The Properties of Eigenvalues and Eigenfunctions for Nonlocal Sturm–Liouville Problems
The present paper is concerned with the spectral theory of nonlocal Sturm–Liouville eigenvalue problems on a finite interval. The continuity, differentiability and comparison results of eigenvalues with respect to the nonlocal potentials are studied, and the oscillation properties of eigenfunctions...
Saved in:
| Published in: | Symmetry (Basel) Vol. 13; no. 5; p. 820 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.05.2021
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The present paper is concerned with the spectral theory of nonlocal Sturm–Liouville eigenvalue problems on a finite interval. The continuity, differentiability and comparison results of eigenvalues with respect to the nonlocal potentials are studied, and the oscillation properties of eigenfunctions are investigated. The comparison result of eigenvalues and the oscillation properties of eigenfunctions indicate that the spectral properties of nonlocal problems are very different from those of classical Sturm–Liouville problems. Some examples are given to explain this essential difference. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2073-8994 2073-8994 |
| DOI: | 10.3390/sym13050820 |