An Improved Moth-Flame Optimization Algorithm for Engineering Problems
In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a gre...
Saved in:
| Published in: | Symmetry (Basel) Vol. 12; no. 8; p. 1234 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2020
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a great global exploration ability and effective balance between the global and local search. The search strategy of Lévy flight is used as a regulator of the moth-position update mechanism of global search to maintain a good research population diversity and expand the algorithm’s global search capability, and the dimension-by-dimension evaluation mechanism is added, which can effectively improve the quality of the solution and balance the global search and local development capability. To substantiate the efficacy of the enhanced algorithm, the proposed algorithm is then tested on a set of 23 benchmark test functions. It is also used to solve four classical engineering design problems, with great progress. In terms of test functions, the experimental results and analysis show that the proposed method is effective and better than other well-known nature-inspired algorithms in terms of convergence speed and accuracy. Additionally, the results of the solution of the engineering problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces. |
|---|---|
| AbstractList | In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a great global exploration ability and effective balance between the global and local search. The search strategy of Lévy flight is used as a regulator of the moth-position update mechanism of global search to maintain a good research population diversity and expand the algorithm’s global search capability, and the dimension-by-dimension evaluation mechanism is added, which can effectively improve the quality of the solution and balance the global search and local development capability. To substantiate the efficacy of the enhanced algorithm, the proposed algorithm is then tested on a set of 23 benchmark test functions. It is also used to solve four classical engineering design problems, with great progress. In terms of test functions, the experimental results and analysis show that the proposed method is effective and better than other well-known nature-inspired algorithms in terms of convergence speed and accuracy. Additionally, the results of the solution of the engineering problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces. |
| Author | Liu, Jingsen Li, Yu Zhu, Xinya |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0001-9748-6024 surname: Li fullname: Li, Yu – sequence: 2 givenname: Xinya surname: Zhu fullname: Zhu, Xinya – sequence: 3 givenname: Jingsen orcidid: 0000-0002-2828-4223 surname: Liu fullname: Liu, Jingsen |
| BookMark | eNptkEtPAjEUhRuDiYis_ANNXJrRvmZol4SAkmBwoetJ2-lAybTFtprgr3cUF8R4N-cuvnMf5xIMfPAGgGuM7igV6D4dHCaIY0LZGRgSNKEFF4INTvoLME5ph_oqUckqNASLqYdLt4_hwzTwKeRtseikM3C9z9bZT5lt8HDabUK0eetgGyKc-431xkTrN_A5BtUZl67AeSu7ZMa_OgKvi_nL7LFYrR-Ws-mq0ETwXFRGE8KRrCoqGFelZspgbVhLWK-kmVQKCal40xCmsOQKE8lFWWmshJItpSNwc5zbX_z2blKud-E9-n5lTRgRlKOSoJ7CR0rHkFI0ba1t_nklR2m7GqP6O7H6JLHec_vHs4_WyXj4l_4CsytuQw |
| CitedBy_id | crossref_primary_10_1007_s11224_024_02411_4 crossref_primary_10_3390_app12062793 crossref_primary_10_3390_pr9122276 crossref_primary_10_1016_j_nucengdes_2022_111776 crossref_primary_10_32604_cmc_2021_018719 crossref_primary_10_3390_jimaging8050126 crossref_primary_10_1007_s11042_023_16203_1 crossref_primary_10_1155_2022_6872162 crossref_primary_10_1109_ACCESS_2024_3440885 crossref_primary_10_1007_s11042_023_16353_2 crossref_primary_10_3390_electronics10182250 crossref_primary_10_1109_ACCESS_2024_3371889 crossref_primary_10_4018_IJAMC_296262 crossref_primary_10_3390_a14110314 crossref_primary_10_3390_pr12020406 crossref_primary_10_3390_en15093410 crossref_primary_10_1038_s41598_023_51135_8 crossref_primary_10_1109_ACCESS_2021_3051175 crossref_primary_10_3390_machines11020250 crossref_primary_10_3390_sym14112282 crossref_primary_10_1155_2022_6627409 crossref_primary_10_1007_s11831_023_10037_8 crossref_primary_10_1007_s00500_023_08416_1 crossref_primary_10_1080_23080477_2023_2208398 crossref_primary_10_1016_j_micpro_2023_104935 crossref_primary_10_3390_electronics11050831 crossref_primary_10_3390_sym14091923 crossref_primary_10_3390_su15108380 crossref_primary_10_1155_2022_3661307 crossref_primary_10_3390_sym13122388 crossref_primary_10_3390_math11040862 crossref_primary_10_1016_j_bspc_2023_104718 crossref_primary_10_1016_j_eswa_2021_115292 crossref_primary_10_1186_s42162_023_00262_7 crossref_primary_10_3390_machines10080602 crossref_primary_10_1016_j_egyr_2024_04_035 crossref_primary_10_3390_e23121637 |
| Cites_doi | 10.1016/j.knosys.2019.02.011 10.1016/j.compstruc.2012.09.003 10.3390/math7100875 10.1016/j.eswa.2018.10.050 10.1080/0305215X.2013.832237 10.1016/j.engappai.2020.103731 10.1016/j.eswa.2018.04.012 10.1016/j.aeue.2018.01.017 10.1016/j.knosys.2020.105746 10.1016/j.engappai.2019.06.017 10.1007/s10489-017-0897-0 10.1016/j.eswa.2020.113617 10.1080/00223131.2019.1700844 10.3233/JIFS-169804 10.1007/s00202-018-0684-x 10.1016/j.swevo.2011.02.002 10.1007/s00500-018-3586-y 10.1049/cje.2019.04.008 10.1108/EC-07-2017-0264 10.1016/j.matcom.2020.02.020 10.1016/j.matcom.2019.06.017 10.1016/j.knosys.2019.105277 10.1016/j.ins.2019.04.022 10.1016/j.neucom.2017.04.060 10.3390/sym11070925 10.1016/j.eswa.2019.113018 10.1016/j.energy.2018.06.088 10.1016/j.eswa.2019.03.043 10.1080/03052150500066737 10.1016/j.jocs.2017.04.011 10.1016/j.advengsoft.2016.01.008 10.1016/j.engappai.2019.01.001 10.1177/1550147718824460 10.1002/etep.2743 10.1016/j.engappai.2006.03.003 10.1016/S0166-3615(99)00046-9 10.1117/1.JATIS.4.3.038001 10.1007/s42235-018-0063-3 10.1007/s11269-018-1992-7 10.1016/j.knosys.2015.07.006 10.1016/j.apm.2019.03.046 10.1108/AA-06-2018-091 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym12081234 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Engineering |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym12081234 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c298t-6ec2280a663948b5c4be1ce4f24e1c2d76b09ab8dd24b1a8b12a8956c1b9baf33 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564614900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 11:51:27 EDT 2025 Sat Nov 29 07:14:59 EST 2025 Tue Nov 18 21:48:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-6ec2280a663948b5c4be1ce4f24e1c2d76b09ab8dd24b1a8b12a8956c1b9baf33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2828-4223 0000-0001-9748-6024 |
| OpenAccessLink | https://www.proquest.com/docview/2429380520?pq-origsite=%requestingapplication% |
| PQID | 2429380520 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2429380520 crossref_citationtrail_10_3390_sym12081234 crossref_primary_10_3390_sym12081234 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Yang (ref_28) 2014; 46 Derrac (ref_32) 2011; 1 Mirjalili (ref_1) 2015; 89 Mirjalili (ref_36) 2016; 95 Sharma (ref_18) 2018; 35 Sapre (ref_22) 2018; 23 Buch (ref_2) 2019; 43 Liwu (ref_23) 2018; 15 Panwar (ref_21) 2018; 25 Zhiming (ref_26) 2016; 2016 Shubham (ref_46) 2019; 119 ref_15 Khalilpourazari (ref_13) 2016; 34 Lei (ref_8) 2019; 172 Elsakaan (ref_11) 2018; 157 Chao (ref_30) 2018; 107 Lijin (ref_29) 2013; 24 Zichen (ref_33) 2019; 85 He (ref_34) 2007; 20 Singh (ref_19) 2019; 41 Tsai (ref_47) 2005; 37 ref_27 Rizk (ref_37) 2018; 5 ref_35 Kaveh (ref_44) 2012; 112 Tolba (ref_7) 2018; 100 ref_31 Das (ref_3) 2018; 86 Yongquan (ref_40) 2018; 35 Ishiguro (ref_4) 2019; 57 Mingjing (ref_10) 2017; 267 Elaziz (ref_20) 2020; 168 ref_38 Sayed (ref_9) 2017; 47 (ref_41) 2000; 41 Jie (ref_39) 2019; 73 Yueting (ref_24) 2019; 129 ref_43 Li (ref_16) 2018; 32 ref_42 Jain (ref_12) 2019; 22 Yueting (ref_25) 2019; 492 Liu (ref_48) 2020; 174 Ibrahim (ref_17) 2018; 4 Abdullah (ref_14) 2019; 39 Shadravan (ref_45) 2019; 80 ref_5 Liu (ref_49) 2019; 28 ref_6 |
| References_xml | – volume: 172 start-page: 76 year: 2019 ident: ref_8 article-title: Moth-flame optimization-based algorithm with synthetic dynamic PPI networks for discovering protein complexes publication-title: Knowl-based Syst. doi: 10.1016/j.knosys.2019.02.011 – volume: 112 start-page: 283 year: 2012 ident: ref_44 article-title: A new meta-heuristic method: Ray optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.09.003 – volume: 34 start-page: 42 year: 2016 ident: ref_13 article-title: Multi-item EOQ model with nonlinear unit holding cost and partial backordering: Moth-flame optimization algorithm publication-title: J. Ind. Prod. Eng. – ident: ref_5 doi: 10.3390/math7100875 – volume: 119 start-page: 210 year: 2019 ident: ref_46 article-title: A hybrid self-adaptive sine cosine algorithm with oppositionbased learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.10.050 – volume: 43 start-page: 1031 year: 2019 ident: ref_2 article-title: An Efficient Adaptive Moth Flame Optimization Algorithm for Solving large-scale Optimal Power Flow Problem with POZ, Iranian Journal of Science and Technology publication-title: Trans. Electr. Eng. – volume: 46 start-page: 1222 year: 2014 ident: ref_28 article-title: Flower pollination algorithm: A novel approach for multiobjective optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.832237 – ident: ref_35 doi: 10.1016/j.engappai.2020.103731 – volume: 107 start-page: 89 year: 2018 ident: ref_30 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.012 – volume: 86 start-page: 177 year: 2018 ident: ref_3 article-title: Concentric circular antenna array synthesis for side lobe suppression using moth flame optimization publication-title: aeu-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2018.01.017 – ident: ref_31 doi: 10.1016/j.knosys.2020.105746 – volume: 85 start-page: 254 year: 2019 ident: ref_33 article-title: A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.06.017 – volume: 47 start-page: 397 year: 2017 ident: ref_9 article-title: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images publication-title: Appl. Intell. doi: 10.1007/s10489-017-0897-0 – ident: ref_42 doi: 10.1016/j.eswa.2020.113617 – volume: 57 start-page: 523 year: 2019 ident: ref_4 article-title: Loading pattern optimization for a PWR using multi-swarm Flame optimization Method with Predator publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2019.1700844 – volume: 35 start-page: 5203 year: 2018 ident: ref_18 article-title: Optimal test sequence generation in state based testing using moth flame optimization algorithm publication-title: J. Intell. & Fuzzy Syst. doi: 10.3233/JIFS-169804 – volume: 5 start-page: 249 year: 2018 ident: ref_37 article-title: Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems publication-title: J. Comput. Des. Eng. – volume: 100 start-page: 2059 year: 2018 ident: ref_7 article-title: LVCI approach for optimal allocation of distributed generations and allocation Banks in distribution based on moth-flame optimization algorithm publication-title: Electr. Eng. doi: 10.1007/s00202-018-0684-x – volume: 2016 start-page: 22 year: 2016 ident: ref_26 article-title: Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems publication-title: Math. Probl. Eng. – volume: 1 start-page: 3 year: 2011 ident: ref_32 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 23 start-page: 6023 year: 2018 ident: ref_22 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3586-y – volume: 28 start-page: 737 year: 2019 ident: ref_49 article-title: A Differential Evolution Flower Pollination Algorithm with Dynamic Switch Probability publication-title: Chin. J. Electron. doi: 10.1049/cje.2019.04.008 – volume: 35 start-page: 2406 year: 2018 ident: ref_40 article-title: Lévy flight trajectory-based whale optimization algorithm for engineering optimization publication-title: Eng. Comput. doi: 10.1108/EC-07-2017-0264 – volume: 174 start-page: 76 year: 2020 ident: ref_48 article-title: A dynamic adaptive firefly algorithm with globally orientation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.02.020 – volume: 168 start-page: 48 year: 2020 ident: ref_20 article-title: Opposition-based moth-flame optimization by differential evolution for feature selection publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2019.06.017 – ident: ref_43 doi: 10.1016/j.knosys.2019.105277 – volume: 492 start-page: 181 year: 2019 ident: ref_25 article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.022 – volume: 267 start-page: 69 year: 2017 ident: ref_10 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – ident: ref_27 doi: 10.3390/sym11070925 – ident: ref_38 doi: 10.1016/j.eswa.2019.113018 – volume: 157 start-page: 1063 year: 2018 ident: ref_11 article-title: An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions publication-title: Energy doi: 10.1016/j.energy.2018.06.088 – volume: 129 start-page: 135 year: 2019 ident: ref_24 article-title: An efficient chaotic mutative mode-flame-inspired optimizer for global optimization tasks publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2019.03.043 – volume: 37 start-page: 399 year: 2005 ident: ref_47 article-title: Global optimization of nonlinear fractional programming problems in engineering design publication-title: Eng. Optim. doi: 10.1080/03052150500066737 – volume: 25 start-page: 298 year: 2018 ident: ref_21 article-title: Solution to unit commitment in power system operation planning using binary coded modified moth flame algorithm (BMMFOA): A flame selection based computational technique publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.04.011 – volume: 95 start-page: 51 year: 2016 ident: ref_36 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 80 start-page: 20 year: 2019 ident: ref_45 article-title: The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – ident: ref_15 doi: 10.1177/1550147718824460 – ident: ref_6 doi: 10.1002/etep.2743 – volume: 20 start-page: 89 year: 2007 ident: ref_34 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.03.003 – volume: 41 start-page: 113 year: 2000 ident: ref_41 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 4 start-page: 038001 year: 2018 ident: ref_17 article-title: Galaxy images classification using hybrid brain storm optimization with moth flame optimization publication-title: J. Astron. Telesc. Instrum. Syst. doi: 10.1117/1.JATIS.4.3.038001 – volume: 15 start-page: 751 year: 2018 ident: ref_23 article-title: Enhanced Moth-flame Optimization Based on Cultural Learning and Gaussian Mutation publication-title: J. Bionic. Eng. doi: 10.1007/s42235-018-0063-3 – volume: 24 start-page: 2687 year: 2013 ident: ref_29 article-title: Search algorithm of cuckoo publication-title: J. Softw. – volume: 22 start-page: 1047 year: 2019 ident: ref_12 article-title: An opposition theory enabled moth flame optimizer for strategic bidding in uniform spot energy market publication-title: Eng. Sci. Technol. Int. J. – volume: 32 start-page: 3303 year: 2018 ident: ref_16 article-title: Optimization of Water Resources Utilization by multi-objective moth-flame Algorithm publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-1992-7 – volume: 41 start-page: 1 year: 2019 ident: ref_19 article-title: A novel hybridization of artificial neural network and moth-flame optimization (ann-mfo) for multi-objective optimization in magnetic finishing of aluminium 6060 publication-title: Braz. Soc. Mech. Sci. Eng. – volume: 89 start-page: 228 year: 2015 ident: ref_1 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based. Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 73 start-page: 109 year: 2019 ident: ref_39 article-title: Multi-strategy boosted mutative whale-inspired optimization approaches publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.03.046 – volume: 39 start-page: 356 year: 2019 ident: ref_14 article-title: Energy efficient modeling and optimization for assembly sequence planning using moth flame optimization publication-title: Assem. Autom. doi: 10.1108/AA-06-2018-091 |
| SSID | ssj0000505460 |
| Score | 2.4331303 |
| Snippet | In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1234 |
| SubjectTerms | Algorithms Butterflies & moths Design engineering Efficiency Engineering Light Optimization Optimization algorithms Searching |
| Title | An Improved Moth-Flame Optimization Algorithm for Engineering Problems |
| URI | https://www.proquest.com/docview/2429380520 |
| Volume | 12 |
| WOSCitedRecordID | wos000564614900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb_GxSg4eVAhuHttNT7LKLgq6Fh-gp5KkqQr70G0VvPjbnbRZ3QXx4qWFdkhLZzKTmU6-D6E9EwgpbCqJSI0goq4lkVQxUlOKa5OmxqoCxPWi0enI-_sw8gW3zLdVjnxi4aiTgXE18iMIJSF3-Pu145dX4lij3N9VT6ExjWYcSgItWvduvmssjqVNBLVyWx6H7P4o--hRBlGQcTEZiCb9cBFc2ov_fa0ltOCXlbhZ2sEymrL9FTQ_Bja4gpb9NM7wvseaPlhF7WYfl3UFm-BL0Bppg4lYfAWepOe3aOJm9xEemT_1MKxw8digOCrpaLI1dNdu3Z6eEU-tQAwLZU4CaxwOjoL1RiikrhuhLTVWpEzAmSWNQNdCpWWSMKGpkpoyJSGVMlSHWqWcr6NKf9C3GwhrkIO8g1MewCiNNLSKclpPjOQUDEBuosPRd46Nxx139BfdGPIPp5R4TCmbYD0j4ZcSbuN3sepIG7Gfc1n8o4qtv29voznmsuaija-KKvnwze6gWfOeP2fDXTRz0upE17uFKbnjZwuuReeX0cMXfanV4A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB6hgFR6aAkPlZZSH1qpVLKyfmRjH6oqKkREhBSpIOW2tb1eqJQEyi6t-FP9jR3vowQJ9cahpz2sZck7n7_xzI6_AXjrYqmkzxSVmZNUdq2iihlOI2OEdVnmvClFXEe98VhNJvpkCX43d2FCWWXDiSVRp5cu5Mg76Eq0CPr70aerHzR0jQp_V5sWGhUsjvztLwzZ8o_DfbTvO84HB6efD2ndVYA6rlVBY--CBIxBV6ulsl0nrWfOy4xLfPK0F9tIG6vSlEvLjLKMG4VRhGNWW5OFBChS_jIeI7guSwW__s3phK5wMo6qa4BC6KiT384YR6_Lhbzv-O7zfunMBs__t8-wBs_qYzPpVzhvw5Kfr8PTBTHFdWjXNJWT97WW9t4GDPpzUuVNfEqOEZV0gFvAky_IlLP6CirpT89xicXFjOAJnixMSk6qdjv5Jpw9yuq2oDW_nPsXQCyOw7hKMBHjLL1Me8ME66ZOCYYAV9vwobFr4mpd9dDeY5pgfBVAkCyAYBt3RzP4qpITeXjYTmP9pOaUPLkz_ct_v34DTw5Pj0fJaDg-egWrPGQIypLFHWgV1zf-Nay4n8X3_Hq3hC-Bb48NlD86HC-t |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hpULlAAWKgNLiA0hQydr4sVnngKpVacQKWHJoJTiltuO0SOzyyELFX-uv63jjtIuEeuPAKYdYlhx_88zMNwDbNpZKulJRWVpJZccoqpjmNNJaGFuW1ukJietxdzBQZ2dJNgO_m14YX1bZ6MSJoi6urM-Rt9GUJMLz70ftMpRFZAfpp-sb6idI-T-tzTiNGiJH7uEXhm_Vfv8A73qH8_TL18-HNEwYoJYnakxjZz0djEazm0hlOlYax6yTJZf45EU3NlGijSoKLg3TyjCuFUYUlpnE6NInQ1H9z6JLLnkLZrP-SXb-N8PjZ8TJOKqbAoVIonb1MGQcbTAX8rEZfGwFJqYtXXzJH-UNLASHmvRqCViCGTdahvkpmsVlWAoKrCK7gWV7bwXS3ojUGRVXkBPEK01ROBw5RR06DM2ppHf5A484_jkk6NuTqU1JVg_iqd7Ct2c53Sq0RlcjtwbE4DqMuAQTMe7SLROnmWCdwirBEPpqHT42d5zbwLjuB39c5hh5eUDkU4BYR7lpFl_XRCNPL9tskJAHbVPl_2Cw8f_XWzCH-MiP-4Ojd_Ca-9TBpJZxE1rj2zv3Hl7Z-_FFdfshYJnA9-dGyh_6KTnj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Moth-Flame+Optimization+Algorithm+for+Engineering+Problems&rft.jtitle=Symmetry+%28Basel%29&rft.au=Li%2C+Yu&rft.au=Zhu%2C+Xinya&rft.au=Liu%2C+Jingsen&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=8&rft.spage=1234&rft_id=info:doi/10.3390%2Fsym12081234&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |