Continuous Wavelet Transform of Schwartz Tempered Distributions in S′ ( R n )
In this paper, we define a continuous wavelet transform of a Schwartz tempered distribution f ∈ S ′ ( R n ) with wavelet kernel ψ ∈ S ( R n ) and derive the corresponding wavelet inversion formula interpreting convergence in the weak topology of S ′ ( R n ) . It turns out that the wavelet transform...
Saved in:
| Published in: | Symmetry (Basel) Vol. 11; no. 2; p. 235 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.02.2019
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we define a continuous wavelet transform of a Schwartz tempered distribution f ∈ S ′ ( R n ) with wavelet kernel ψ ∈ S ( R n ) and derive the corresponding wavelet inversion formula interpreting convergence in the weak topology of S ′ ( R n ) . It turns out that the wavelet transform of a constant distribution is zero and our wavelet inversion formula is not true for constant distribution, but it is true for a non-constant distribution which is not equal to the sum of a non-constant distribution with a non-zero constant distribution. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2073-8994 2073-8994 |
| DOI: | 10.3390/sym11020235 |