Predicting (n,3n) nuclear reaction cross-sections using XGBoost and Leave-One-Out Cross-Validation

Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials science. This study aims to address the challenges associated with predicting (n ,3n) nuclear reaction cross-sections by developing a robust mac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied radiation and isotopes Ročník 219; s. 111714
Hlavní autoři: Ali Üncü, Yiğit, Danışman, Taner, Özdoğan, Hasan
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.05.2025
Témata:
ISSN:0969-8043, 1872-9800, 1872-9800
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials science. This study aims to address the challenges associated with predicting (n ,3n) nuclear reaction cross-sections by developing a robust machine learning (ML) model based on the XGBoost (eXtreme Gradient Boosting) algorithm. By leveraging a comprehensive dataset of experimental cross-sectional values, the study demonstrates the potential of ML to overcome limitations in existing theoretical and empirical approaches. LOOCV (Leave-One-Out Cross-Validation) was employed for feature selection and hyperparameter optimization to ensure the reliability of the model. The dataset was meticulously prepared by normalizing values and addressing missing data, which contributed to robust model training. XGBoost's ability to handle complex, non-linear relationships enabled it to provide accurate predictions that closely align with experimental data, as evaluated through key metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), and reduced Chi-Square. To validate the model's accuracy, its predictions were compared with calculations from the TALYS 1.95 nuclear reaction code, TENDL and phenological model. The results highlight the efficacy of XGBoost in improving prediction accuracy, offering a novel approach to solving complex challenges in nuclear data analysis. •Accurate machine learning algorithms have been developed to estimate (n,3n) reaction cross-section.•XGBoost algorithm is found the best option for (n,3n) reaction cross-section for classification algorithms.•To compare the XGBoost estimations, reaction cross-section calculations have been done by using TALYS 1.95 code.
AbstractList Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials science. This study aims to address the challenges associated with predicting (n ,3n) nuclear reaction cross-sections by developing a robust machine learning (ML) model based on the XGBoost (eXtreme Gradient Boosting) algorithm. By leveraging a comprehensive dataset of experimental cross-sectional values, the study demonstrates the potential of ML to overcome limitations in existing theoretical and empirical approaches. LOOCV (Leave-One-Out Cross-Validation) was employed for feature selection and hyperparameter optimization to ensure the reliability of the model. The dataset was meticulously prepared by normalizing values and addressing missing data, which contributed to robust model training. XGBoost's ability to handle complex, non-linear relationships enabled it to provide accurate predictions that closely align with experimental data, as evaluated through key metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), and reduced Chi-Square. To validate the model's accuracy, its predictions were compared with calculations from the TALYS 1.95 nuclear reaction code, TENDL and phenological model. The results highlight the efficacy of XGBoost in improving prediction accuracy, offering a novel approach to solving complex challenges in nuclear data analysis.Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials science. This study aims to address the challenges associated with predicting (n ,3n) nuclear reaction cross-sections by developing a robust machine learning (ML) model based on the XGBoost (eXtreme Gradient Boosting) algorithm. By leveraging a comprehensive dataset of experimental cross-sectional values, the study demonstrates the potential of ML to overcome limitations in existing theoretical and empirical approaches. LOOCV (Leave-One-Out Cross-Validation) was employed for feature selection and hyperparameter optimization to ensure the reliability of the model. The dataset was meticulously prepared by normalizing values and addressing missing data, which contributed to robust model training. XGBoost's ability to handle complex, non-linear relationships enabled it to provide accurate predictions that closely align with experimental data, as evaluated through key metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), and reduced Chi-Square. To validate the model's accuracy, its predictions were compared with calculations from the TALYS 1.95 nuclear reaction code, TENDL and phenological model. The results highlight the efficacy of XGBoost in improving prediction accuracy, offering a novel approach to solving complex challenges in nuclear data analysis.
Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials science. This study aims to address the challenges associated with predicting (n ,3n) nuclear reaction cross-sections by developing a robust machine learning (ML) model based on the XGBoost (eXtreme Gradient Boosting) algorithm. By leveraging a comprehensive dataset of experimental cross-sectional values, the study demonstrates the potential of ML to overcome limitations in existing theoretical and empirical approaches. LOOCV (Leave-One-Out Cross-Validation) was employed for feature selection and hyperparameter optimization to ensure the reliability of the model. The dataset was meticulously prepared by normalizing values and addressing missing data, which contributed to robust model training. XGBoost's ability to handle complex, non-linear relationships enabled it to provide accurate predictions that closely align with experimental data, as evaluated through key metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), and reduced Chi-Square. To validate the model's accuracy, its predictions were compared with calculations from the TALYS 1.95 nuclear reaction code, TENDL and phenological model. The results highlight the efficacy of XGBoost in improving prediction accuracy, offering a novel approach to solving complex challenges in nuclear data analysis.
Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials science. This study aims to address the challenges associated with predicting (n ,3n) nuclear reaction cross-sections by developing a robust machine learning (ML) model based on the XGBoost (eXtreme Gradient Boosting) algorithm. By leveraging a comprehensive dataset of experimental cross-sectional values, the study demonstrates the potential of ML to overcome limitations in existing theoretical and empirical approaches. LOOCV (Leave-One-Out Cross-Validation) was employed for feature selection and hyperparameter optimization to ensure the reliability of the model. The dataset was meticulously prepared by normalizing values and addressing missing data, which contributed to robust model training. XGBoost's ability to handle complex, non-linear relationships enabled it to provide accurate predictions that closely align with experimental data, as evaluated through key metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), and reduced Chi-Square. To validate the model's accuracy, its predictions were compared with calculations from the TALYS 1.95 nuclear reaction code, TENDL and phenological model. The results highlight the efficacy of XGBoost in improving prediction accuracy, offering a novel approach to solving complex challenges in nuclear data analysis. •Accurate machine learning algorithms have been developed to estimate (n,3n) reaction cross-section.•XGBoost algorithm is found the best option for (n,3n) reaction cross-section for classification algorithms.•To compare the XGBoost estimations, reaction cross-section calculations have been done by using TALYS 1.95 code.
ArticleNumber 111714
Author Ali Üncü, Yiğit
Özdoğan, Hasan
Danışman, Taner
Author_xml – sequence: 1
  givenname: Yiğit
  surname: Ali Üncü
  fullname: Ali Üncü, Yiğit
  organization: Akdeniz University, Vocational School of Technical Sciences, Department of Biomedical Equipment Technology, 07070, Antalya, Turkey
– sequence: 2
  givenname: Taner
  surname: Danışman
  fullname: Danışman, Taner
  organization: Akdeniz University, Faculty of Engineering, Department of Computer Engineering, 07070, Antalya, Turkey
– sequence: 3
  givenname: Hasan
  orcidid: 0000-0001-6127-9680
  surname: Özdoğan
  fullname: Özdoğan, Hasan
  email: hasan.ozdogan@antalya.edu.tr
  organization: Antalya Bilim University, Vocational School of Health Services, Department of Medical Imaging Techniques, 07140, Antalya, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39947034$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rGzEQxUVJaBynXyHsMYWsI620Kwl6aGvyDwzOIS29ibE0W2TWkivtBvLts7bjSy85DGLE780w752TkxADEnLJ6IxR1tysZ7BN4HyOs4pW9YwxJpn4RCZMyarUitITMqG60aWigp-R85zXlFKhdPWZnHGthaRcTMjqKaHztvfhb3EVrnn4WoTBdgipSAjjfwyFTTHnMuO-y8WQd_Cf-58x5r6A4IoFwguWyzDW0BfzPf4bOu9gp7ggpy10Gb-8v1Py6-72ef5QLpb3j_Mfi9JWWvWlUAKd5I2QIOyqcsB4K6mmLaetqkTFVO24k0g5qLZWQnG9wrphILgE2dZ8Sq4Oc7cp_hsw92bjs8Wug4BxyIazppGN5FKN6OU7Oqw26Mw2-Q2kV3P0ZQS-HYD97QlbY32_v6ZP4DvDqNnFYNbmGIPZxWAOMYzy5j_5ccOHwu8HIY5GvXhMJluPwY4ZpdF_46L_aMQb8bWkrQ
CitedBy_id crossref_primary_10_1016_j_pnucene_2025_105938
crossref_primary_10_28948_ngumuh_1696315
crossref_primary_10_1016_j_radphyschem_2025_113281
crossref_primary_10_3390_su17052015
crossref_primary_10_1016_j_apradiso_2025_112110
Cites_doi 10.1111/j.2517-6161.1974.tb00994.x
10.1103/PhysRevC.12.451
10.3390/universe8010025
10.1023/B:STCO.0000035301.49549.88
10.1016/j.apradiso.2018.10.011
10.1006/jcss.1997.1504
10.1016/j.net.2019.10.009
10.1016/j.nimb.2024.165293
10.1016/j.radphyschem.2021.109634
10.1007/s13369-023-07801-0
10.1016/j.apradiso.2023.111115
10.1016/j.nuclphysa.2023.122779
10.1016/j.nds.2019.01.002
10.1016/j.apradiso.2018.01.029
10.1142/S0217732322500791
10.1103/PhysRevC.16.1792
10.1007/s10894-015-9879-6
10.1103/PhysRevResearch.4.021001
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.net.2017.03.006
10.1016/j.eswa.2023.122778
10.1007/s10894-012-9541-5
10.1016/j.apradiso.2021.109875
10.1016/0375-9474(68)90344-8
10.1080/00031305.1992.10475879
10.1016/0370-1573(82)90079-5
10.1214/aos/1013203451
10.1142/S0218301320500627
10.1007/s10894-013-9610-4
10.1016/0306-4549(78)90076-2
10.1016/j.nuclphysa.2016.04.036
10.1142/S0217732321501686
10.1016/j.nima.2018.01.045
10.1016/j.nimb.2021.10.018
10.1016/0306-4549(95)00089-5
10.1016/j.net.2021.04.027
10.1016/j.apradiso.2022.110609
10.1007/s10967-017-5613-3
10.1016/j.nuclphysa.2006.09.015
10.1016/j.apradiso.2021.109976
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.apradiso.2025.111714
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1872-9800
ExternalDocumentID 39947034
10_1016_j_apradiso_2025_111714
S0969804325000594
Genre Journal Article
GroupedDBID ---
--K
--M
.55
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
WH7
WUQ
X7M
XPP
XUV
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
ID FETCH-LOGICAL-c298t-484ed73647a4cb2da13f7090f30f8242185d3d7e03a8f584839be561a437a7f53
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001427281400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0969-8043
1872-9800
IngestDate Sun Sep 28 01:54:02 EDT 2025
Thu Apr 03 06:59:42 EDT 2025
Sat Nov 29 08:02:18 EST 2025
Tue Nov 18 21:56:04 EST 2025
Sat May 03 15:55:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords TENDL
XGBoost
Cross-section
Machine learning
TALYS 1.95
Leave-One-Out Cross-Validation
(n,3n) reactions
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-484ed73647a4cb2da13f7090f30f8242185d3d7e03a8f584839be561a437a7f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6127-9680
PMID 39947034
PQID 3166767378
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3166767378
pubmed_primary_39947034
crossref_citationtrail_10_1016_j_apradiso_2025_111714
crossref_primary_10_1016_j_apradiso_2025_111714
elsevier_sciencedirect_doi_10_1016_j_apradiso_2025_111714
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
2025-May
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Applied radiation and isotopes
PublicationTitleAlternate Appl Radiat Isot
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Veeser, Arthur, Young (bib48) 1977; 16
Özdoğan, Şekerci, Kaplan (bib31) 2019; 143
Kolos (bib23) 2022; 4
Koning, Rochman, Sublet, Dzysiuk, Fleming, Van Der Marck (bib25) 2019; 155
Özdoğan, Üncü, Şekerci, Kaplan (bib32) 2024; 204
Reshid (bib36) 2015; 34
Draper, Smith (bib12) 1998
Segev, Caner (bib38) 1978; 5
Liskien (bib28) 1968; 118
Yiğit, Kara (bib55) 2017; 49
Özdoğan, Üncü, Şekerci, Kaplan (bib33) 2023; 192
Smola, Schölkopf (bib41) 2004; 14
Özdoğan, Üncü, Şekerci, Kaplan (bib34) 2021; 36
Jarošík, Wagner, Majerle, Chudoba, Burianová, Štefánik (bib19) 2022; 511
Küçüksucu, Yiğit, Paar (bib27) 2022; 8
Üncü, Özdoğan (bib46) 2023; 48
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (bib21) 2017
Küçüksucu, Yiğit, Paar (bib26) 2024; 1041
Gooden, Bredeweg, Champine, Combs, Finch, Hayes-Sterbenz, Henry, Krishichayan, Rundberg, Tornow, Wilhelmy, Yeamans (bib16) 2017; 96
Bayhurst, Gilmore, Prestwood, Wilhelmy, Jarmie, Erkkila, Hardekopf (bib5) 1975; 12
Üncü, Danışman, Özdoğan (bib47) 2022; 37
Xue, Dral, Barbatti (bib49) 2020; 124
Breiman, Friedman, Olshen, Stone (bib8) 1984
Khan, Chaudhari, Chandra (bib22) 2024; 244
Dökmen, Atasoy (bib11) 1996; 23
Broeders, Konobeyev (bib9) 2006; 780
Akkoyun (bib1) 2023; 1
Mohamed, Al-Abyad, Azzam (bib30) 2021; 178
Chen, Guestrin (bib10) 2016
Reshid (bib35) 2012; 32
Yiğit (bib51) 2020; 52
Yiğit, Kara (bib54) 2017; 314
Koning, Hilaire, Goriely (bib24) 2019
Akkoyun, Yeşilkanat, Bayram (bib2) 2023; 297
Bin Hamid, Beh, Oluwatobi, Chew, Ayub (bib7) 2022
Freund, Schapire (bib14) 1997; 55
Stone (bib42) 1974; 36
Yiğit (bib50) 2018; 135
Yiğit (bib52) 2020; 29
Fabra-Boluda, Ferri, Ramírez-Quintana, Martínez-Plumed, Hernández-Orallo (bib13) 2018
Tibshirani (bib44) 1996; 58
Tel, Akca, Kara, Yiğit, Aydın (bib43) 2013; 32
Zerkin, Pritychenko (bib56) 2018; 888
Yiğit, Eraslan (bib53) 2024; 207
Bin Hamid, Beh, Oluwatobi, Chew, Ayub (bib6) 2021
Friedman (bib15) 2001; 29
Hastie, Tibshirani, Friedman, Friedman (bib17) 2009; vol. 2
Kara, Yılmaz, Yiğit (bib20) 2021; 53
Şekerci, Özdoğan, Kaplan (bib39) 2021; 176
Uno, Meigo, Chiba, Fukahori, Kasugai, Iwamoto, Siegler, Ikeda (bib45) 1996
Majerle, Bém, Novák, Šimečková, Štefánik (bib29) 2016; 953
Hingu, Parashari, Singh, Soni, Mukherjee (bib18) 2021; 188
Altman (bib4) 1992; 46
Akkoyun, Yeşilkanat, Bayram (bib3) 2024; 549
Sargood (bib37) 1982; 93
Koning (10.1016/j.apradiso.2025.111714_bib25) 2019; 155
Yiğit (10.1016/j.apradiso.2025.111714_bib53) 2024; 207
Özdoğan (10.1016/j.apradiso.2025.111714_bib32) 2024; 204
Sargood (10.1016/j.apradiso.2025.111714_bib37) 1982; 93
Liskien (10.1016/j.apradiso.2025.111714_bib28) 1968; 118
Draper (10.1016/j.apradiso.2025.111714_bib12) 1998
Akkoyun (10.1016/j.apradiso.2025.111714_bib2) 2023; 297
Broeders (10.1016/j.apradiso.2025.111714_bib9) 2006; 780
Koning (10.1016/j.apradiso.2025.111714_bib24) 2019
Segev (10.1016/j.apradiso.2025.111714_bib38) 1978; 5
Tibshirani (10.1016/j.apradiso.2025.111714_bib44) 1996; 58
Freund (10.1016/j.apradiso.2025.111714_bib14) 1997; 55
Zerkin (10.1016/j.apradiso.2025.111714_bib56) 2018; 888
Tel (10.1016/j.apradiso.2025.111714_bib43) 2013; 32
Yiğit (10.1016/j.apradiso.2025.111714_bib51) 2020; 52
Üncü (10.1016/j.apradiso.2025.111714_bib47) 2022; 37
Gooden (10.1016/j.apradiso.2025.111714_bib16) 2017; 96
Yiğit (10.1016/j.apradiso.2025.111714_bib50) 2018; 135
Reshid (10.1016/j.apradiso.2025.111714_bib35) 2012; 32
Bayhurst (10.1016/j.apradiso.2025.111714_bib5) 1975; 12
Bin Hamid (10.1016/j.apradiso.2025.111714_bib7) 2022
Yiğit (10.1016/j.apradiso.2025.111714_bib55) 2017; 49
Ke (10.1016/j.apradiso.2025.111714_bib21) 2017
Küçüksucu (10.1016/j.apradiso.2025.111714_bib27) 2022; 8
Üncü (10.1016/j.apradiso.2025.111714_bib46) 2023; 48
Dökmen (10.1016/j.apradiso.2025.111714_bib11) 1996; 23
Smola (10.1016/j.apradiso.2025.111714_bib41) 2004; 14
Küçüksucu (10.1016/j.apradiso.2025.111714_bib26) 2024; 1041
Hingu (10.1016/j.apradiso.2025.111714_bib18) 2021; 188
Veeser (10.1016/j.apradiso.2025.111714_bib48) 1977; 16
Özdoğan (10.1016/j.apradiso.2025.111714_bib31) 2019; 143
Özdoğan (10.1016/j.apradiso.2025.111714_bib34) 2021; 36
Akkoyun (10.1016/j.apradiso.2025.111714_bib1) 2023; 1
Altman (10.1016/j.apradiso.2025.111714_bib4) 1992; 46
Friedman (10.1016/j.apradiso.2025.111714_bib15) 2001; 29
Jarošík (10.1016/j.apradiso.2025.111714_bib19) 2022; 511
Reshid (10.1016/j.apradiso.2025.111714_bib36) 2015; 34
Bin Hamid (10.1016/j.apradiso.2025.111714_bib6) 2021
Kara (10.1016/j.apradiso.2025.111714_bib20) 2021; 53
Breiman (10.1016/j.apradiso.2025.111714_bib8) 1984
Hastie (10.1016/j.apradiso.2025.111714_bib17) 2009; vol. 2
Khan (10.1016/j.apradiso.2025.111714_bib22) 2024; 244
Majerle (10.1016/j.apradiso.2025.111714_bib29) 2016; 953
Mohamed (10.1016/j.apradiso.2025.111714_bib30) 2021; 178
Şekerci (10.1016/j.apradiso.2025.111714_bib39) 2021; 176
Yiğit (10.1016/j.apradiso.2025.111714_bib54) 2017; 314
Kolos (10.1016/j.apradiso.2025.111714_bib23) 2022; 4
Özdoğan (10.1016/j.apradiso.2025.111714_bib33) 2023; 192
Yiğit (10.1016/j.apradiso.2025.111714_bib52) 2020; 29
Stone (10.1016/j.apradiso.2025.111714_bib42) 1974; 36
Uno (10.1016/j.apradiso.2025.111714_bib45) 1996
Chen (10.1016/j.apradiso.2025.111714_bib10) 2016
Fabra-Boluda (10.1016/j.apradiso.2025.111714_bib13) 2018
Xue (10.1016/j.apradiso.2025.111714_bib49) 2020; 124
Akkoyun (10.1016/j.apradiso.2025.111714_bib3) 2024; 549
References_xml – volume: 192
  year: 2023
  ident: bib33
  article-title: Estimations for (n,α) reaction cross sections at around 14.5MeV using Levenberg-Marquardt algorithm-based artificial neural network
  publication-title: Appl. Radiat. Isot.
– volume: 32
  start-page: 164
  year: 2012
  end-page: 170
  ident: bib35
  article-title: Calculation of excitation function of some structural fusion material for (n, p) reactions up to 25 MeV
  publication-title: J. Fusion Energy
– volume: 29
  year: 2020
  ident: bib52
  article-title: A new empirical formula for cross-sections of (n,nα) reactions
  publication-title: Int. J. Mod. Phys. E
– volume: 207
  year: 2024
  ident: bib53
  article-title: A new empirical formula for calculation of (n,3n) cross sections of heavy mass nuclei in the energy region 22–27.5 MeV
  publication-title: Appl. Radiat. Isot.
– year: 1998
  ident: bib12
  article-title: Applied Regression Analysis
– volume: 34
  start-page: 746
  year: 2015
  end-page: 750
  ident: bib36
  article-title: Study of some structural fusion materials for (n,2n) reactions
  publication-title: J. Fusion Energy
– volume: 244
  year: 2024
  ident: bib22
  article-title: A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 239
  year: 1978
  end-page: 252
  ident: bib38
  article-title: A new formalism for (n, 2n) AND (n, 3n) cross-sections of heavy mass nuclei
  publication-title: Ann. Nucl. Energy
– volume: 48
  start-page: 8173
  year: 2023
  end-page: 8179
  ident: bib46
  article-title: Estimations for the production cross sections of medical 61, 64, 67Cu radioisotopes by using bayesian regularized artificial neural networks in (p, α) reactions
  publication-title: Arabian J. Sci. Eng.
– volume: 118
  start-page: 379
  year: 1968
  end-page: 388
  ident: bib28
  article-title: (n, 3n) processes and the statistical theory
  publication-title: Nucl. Phys.
– volume: 143
  start-page: 6
  year: 2019
  end-page: 10
  ident: bib31
  article-title: Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu
  publication-title: Appl. Radiat. Isot. : Including Data, Instrum. Methods For Use Agric. ndustry And Med.
– volume: 155
  start-page: 1
  year: 2019
  end-page: 55
  ident: bib25
  article-title: TENDL: complete Nuclear Data Library for innovative nuclear science and technology
  publication-title: Nucl. Data Sheets
– volume: 178
  year: 2021
  ident: bib30
  article-title: New empirical formulae for (n, p) reaction cross sections on stable isotopes from Z= 21 to Z= 51 for energies up to 20 MeV
  publication-title: Appl. Radiat. Isot. : Including Data, Instrum. Methods use Agric. Industry Med.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib14
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 36
  year: 2021
  ident: bib34
  article-title: A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network
  publication-title: Mod. Phys. Lett. A
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib44
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. Roy. Stat. Soc. B
– volume: 888
  start-page: 31
  year: 2018
  ident: bib56
  article-title: The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system
  publication-title: Nucl. Instrum. Methods Phys. Res.
– volume: 511
  start-page: 64
  year: 2022
  end-page: 74
  ident: bib19
  article-title: Activation cross-section measurement of fast neutron-induced reactions in Al, Au, Bi, Co, F, Na, and Y
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– year: 1984
  ident: bib8
  article-title: Classification and Regression Trees
– year: 2021
  ident: bib6
  article-title: Generation of proton- and alpha-induced nuclear cross-section data via random forest algorithm
  publication-title: Production of Radionuclide 111In
– start-page: 465
  year: 1996
  ident: bib45
  article-title: Measurements of activation cross sections for the neutron dosimetry at an energy range from 17.5 to 30MeV by using the 7Li(p, n) quasi-monoenergetic neutron source
  publication-title: 9.Internat.Symposium on Reactor Dosimetry, Prague
– volume: 188
  year: 2021
  ident: bib18
  article-title: Semi-empirical systematics formulas for the (n,p), (n, α), and (n, 2n) reaction cross-sections at 14.5 MeV
  publication-title: Radiat. Phys. Chem.
– volume: 124
  start-page: 3
  year: 2020
  ident: bib49
  article-title: Machine learning for absorption cross sections
  publication-title: Am. Chem. Soc.
– volume: 32
  start-page: 531
  year: 2013
  end-page: 535
  ident: bib43
  article-title: (p,α) reaction cross sections calculations of Fe and Ni target nuclei using new developed semi-empirical formula
  publication-title: J. Fusion Energy
– volume: 12
  start-page: 451
  year: 1975
  end-page: 467
  ident: bib5
  article-title: Cross sections for (n, xn) reactions between 7.5 and 28 MeV
  publication-title: Phys. Rev. C
– volume: 204
  year: 2024
  ident: bib32
  article-title: Neural network predictions of (α, n) reaction cross sections at 18.5±3 MeV using the Levenberg-Marquardt algorithm
  publication-title: Appl. Radiat. Isot.
– start-page: 175
  year: 2018
  end-page: 186
  ident: bib13
  article-title: Modelling Machine Learning Models
– volume: 1
  start-page: 71
  year: 2023
  end-page: 73
  ident: bib1
  article-title: Estimation of proton-boron reaction cross-sections by neural networks
  publication-title: Int. Conf. Appl. Eng. Natural Sci.
– volume: 314
  start-page: 2383
  year: 2017
  end-page: 2392
  ident: bib54
  article-title: Simulation study of the proton-induced reaction cross sections for the production of 18F and 66–68Ga radioisotopes
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 176
  year: 2021
  ident: bib39
  article-title: Effects of deuteron optical models on the cross-section calculations of deuteron induced reactions on natural germanium
  publication-title: Appl. Radiat. Isot.
– start-page: 3149
  year: 2017
  end-page: 3157
  ident: bib21
  article-title: LightGBM: a highly efficient gradient boosting decision tree
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 8
  start-page: 25
  year: 2022
  ident: bib27
  article-title: Statistical hauser-feshbach model description of (n,α) reaction cross sections for the weak s-process
  publication-title: Universe
– volume: 135
  start-page: 115
  year: 2018
  end-page: 122
  ident: bib50
  article-title: Analysis of (n, p) cross sections near 14 MeV
  publication-title: Appl. Radiat. Isot.
– volume: 4
  year: 2022
  ident: bib23
  article-title: Current nuclear data needs for applications
  publication-title: Phys. Rev. Res.
– volume: 953
  start-page: 139
  year: 2016
  end-page: 157
  ident: bib29
  article-title: Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18–36 MeV
  publication-title: Nucl. Phys.
– volume: 16
  start-page: 1792
  year: 1977
  end-page: 1802
  ident: bib48
  article-title: Cross sections for (n,2n) and (n,3n) reactions above 14 MeV
  publication-title: Phys. Rev. C
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib41
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 37
  year: 2022
  ident: bib47
  article-title: Calculations of GDR parameters for deformed nuclei using LogitBoost classifier and artificial neural network
  publication-title: Mod. Phys. Lett. A
– volume: 297
  year: 2023
  ident: bib2
  article-title: Generation of fusion and fusion-evaporation reaction cross-sections by two-step machine learning methods
  publication-title: Comput. Phys. Commun.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bib4
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Statistician
– volume: vol. 2
  start-page: 1
  year: 2009
  end-page: 758
  ident: bib17
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib10
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2019
  ident: bib24
  article-title: TALYS 1.95 Nuclear Research and Consultancy Group (NRG)
– volume: 52
  start-page: 791
  year: 2020
  end-page: 796
  ident: bib51
  article-title: Study on (n, p) reactions of 58,60,61,62,64Ni using new developed empirical formulas
  publication-title: Nucl. Eng. Technol.
– year: 2022
  ident: bib7
  article-title: Generation of proton- and alpha-induced nuclear cross-section data via random forest algorithm: production of radionuclide 111In
  publication-title: Appl. Sci.
– volume: 780
  start-page: 130
  year: 2006
  end-page: 145
  ident: bib9
  article-title: Semi-empirical systematics of reaction cross-section at 14.5, 20, and 30 MeV
  publication-title: Nucl. Phys.
– volume: 49
  start-page: 996
  year: 2017
  end-page: 1005
  ident: bib55
  article-title: Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64 ,66 −68 Zn targets
  publication-title: Nucl. Eng. Technol.
– volume: 549
  year: 2024
  ident: bib3
  article-title: Machine learning predictions for cross-sections of 43,44Sc radioisotope production by alpha-induced reactions on Ca target
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– volume: 53
  start-page: 3158
  year: 2021
  end-page: 3163
  ident: bib20
  article-title: Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV
  publication-title: Nucl. Eng. Technol.
– volume: 96
  year: 2017
  ident: bib16
  article-title: Measurement of the Bi209(n,4n)Bi206 and
  publication-title: Phys. Rev. C
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib15
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 36
  start-page: 111
  year: 1974
  end-page: 133
  ident: bib42
  publication-title: J. Roy. Stat. Soc. B
– volume: 93
  start-page: 61
  year: 1982
  end-page: 116
  ident: bib37
  article-title: Charged particle reaction cross sections and nucleosynthesis
  publication-title: Phys. Rep.
– volume: 23
  start-page: 1027
  year: 1996
  end-page: 1031
  ident: bib11
  article-title: Review of (n,3n) reaction cross-sections for fast neutrons and its dependence on the neutron excess term
  publication-title: Ann. Nucl. Energy
– volume: 1041
  year: 2024
  ident: bib26
  article-title: Isotopic dependence of (n,α) reaction cross sections for Fe and Sn nuclei
  publication-title: Nucl. Phys.
– volume: 1
  start-page: 71
  issue: 1
  year: 2023
  ident: 10.1016/j.apradiso.2025.111714_bib1
  article-title: Estimation of proton-boron reaction cross-sections by neural networks
  publication-title: Int. Conf. Appl. Eng. Natural Sci.
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 10.1016/j.apradiso.2025.111714_bib42
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 12
  start-page: 451
  issue: 2
  year: 1975
  ident: 10.1016/j.apradiso.2025.111714_bib5
  article-title: Cross sections for (n, xn) reactions between 7.5 and 28 MeV
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.12.451
– volume: 8
  start-page: 25
  issue: 1
  year: 2022
  ident: 10.1016/j.apradiso.2025.111714_bib27
  article-title: Statistical hauser-feshbach model description of (n,α) reaction cross sections for the weak s-process
  publication-title: Universe
  doi: 10.3390/universe8010025
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.apradiso.2025.111714_bib41
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– year: 2019
  ident: 10.1016/j.apradiso.2025.111714_bib24
– volume: 143
  start-page: 6
  year: 2019
  ident: 10.1016/j.apradiso.2025.111714_bib31
  article-title: Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu
  publication-title: Appl. Radiat. Isot. : Including Data, Instrum. Methods For Use Agric. ndustry And Med.
  doi: 10.1016/j.apradiso.2018.10.011
– volume: 207
  issue: 111259
  year: 2024
  ident: 10.1016/j.apradiso.2025.111714_bib53
  article-title: A new empirical formula for calculation of (n,3n) cross sections of heavy mass nuclei in the energy region 22–27.5 MeV
  publication-title: Appl. Radiat. Isot.
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.apradiso.2025.111714_bib14
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– year: 1998
  ident: 10.1016/j.apradiso.2025.111714_bib12
– volume: 52
  start-page: 791
  issue: 4
  year: 2020
  ident: 10.1016/j.apradiso.2025.111714_bib51
  article-title: Study on (n, p) reactions of 58,60,61,62,64Ni using new developed empirical formulas
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2019.10.009
– volume: 549
  year: 2024
  ident: 10.1016/j.apradiso.2025.111714_bib3
  article-title: Machine learning predictions for cross-sections of 43,44Sc radioisotope production by alpha-induced reactions on Ca target
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2024.165293
– volume: 188
  year: 2021
  ident: 10.1016/j.apradiso.2025.111714_bib18
  article-title: Semi-empirical systematics formulas for the (n,p), (n, α), and (n, 2n) reaction cross-sections at 14.5 MeV
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2021.109634
– volume: 297
  year: 2023
  ident: 10.1016/j.apradiso.2025.111714_bib2
  article-title: Generation of fusion and fusion-evaporation reaction cross-sections by two-step machine learning methods
  publication-title: Comput. Phys. Commun.
– volume: 48
  start-page: 8173
  year: 2023
  ident: 10.1016/j.apradiso.2025.111714_bib46
  article-title: Estimations for the production cross sections of medical 61, 64, 67Cu radioisotopes by using bayesian regularized artificial neural networks in (p, α) reactions
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-023-07801-0
– volume: 204
  year: 2024
  ident: 10.1016/j.apradiso.2025.111714_bib32
  article-title: Neural network predictions of (α, n) reaction cross sections at 18.5±3 MeV using the Levenberg-Marquardt algorithm
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2023.111115
– year: 2021
  ident: 10.1016/j.apradiso.2025.111714_bib6
  article-title: Generation of proton- and alpha-induced nuclear cross-section data via random forest algorithm
– volume: 1041
  year: 2024
  ident: 10.1016/j.apradiso.2025.111714_bib26
  article-title: Isotopic dependence of (n,α) reaction cross sections for Fe and Sn nuclei
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2023.122779
– volume: 155
  start-page: 1
  year: 2019
  ident: 10.1016/j.apradiso.2025.111714_bib25
  article-title: TENDL: complete Nuclear Data Library for innovative nuclear science and technology
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2019.01.002
– start-page: 785
  year: 2016
  ident: 10.1016/j.apradiso.2025.111714_bib10
  article-title: XGBoost: a scalable tree boosting system
– volume: 135
  start-page: 115
  year: 2018
  ident: 10.1016/j.apradiso.2025.111714_bib50
  article-title: Analysis of (n, p) cross sections near 14 MeV
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2018.01.029
– year: 1984
  ident: 10.1016/j.apradiso.2025.111714_bib8
– volume: 124
  start-page: 3
  year: 2020
  ident: 10.1016/j.apradiso.2025.111714_bib49
  article-title: Machine learning for absorption cross sections
  publication-title: Am. Chem. Soc.
– volume: 37
  issue: 13
  year: 2022
  ident: 10.1016/j.apradiso.2025.111714_bib47
  article-title: Calculations of GDR parameters for deformed nuclei using LogitBoost classifier and artificial neural network
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732322500791
– volume: 16
  start-page: 1792
  issue: 5
  year: 1977
  ident: 10.1016/j.apradiso.2025.111714_bib48
  article-title: Cross sections for (n,2n) and (n,3n) reactions above 14 MeV
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.16.1792
– volume: 34
  start-page: 746
  issue: 4
  year: 2015
  ident: 10.1016/j.apradiso.2025.111714_bib36
  article-title: Study of some structural fusion materials for (n,2n) reactions
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-015-9879-6
– volume: 4
  issue: 2
  year: 2022
  ident: 10.1016/j.apradiso.2025.111714_bib23
  article-title: Current nuclear data needs for applications
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.021001
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.apradiso.2025.111714_bib44
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 49
  start-page: 996
  issue: 5
  year: 2017
  ident: 10.1016/j.apradiso.2025.111714_bib55
  article-title: Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64 ,66 −68 Zn targets
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2017.03.006
– volume: 244
  year: 2024
  ident: 10.1016/j.apradiso.2025.111714_bib22
  article-title: A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122778
– volume: 32
  start-page: 164
  issue: 2
  year: 2012
  ident: 10.1016/j.apradiso.2025.111714_bib35
  article-title: Calculation of excitation function of some structural fusion material for (n, p) reactions up to 25 MeV
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-012-9541-5
– volume: 176
  year: 2021
  ident: 10.1016/j.apradiso.2025.111714_bib39
  article-title: Effects of deuteron optical models on the cross-section calculations of deuteron induced reactions on natural germanium
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2021.109875
– volume: 118
  start-page: 379
  issue: 2
  year: 1968
  ident: 10.1016/j.apradiso.2025.111714_bib28
  article-title: (n, 3n) processes and the statistical theory
  publication-title: Nucl. Phys.
  doi: 10.1016/0375-9474(68)90344-8
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.apradiso.2025.111714_bib4
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1992.10475879
– volume: 93
  start-page: 61
  issue: 2
  year: 1982
  ident: 10.1016/j.apradiso.2025.111714_bib37
  article-title: Charged particle reaction cross sections and nucleosynthesis
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(82)90079-5
– start-page: 175
  year: 2018
  ident: 10.1016/j.apradiso.2025.111714_bib13
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.apradiso.2025.111714_bib15
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 29
  issue: 8
  year: 2020
  ident: 10.1016/j.apradiso.2025.111714_bib52
  article-title: A new empirical formula for cross-sections of (n,nα) reactions
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301320500627
– volume: 32
  start-page: 531
  issue: 5
  year: 2013
  ident: 10.1016/j.apradiso.2025.111714_bib43
  article-title: (p,α) reaction cross sections calculations of Fe and Ni target nuclei using new developed semi-empirical formula
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-013-9610-4
– start-page: 465
  year: 1996
  ident: 10.1016/j.apradiso.2025.111714_bib45
  article-title: Measurements of activation cross sections for the neutron dosimetry at an energy range from 17.5 to 30MeV by using the 7Li(p, n) quasi-monoenergetic neutron source
– volume: 5
  start-page: 239
  issue: 6–7
  year: 1978
  ident: 10.1016/j.apradiso.2025.111714_bib38
  article-title: A new formalism for (n, 2n) AND (n, 3n) cross-sections of heavy mass nuclei
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(78)90076-2
– start-page: 3149
  year: 2017
  ident: 10.1016/j.apradiso.2025.111714_bib21
  article-title: LightGBM: a highly efficient gradient boosting decision tree
– volume: 953
  start-page: 139
  year: 2016
  ident: 10.1016/j.apradiso.2025.111714_bib29
  article-title: Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18–36 MeV
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2016.04.036
– volume: 36
  issue: 23
  year: 2021
  ident: 10.1016/j.apradiso.2025.111714_bib34
  article-title: A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732321501686
– volume: 888
  start-page: 31
  year: 2018
  ident: 10.1016/j.apradiso.2025.111714_bib56
  article-title: The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/j.nima.2018.01.045
– volume: 96
  issue: 2
  year: 2017
  ident: 10.1016/j.apradiso.2025.111714_bib16
  article-title: Measurement of the Bi209(n,4n)Bi206 and
  publication-title: Phys. Rev. C
– volume: 511
  start-page: 64
  year: 2022
  ident: 10.1016/j.apradiso.2025.111714_bib19
  article-title: Activation cross-section measurement of fast neutron-induced reactions in Al, Au, Bi, Co, F, Na, and Y
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2021.10.018
– volume: 23
  start-page: 1027
  issue: 12
  year: 1996
  ident: 10.1016/j.apradiso.2025.111714_bib11
  article-title: Review of (n,3n) reaction cross-sections for fast neutrons and its dependence on the neutron excess term
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(95)00089-5
– volume: 53
  start-page: 3158
  issue: 10
  year: 2021
  ident: 10.1016/j.apradiso.2025.111714_bib20
  article-title: Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2021.04.027
– volume: 192
  year: 2023
  ident: 10.1016/j.apradiso.2025.111714_bib33
  article-title: Estimations for (n,α) reaction cross sections at around 14.5MeV using Levenberg-Marquardt algorithm-based artificial neural network
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2022.110609
– year: 2022
  ident: 10.1016/j.apradiso.2025.111714_bib7
  article-title: Generation of proton- and alpha-induced nuclear cross-section data via random forest algorithm: production of radionuclide 111In
  publication-title: Appl. Sci.
– volume: 314
  start-page: 2383
  issue: 3
  year: 2017
  ident: 10.1016/j.apradiso.2025.111714_bib54
  article-title: Simulation study of the proton-induced reaction cross sections for the production of 18F and 66–68Ga radioisotopes
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-017-5613-3
– volume: 780
  start-page: 130
  issue: 3–4
  year: 2006
  ident: 10.1016/j.apradiso.2025.111714_bib9
  article-title: Semi-empirical systematics of reaction cross-section at 14.5, 20, and 30 MeV
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2006.09.015
– volume: 178
  year: 2021
  ident: 10.1016/j.apradiso.2025.111714_bib30
  article-title: New empirical formulae for (n, p) reaction cross sections on stable isotopes from Z= 21 to Z= 51 for energies up to 20 MeV
  publication-title: Appl. Radiat. Isot. : Including Data, Instrum. Methods use Agric. Industry Med.
  doi: 10.1016/j.apradiso.2021.109976
– volume: vol. 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.apradiso.2025.111714_bib17
SSID ssj0004892
Score 2.4500794
Snippet Accurately predicting nuclear reaction cross-sections is crucial for advancing various fields, including nuclear medicine, energy production, and materials...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111714
SubjectTerms (n,3n) reactions
Cross-section
Leave-One-Out Cross-Validation
Machine learning
TALYS 1.95
TENDL
XGBoost
Title Predicting (n,3n) nuclear reaction cross-sections using XGBoost and Leave-One-Out Cross-Validation
URI https://dx.doi.org/10.1016/j.apradiso.2025.111714
https://www.ncbi.nlm.nih.gov/pubmed/39947034
https://www.proquest.com/docview/3166767378
Volume 219
WOSCitedRecordID wos001427281400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9800
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004892
  issn: 0969-8043
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DRAvCMatXKYggQTqAkkc1_ZjW20MBGMSBeUtchJH6lQlVZNWE6_8cY5vDRtMAyEemlZp7aT5vvgcn3znGKHnsYhLyULp05iXPtjjoZ9lJfHB2BQyi8sgZLlebIIeH7Mk4Se93neXC7Oe06piZ2d88V-hhn0Atkqd_Qu4N53CDvgMoMMWYIftHwF_slTPXlobAlCDCtZz_0pVLhbLAXiJZnlwbSD9Rmuxqmaw0lGD5O24rhsjO_8gxVr6nyp4rdrBRP_8K_jtRYemq19rfdmlqnTQOoXzrKnbetGJFEfz2UA9mOcTuFzwPp5oAzBTDi0_nG0EOMBEtWscvpgQ-MLGaKei6pTEupvht6I2bc0vjoRTGNkwRkQ60aCJrbn8mk7MpIOUQw421BRycuO1HWN_GftNGOL0tVioP9uozM6IKJNATZrqhbran1Xnqu-ImKo1W2gnooTD6L4zeneQvO_Sa5leW3tzMj8lmv_-aJf5OJfNYbQvM72NbtlJiDcy5LmDerLaRTc-WpnFLrqudcF5cxdlHZu8l9U-rl55lkee45F3nkee5pFneeQBD7xzPPIu8uge-nJ4MJ0c-XZZDj-POGv9mMWyoGrdARHnWVSIEJc04EGJg5IphQEjBS6oDLBgJfi34IJnEtx0EWMqaEnwfbRd1ZV8iDwSCAkT_rwQJIsJzjIsOeHDnIdFEYQl7yPiLmSa25r1aumUeerEiaepAyBVAKQGgD56s2m3MFVbrmzBHU6p9T2NT5kCva5s-8wBm8LgrJ64wR1Rr5oUh0pCTjFlffTAIL45H5gZxGBu40f_cOTH6GZ3Lz1B2-1yJZ-ia_m6nTXLPbRFE7Zn2fwDqQe7Ug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+%28n%2C3n%29+nuclear+reaction+cross-sections+using+XGBoost+and+Leave-One-Out+Cross-Validation&rft.jtitle=Applied+radiation+and+isotopes&rft.au=Ali+%C3%9Cnc%C3%BC%2C+Yi%C4%9Fit&rft.au=Dan%C4%B1%C5%9Fman%2C+Taner&rft.au=%C3%96zdo%C4%9Fan%2C+Hasan&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0969-8043&rft.volume=219&rft_id=info:doi/10.1016%2Fj.apradiso.2025.111714&rft.externalDocID=S0969804325000594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-8043&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-8043&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-8043&client=summon