism of global search to maintain a good research population diversity and expand the algorithm’s global search capability, and the dimension-by-dimension evaluation mechanism is added, which can effectively improve the quality of the solution and balance the global search and local development capability. To substantiate the efficacy of the enhanced algorithm, the proposed algorithm is then tested on a set of 23 benchmark test functions. It is also used to solve four classical engineering design problems, with great progress. In terms of test functions, the experimental results and analysis show that the proposed method is effective and better than other well-known nature-inspired algorithms in terms of convergence speed and accuracy. Additionally, the results of the solution of the engineering problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces.
Author Liu, Jingsen
Li, Yu
Zhu, Xinya
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0001-9748-6024
  surname: Li
  fullname: Li, Yu
– sequence: 2
  givenname: Xinya
  surname: Zhu
  fullname: Zhu, Xinya
– sequence: 3
  givenname: Jingsen
  orcidid: 0000-0002-2828-4223
  surname: Liu
  fullname: Liu, Jingsen
BookMark eNptkEtPAjEUhRuDiYis_ANNXJrRvmZol4SAkmBwoetJ2-lAybTFtprgr3cUF8R4N-cuvnMf5xIMfPAGgGuM7igV6D4dHCaIY0LZGRgSNKEFF4INTvoLME5ph_oqUckqNASLqYdLt4_hwzTwKeRtseikM3C9z9bZT5lt8HDabUK0eetgGyKc-431xkTrN_A5BtUZl67AeSu7ZMa_OgKvi_nL7LFYrR-Ws-mq0ETwXFRGE8KRrCoqGFelZspgbVhLWK-kmVQKCal40xCmsOQKE8lFWWmshJItpSNwc5zbX_z2blKud-E9-n5lTRgRlKOSoJ7CR0rHkFI0ba1t_nklR2m7GqP6O7H6JLHec_vHs4_WyXj4l_4CsytuQw
CitedBy_id crossref_primary_10_1007_s11224_024_02411_4
crossref_primary_10_3390_app12062793
crossref_primary_10_3390_pr9122276
crossref_primary_10_1016_j_nucengdes_2022_111776
crossref_primary_10_32604_cmc_2021_018719
crossref_primary_10_3390_jimaging8050126
crossref_primary_10_1007_s11042_023_16203_1
crossref_primary_10_1155_2022_6872162
crossref_primary_10_1109_ACCESS_2024_3440885
crossref_primary_10_1007_s11042_023_16353_2
crossref_primary_10_3390_electronics10182250
crossref_primary_10_1109_ACCESS_2024_3371889
crossref_primary_10_4018_IJAMC_296262
crossref_primary_10_3390_a14110314
crossref_primary_10_3390_pr12020406
crossref_primary_10_3390_en15093410
crossref_primary_10_1038_s41598_023_51135_8
crossref_primary_10_1109_ACCESS_2021_3051175
crossref_primary_10_3390_machines11020250
crossref_primary_10_3390_sym14112282
crossref_primary_10_1155_2022_6627409
crossref_primary_10_1007_s11831_023_10037_8
crossref_primary_10_1007_s00500_023_08416_1
crossref_primary_10_1080_23080477_2023_2208398
crossref_primary_10_1016_j_micpro_2023_104935
crossref_primary_10_3390_electronics11050831
crossref_primary_10_3390_sym14091923
crossref_primary_10_3390_su15108380
crossref_primary_10_1155_2022_3661307
crossref_primary_10_3390_sym13122388
crossref_primary_10_3390_math11040862
crossref_primary_10_1016_j_bspc_2023_104718
crossref_primary_10_1016_j_eswa_2021_115292
crossref_primary_10_1186_s42162_023_00262_7
crossref_primary_10_3390_machines10080602
crossref_primary_10_1016_j_egyr_2024_04_035
crossref_primary_10_3390_e23121637
Cites_doi 10.1016/j.knosys.2019.02.011
10.1016/j.compstruc.2012.09.003
10.3390/math7100875
10.1016/j.eswa.2018.10.050
10.1080/0305215X.2013.832237
10.1016/j.engappai.2020.103731
10.1016/j.eswa.2018.04.012
10.1016/j.aeue.2018.01.017
10.1016/j.knosys.2020.105746
10.1016/j.engappai.2019.06.017
10.1007/s10489-017-0897-0
10.1016/j.eswa.2020.113617
10.1080/00223131.2019.1700844
10.3233/JIFS-169804
10.1007/s00202-018-0684-x
10.1016/j.swevo.2011.02.002
10.1007/s00500-018-3586-y
10.1049/cje.2019.04.008
10.1108/EC-07-2017-0264
10.1016/j.matcom.2020.02.020
10.1016/j.matcom.2019.06.017
10.1016/j.knosys.2019.105277
10.1016/j.ins.2019.04.022
10.1016/j.neucom.2017.04.060
10.3390/sym11070925
10.1016/j.eswa.2019.113018
10.1016/j.energy.2018.06.088
10.1016/j.eswa.2019.03.043
10.1080/03052150500066737
10.1016/j.jocs.2017.04.011
10.1016/j.advengsoft.2016.01.008
10.1016/j.engappai.2019.01.001
10.1177/1550147718824460
10.1002/etep.2743
10.1016/j.engappai.2006.03.003
10.1016/S0166-3615(99)00046-9
10.1117/1.JATIS.4.3.038001
10.1007/s42235-018-0063-3
10.1007/s11269-018-1992-7
10.1016/j.knosys.2015.07.006
10.1016/j.apm.2019.03.046
10.1108/AA-06-2018-091
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym12081234
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
EISSN 2073-8994
ExternalDocumentID 10_3390_sym12081234
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-6ec2280a663948b5c4be1ce4f24e1c2d76b09ab8dd24b1a8b12a8956c1b9baf33
IEDL.DBID M7S
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564614900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:51:27 EDT 2025
Sat Nov 29 07:14:59 EST 2025
Tue Nov 18 21:48:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-6ec2280a663948b5c4be1ce4f24e1c2d76b09ab8dd24b1a8b12a8956c1b9baf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2828-4223
0000-0001-9748-6024
OpenAccessLink https://www.proquest.com/docview/2429380520?pq-origsite=%requestingapplication%
PQID 2429380520
PQPubID 2032326
ParticipantIDs proquest_journals_2429380520
crossref_citationtrail_10_3390_sym12081234
crossref_primary_10_3390_sym12081234
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_28) 2014; 46
Derrac (ref_32) 2011; 1
Mirjalili (ref_1) 2015; 89
Mirjalili (ref_36) 2016; 95
Sharma (ref_18) 2018; 35
Sapre (ref_22) 2018; 23
Buch (ref_2) 2019; 43
Liwu (ref_23) 2018; 15
Panwar (ref_21) 2018; 25
Zhiming (ref_26) 2016; 2016
Shubham (ref_46) 2019; 119
ref_15
Khalilpourazari (ref_13) 2016; 34
Lei (ref_8) 2019; 172
Elsakaan (ref_11) 2018; 157
Chao (ref_30) 2018; 107
Lijin (ref_29) 2013; 24
Zichen (ref_33) 2019; 85
He (ref_34) 2007; 20
Singh (ref_19) 2019; 41
Tsai (ref_47) 2005; 37
ref_27
Rizk (ref_37) 2018; 5
ref_35
Kaveh (ref_44) 2012; 112
Tolba (ref_7) 2018; 100
ref_31
Das (ref_3) 2018; 86
Yongquan (ref_40) 2018; 35
Ishiguro (ref_4) 2019; 57
Mingjing (ref_10) 2017; 267
Elaziz (ref_20) 2020; 168
ref_38
Sayed (ref_9) 2017; 47
(ref_41) 2000; 41
Jie (ref_39) 2019; 73
Yueting (ref_24) 2019; 129
ref_43
Li (ref_16) 2018; 32
ref_42
Jain (ref_12) 2019; 22
Yueting (ref_25) 2019; 492
Liu (ref_48) 2020; 174
Ibrahim (ref_17) 2018; 4
Abdullah (ref_14) 2019; 39
Shadravan (ref_45) 2019; 80
ref_5
Liu (ref_49) 2019; 28
ref_6
References_xml – volume: 172
  start-page: 76
  year: 2019
  ident: ref_8
  article-title: Moth-flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes
  publication-title: Knowl-based Syst.
  doi: 10.1016/j.knosys.2019.02.011
– volume: 112
  start-page: 283
  year: 2012
  ident: ref_44
  article-title: A new meta-heuristic method: Ray optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 34
  start-page: 42
  year: 2016
  ident: ref_13
  article-title: Multi-item EOQ model with nonlinear unit holding cost and partial backordering: Moth-flame optimization algorithm
  publication-title: J. Ind. Prod. Eng.
– ident: ref_5
  doi: 10.3390/math7100875
– volume: 119
  start-page: 210
  year: 2019
  ident: ref_46
  article-title: A hybrid self-adaptive sine cosine algorithm with oppositionbased learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.10.050
– volume: 43
  start-page: 1031
  year: 2019
  ident: ref_2
  article-title: An Efficient Adaptive Moth Flame Optimization Algorithm for Solving large-scale Optimal Power Flow Problem with POZ, Iranian Journal of Science and Technology
  publication-title: Trans. Electr. Eng.
– volume: 46
  start-page: 1222
  year: 2014
  ident: ref_28
  article-title: Flower pollination algorithm: A novel approach for multiobjective optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.832237
– ident: ref_35
  doi: 10.1016/j.engappai.2020.103731
– volume: 107
  start-page: 89
  year: 2018
  ident: ref_30
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.012
– volume: 86
  start-page: 177
  year: 2018
  ident: ref_3
  article-title: Concentric circular antenna array synthesis for side lobe suppression using moth flame optimization
  publication-title: aeu-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2018.01.017
– ident: ref_31
  doi: 10.1016/j.knosys.2020.105746
– volume: 85
  start-page: 254
  year: 2019
  ident: ref_33
  article-title: A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.06.017
– volume: 47
  start-page: 397
  year: 2017
  ident: ref_9
  article-title: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0897-0
– ident: ref_42
  doi: 10.1016/j.eswa.2020.113617
– volume: 57
  start-page: 523
  year: 2019
  ident: ref_4
  article-title: Loading pattern optimization for a PWR using multi-swarm Flame optimization Method with Predator
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2019.1700844
– volume: 35
  start-page: 5203
  year: 2018
  ident: ref_18
  article-title: Optimal test sequence generation in state based testing using moth flame optimization algorithm
  publication-title: J. Intell. & Fuzzy Syst.
  doi: 10.3233/JIFS-169804
– volume: 5
  start-page: 249
  year: 2018
  ident: ref_37
  article-title: Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems
  publication-title: J. Comput. Des. Eng.
– volume: 100
  start-page: 2059
  year: 2018
  ident: ref_7
  article-title: LVCI approach for optimal allocation of distributed generations and allocation Banks in distribution based on moth-flame optimization algorithm
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-018-0684-x
– volume: 2016
  start-page: 22
  year: 2016
  ident: ref_26
  article-title: Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems
  publication-title: Math. Probl. Eng.
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_32
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 23
  start-page: 6023
  year: 2018
  ident: ref_22
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3586-y
– volume: 28
  start-page: 737
  year: 2019
  ident: ref_49
  article-title: A Differential Evolution Flower Pollination Algorithm with Dynamic Switch Probability
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2019.04.008
– volume: 35
  start-page: 2406
  year: 2018
  ident: ref_40
  article-title: Lévy flight trajectory-based whale optimization algorithm for engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/EC-07-2017-0264
– volume: 174
  start-page: 76
  year: 2020
  ident: ref_48
  article-title: A dynamic adaptive firefly algorithm with globally orientation
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.02.020
– volume: 168
  start-page: 48
  year: 2020
  ident: ref_20
  article-title: Opposition-based moth-flame optimization by differential evolution for feature selection
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.06.017
– ident: ref_43
  doi: 10.1016/j.knosys.2019.105277
– volume: 492
  start-page: 181
  year: 2019
  ident: ref_25
  article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.04.022
– volume: 267
  start-page: 69
  year: 2017
  ident: ref_10
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– ident: ref_27
  doi: 10.3390/sym11070925
– ident: ref_38
  doi: 10.1016/j.eswa.2019.113018
– volume: 157
  start-page: 1063
  year: 2018
  ident: ref_11
  article-title: An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.088
– volume: 129
  start-page: 135
  year: 2019
  ident: ref_24
  article-title: An efficient chaotic mutative mode-flame-inspired optimizer for global optimization tasks
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.043
– volume: 37
  start-page: 399
  year: 2005
  ident: ref_47
  article-title: Global optimization of nonlinear fractional programming problems in engineering design
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500066737
– volume: 25
  start-page: 298
  year: 2018
  ident: ref_21
  article-title: Solution to unit commitment in power system operation planning using binary coded modified moth flame algorithm (BMMFOA): A flame selection based computational technique
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.04.011
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_36
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 80
  start-page: 20
  year: 2019
  ident: ref_45
  article-title: The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– ident: ref_15
  doi: 10.1177/1550147718824460
– ident: ref_6
  doi: 10.1002/etep.2743
– volume: 20
  start-page: 89
  year: 2007
  ident: ref_34
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.03.003
– volume: 41
  start-page: 113
  year: 2000
  ident: ref_41
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 4
  start-page: 038001
  year: 2018
  ident: ref_17
  article-title: Galaxy images classification using hybrid brain storm optimization with moth flame optimization
  publication-title: J. Astron. Telesc. Instrum. Syst.
  doi: 10.1117/1.JATIS.4.3.038001
– volume: 15
  start-page: 751
  year: 2018
  ident: ref_23
  article-title: Enhanced Moth-flame Optimization Based on Cultural Learning and Gaussian Mutation
  publication-title: J. Bionic. Eng.
  doi: 10.1007/s42235-018-0063-3
– volume: 24
  start-page: 2687
  year: 2013
  ident: ref_29
  article-title: Search algorithm of cuckoo
  publication-title: J. Softw.
– volume: 22
  start-page: 1047
  year: 2019
  ident: ref_12
  article-title: An opposition theory enabled moth flame optimizer for strategic bidding in uniform spot energy market
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 32
  start-page: 3303
  year: 2018
  ident: ref_16
  article-title: Optimization of Water Resources Utilization by multi-objective moth-flame Algorithm
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1992-7
– volume: 41
  start-page: 1
  year: 2019
  ident: ref_19
  article-title: A novel hybridization of artificial neural network and moth-flame optimization (ann-mfo) for multi-objective optimization in magnetic finishing of aluminium 6060
  publication-title: Braz. Soc. Mech. Sci. Eng.
– volume: 89
  start-page: 228
  year: 2015
  ident: ref_1
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based. Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 73
  start-page: 109
  year: 2019
  ident: ref_39
  article-title: Multi-strategy boosted mutative whale-inspired optimization approaches
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.03.046
– volume: 39
  start-page: 356
  year: 2019
  ident: ref_14
  article-title: Energy efficient modeling and optimization for assembly sequence planning using moth flame optimization
  publication-title: Assem. Autom.
  doi: 10.1108/AA-06-2018-091
SSID ssj0000505460
Score 2.4331303
Snippet In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1234
SubjectTerms Algorithms
Butterflies & moths
Design engineering
Efficiency
Engineering
Light
Optimization
Optimization algorithms
Searching
Title An Improved Moth-Flame Optimization Algorithm for Engineering Problems
URI https://www.proquest.com/docview/2429380520
Volume 12
WOSCitedRecordID wos000564614900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb_GxSg4eVAhuHttNT7LKLgq6Fh-gp5KkqQr70G0VvPjbnbRZ3QXx4qWFdkhLZzKTmU6-D6E9EwgpbCqJSI0goq4lkVQxUlOKa5OmxqoCxPWi0enI-_sw8gW3zLdVjnxi4aiTgXE18iMIJSF3-Pu145dX4lij3N9VT6ExjWYcSgItWvduvmssjqVNBLVyWx6H7P4o--hRBlGQcTEZiCb9cBFc2ov_fa0ltOCXlbhZ2sEymrL9FTQ_Bja4gpb9NM7wvseaPlhF7WYfl3UFm-BL0Bppg4lYfAWepOe3aOJm9xEemT_1MKxw8digOCrpaLI1dNdu3Z6eEU-tQAwLZU4CaxwOjoL1RiikrhuhLTVWpEzAmSWNQNdCpWWSMKGpkpoyJSGVMlSHWqWcr6NKf9C3GwhrkIO8g1MewCiNNLSKclpPjOQUDEBuosPRd46Nxx139BfdGPIPp5R4TCmbYD0j4ZcSbuN3sepIG7Gfc1n8o4qtv29voznmsuaija-KKvnwze6gWfOeP2fDXTRz0upE17uFKbnjZwuuReeX0cMXfanV4A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB6hgFR6aAkPlZZSH1qpVLKyfmRjH6oqKkREhBSpIOW2tb1eqJQEyi6t-FP9jR3vowQJ9cahpz2sZck7n7_xzI6_AXjrYqmkzxSVmZNUdq2iihlOI2OEdVnmvClFXEe98VhNJvpkCX43d2FCWWXDiSVRp5cu5Mg76Eq0CPr70aerHzR0jQp_V5sWGhUsjvztLwzZ8o_DfbTvO84HB6efD2ndVYA6rlVBY--CBIxBV6ulsl0nrWfOy4xLfPK0F9tIG6vSlEvLjLKMG4VRhGNWW5OFBChS_jIeI7guSwW__s3phK5wMo6qa4BC6KiT384YR6_Lhbzv-O7zfunMBs__t8-wBs_qYzPpVzhvw5Kfr8PTBTHFdWjXNJWT97WW9t4GDPpzUuVNfEqOEZV0gFvAky_IlLP6CirpT89xicXFjOAJnixMSk6qdjv5Jpw9yuq2oDW_nPsXQCyOw7hKMBHjLL1Me8ME66ZOCYYAV9vwobFr4mpd9dDeY5pgfBVAkCyAYBt3RzP4qpITeXjYTmP9pOaUPLkz_ct_v34DTw5Pj0fJaDg-egWrPGQIypLFHWgV1zf-Nay4n8X3_Hq3hC-Bb48NlD86HC-t
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hpULlAAWKgNLiA0hQydr4sVnngKpVacQKWHJoJTiltuO0SOzyyELFX-uv63jjtIuEeuPAKYdYlhx_88zMNwDbNpZKulJRWVpJZccoqpjmNNJaGFuW1ukJietxdzBQZ2dJNgO_m14YX1bZ6MSJoi6urM-Rt9GUJMLz70ftMpRFZAfpp-sb6idI-T-tzTiNGiJH7uEXhm_Vfv8A73qH8_TL18-HNEwYoJYnakxjZz0djEazm0hlOlYax6yTJZf45EU3NlGijSoKLg3TyjCuFUYUlpnE6NInQ1H9z6JLLnkLZrP-SXb-N8PjZ8TJOKqbAoVIonb1MGQcbTAX8rEZfGwFJqYtXXzJH-UNLASHmvRqCViCGTdahvkpmsVlWAoKrCK7gWV7bwXS3ojUGRVXkBPEK01ROBw5RR06DM2ppHf5A484_jkk6NuTqU1JVg_iqd7Ct2c53Sq0RlcjtwbE4DqMuAQTMe7SLROnmWCdwirBEPpqHT42d5zbwLjuB39c5hh5eUDkU4BYR7lpFl_XRCNPL9tskJAHbVPl_2Cw8f_XWzCH-MiP-4Ojd_Ca-9TBpJZxE1rj2zv3Hl7Z-_FFdfshYJnA9-dGyh_6KTnj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Moth-Flame+Optimization+Algorithm+for+Engineering+Problems&rft.jtitle=Symmetry+%28Basel%29&rft.au=Li%2C+Yu&rft.au=Zhu%2C+Xinya&rft.au=Liu%2C+Jingsen&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=8&rft.spage=1234&rft_id=info:doi/10.3390%2Fsym12081234&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon