Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems

This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Ravia...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 96; číslo 2; s. 879 - 924
Hlavní autori: Shakya, Pratibha, Kumar Sinha, Rajen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2024
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the L ∞ ( L 2 ) -norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests.
AbstractList This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the L∞(L2)-norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests.
This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the L ∞ ( L 2 ) -norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests.
Author Kumar Sinha, Rajen
Shakya, Pratibha
Author_xml – sequence: 1
  givenname: Pratibha
  surname: Shakya
  fullname: Shakya, Pratibha
  email: shakya.pratibha10@gmail.com
  organization: Department of Mathematics, Indian Institute of Science
– sequence: 2
  givenname: Rajen
  surname: Kumar Sinha
  fullname: Kumar Sinha, Rajen
  organization: Department of Mathematics, Indian Institute of Technology Guwahati
BookMark eNqFkctKxTAURYMo-PwBRwHH0SRtXsOL-ALBiY5Dmp5qLr1NTXJBh_650QrOdJQDWescNvsQ7U5xAoROGT1nlKqLzBhVglDeEMqkNMTsoAMmFCeGS7FbZ8oUYY3R--gw5zWlVePqAH2sJje-55DxEBMuL4Dz7DyQEjaAHZ5jLpBCTAFDSpWAXH9cgYXfhDfo8RCmUADDCBuYCs5x3JYQp4zjgGeXXBfH4HGcv8wR-ziVFEc8p9hVIx-jvcGNGU5-3iP0dH31eHlL7h9u7i5X98RzowtpddMP1LfK81ZI5Sh4w41hDPQg6CCVNNJz1jtdx1b2Pe-kEY7rTnveUd8cobNlbz38uq057DpuU02fbUOFYlo0TPxD1Y2i1W2l-EL5FHNOMNg51XDp3TJqvwqxSyG2FmK_C7GmSs0i5QpPz5B-V_9hfQKCKpE4
Cites_doi 10.1137/0728003
10.1051/m2an/1981150100411
10.1007/s10598-015-9306-x
10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G
10.1007/978-0-387-75934-0
10.1016/j.cam.2006.11.015
10.1007/s10492-016-0126-x
10.1007/BF01396452
10.4208/jcm.1211-m4267
10.1137/0727019
10.1137/0710062
10.1080/01630563.2010.492046
10.1002/oca.2476
10.1090/S0025-5718-08-02104-2
10.1016/j.camwa.2013.09.022
10.1090/S0025-5718-1990-1011446-7
10.1016/0377-0427(94)90290-9
10.1137/0327038
10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
10.1137/100782760
10.1137/0311040
10.1007/s002110100380
10.1007/s10915-009-9327-8
10.1137/0322029
10.1007/978-1-4612-3172-1
10.1090/S0025-5718-06-01858-8
10.1137/070694028
10.1007/BF01396451
10.1515/jnum-2012-0013
10.1007/s10915-021-01645-2
10.1090/S0025-5718-98-01011-4
10.1007/s10589-005-4559-5
10.1007/978-3-642-65024-6
10.1137/S0036142902406314
10.1007/s40314-021-01682-5
10.1016/S0045-7825(00)00340-6
10.1016/0022-247X(73)90022-X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-023-01669-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Proquest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Computer Science Collection
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 924
ExternalDocumentID 10_1007_s11075_023_01669_9
GrantInformation_xml – fundername: Department of Science and Technology, Ministry of Science and Technology, India
  grantid: PDF/2021/000444
  funderid: http://dx.doi.org/10.13039/501100001409
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-483df0c47c24567a0ec929911e8f50f67696c21da867646dd2b695a28b8c2b0c3
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085817500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 07:04:52 EST 2025
Wed Nov 05 15:30:38 EST 2025
Sat Nov 29 01:35:01 EST 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords The backward-Euler method
65N15
Mixed finite element method
Variational discretization
49J20
A posteriori error estimates
Parabolic optimal control problems
65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-483df0c47c24567a0ec929911e8f50f67696c21da867646dd2b695a28b8c2b0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3056955484
PQPubID 2043837
PageCount 46
ParticipantIDs proquest_journals_3057185315
proquest_journals_3056955484
crossref_primary_10_1007_s11075_023_01669_9
springer_journals_10_1007_s11075_023_01669_9
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BietermanMBabuškaIThe finite element method for parabolic equations, 2: a posteriori error estimation and adaptive approachNumer. Math.198240373406695603
RaviartPAThomasJMA mixed finite element method for 2nd order elliptic problems1977BerlinSpringer292315
JohnsonCNieYYThoméeVAn a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problemSIAM J. Numer. Anal.1990272772911043607
BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer-Verlag
LasieckaIRitz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditionsSIAM J. Control Optim.198422477500739837
ManoharRSinhaRKA posteriori error estimates for parabolic optimal control problems with controls acting on lower dimensional manifoldsJ. Sci. Comput.202189394321845
ChenYSuperconvergence of mixed finite elements methods for optimal control problemsMath. Comp.200877126912912398768
MeidnerDVexlerBA priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraintsSIAM J. Control Optim.200847130113292407017
TröltzschFOptimal control of partial differential equations, Theory2010Providence, RIMethods and Applications. AMS
BoffiDBrezziFDemkowiczLFDuránRGFalkRSFortinMMixed finite elements, compatibility conditions and applications2006ItalySpringer
ChenYHuangYLiuWBYanNError estimates and superconvergence of mixed finite element methods for convex optimal control problemsJ. Sci. Comput.2009423824032585589
ChenYLuZHigh efficient and accuracy numerical methods for optimal control problems2015BeijingScience Press
ChenYLiuLLuZA posteriori error estimates of mixed methods for parabolic optimal control problemsNumer. Funct. Anal. Optim.201031113511572738842
JohnsonCThoméeVError estimates for some mixed finite elements methods for parabolic type problemsRAIRO Analyse Numerique.1981154178610597
LiuWYanNA posteriori error estimates for optimal control problems governed by parabolic equationsNumer. Math.2003934975211953750
VerfürthRA posteriori error estimates for nonlinear problems: Lr(0,T;W1,ρ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(0, T;W^{1, \rho }({\Omega }))$$\end{document}-error estimates for finite element discretization of parabolic equationsNumer. Methods Partial Differ. Equ.199814487518
MakridakisCNochettoRHElliptic reconstruction and a posteriori error estimates for parabolic problemsSIAM J. Numer. Anal.200341158515942034895
Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn, Verlag (2006)
FalkFSApproximation of a class of optimal control problems with order of convergence estimatesJ. Math. Anal. Appl.1973442847686788
LionsJLOptimal control of systems governed by parabolic differential equations1971BerlinSpringer-Verlag
NochettoRHSavareGVerdiCA posteriori error estimates for variable time step discretizations of nonlinear evolution equationsComm. Pure Appl. Math.2000535255891737503
BrennerSCScottLRThe mathematical theory of finite element methods2008New YorkSpringer
AltWMackenrothUConvergence of finite element approximations to state constrained convex parabolic boundary control problemsSIAM J. Control Optim.1987277187361001916
MenonSNatarajNPaniAKAn a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problemsSIAM J. Numer. Anal.201250136713932970747
LasieckaIMalanowskiKOn discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systemsControl Cybernet.197872136484630
ErikssonKJohnsonCAdaptive finite element methods for parabolic problems 1: a linear model problemSIAM J. Numer. Anal.19912843771083324
WheelerMFA priori L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-error estimates for Galerkin approximations to parabolic differential equationsSIAM J. Numer. Anal.197310723749351124
ShakyaPSinhaRKA priori and a posteriori error estimates of finite element approximations for elliptic optimal control problem with measure dataOptim. Control Appl. Meth.201940241264
LiLMixed discontinuous Galerkin time-stepping method for semilinear parabolic optimal control problemsComput. Math. Model.201627953436578
BabuškaIOhnimusSA posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equationsComput. Meth. Appl. Mech. Engrg.200119046914712
HechtFNew development in FreeFem++J. Numer. Math.2012202512653043640
ScottLRZhangSFinite element interpolation of nonsmooth functions satisfying boundary condiitionMath. Comp.1990544834931011446
TangYHuaYElliptic reconstruction and a posteriori error estimates for parabolic optimal control problemsJ. Appl. Anal. Comp.201442953063226457
Neittaanmäki, P.: Tiba, D.: Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Dekker: New York (1994)
ClémentPApproximation by finite element function using local regularizationRAIRO Sér. Rouge Anal. Numér.197527784400739
HouTChenYMixed discontinuous Galerkin time-stepping method for linear parabolic problemsJ. Comput. Math.2015331581783326008
ManoharRSinhaRKA posteriori L∞(L∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(L^{\infty })$$\end{document} error estimates for finite element approximations to parabolic optimal control problemsComput. Appl. Math.2021402984338780
LuZNew a posteriori L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} and L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problemsAppl. Math.2016611351633470771
ChenYLiuWA posteriori error estimates for mixed finite element solutions of convex optimal control problemsJ. Comp. Appl. Math.200821176892386830
VerfürthRA posteriori error estimates and adaptive mesh refinement techniquesJ Comput. Appl. Math.19945067831284252
VerfürthRA posteriori error estimates for nonlinear problems: Lρ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\rho }({\Omega })$$\end{document}-error estimates for finite element discretization of parabolic equationsMath. Comp.199867133513601604371
McKnightRSBosargeWEJrThe Ritz-Galerkin procedure for parabolic control problemsSIAM J. Control Optim.197311510524403754
Adams, R.A., Fournier, J.J.F.: Sobolev spaces, pure and applied mathematics. Elsevier, Amsterdam (2003)
ArayaRVenegasPAn a posteriori error estimator for an unsteady advection diffusion reaction problemComput. Math. Appl.201466245624763128572
BietermanMBabuškaIThe finite element method for parabolic equations, 1: a posteriori error estimationNumer. Math.198240339371695602
HinzeMA variational discretization concept in control constrained optimization: the linear quadratic caseComput. Optim. Appl.20053045632122182
LakkisOMakridakisCElliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problemsMath. Comp.200675162716582240628
M Hinze (1669_CR19) 2005; 30
R Verfürth (1669_CR45) 1998; 14
K Eriksson (1669_CR16) 1991; 28
P Shakya (1669_CR39) 2019; 40
S Menon (1669_CR34) 2012; 50
Z Lu (1669_CR29) 2016; 61
R Verfürth (1669_CR46) 1998; 67
I Lasiecka (1669_CR25) 1978; 7
SC Brenner (1669_CR7) 2008
I Babuška (1669_CR4) 2001; 190
M Bieterman (1669_CR6) 1982; 40
Y Chen (1669_CR12) 2008; 211
1669_CR35
Y Chen (1669_CR14) 2015
W Liu (1669_CR28) 2003; 93
D Boffi (1669_CR8) 2006
1669_CR1
R Manohar (1669_CR31) 2021; 89
D Meidner (1669_CR33) 2008; 47
F Tröltzsch (1669_CR44) 2010
R Araya (1669_CR3) 2014; 66
PA Raviart (1669_CR38) 1977
Y Tang (1669_CR41) 2014; 4
1669_CR42
M Bieterman (1669_CR5) 1982; 40
P Clément (1669_CR15) 1975; 2
RS McKnight (1669_CR32) 1973; 11
MF Wheeler (1669_CR47) 1973; 10
Y Chen (1669_CR10) 2008; 77
L Li (1669_CR26) 2016; 27
C Makridakis (1669_CR30) 2003; 41
LR Scott (1669_CR40) 1990; 54
W Alt (1669_CR2) 1987; 27
FS Falk (1669_CR17) 1973; 44
I Lasiecka (1669_CR24) 1984; 22
C Johnson (1669_CR22) 1981; 15
F Brezzi (1669_CR9) 1991
R Verfürth (1669_CR43) 1994; 50
F Hecht (1669_CR18) 2012; 20
Y Chen (1669_CR13) 2010; 31
R Manohar (1669_CR37) 2021; 40
T Hou (1669_CR20) 2015; 33
C Johnson (1669_CR21) 1990; 27
Y Chen (1669_CR11) 2009; 42
JL Lions (1669_CR27) 1971
RH Nochetto (1669_CR36) 2000; 53
O Lakkis (1669_CR23) 2006; 75
References_xml – reference: ClémentPApproximation by finite element function using local regularizationRAIRO Sér. Rouge Anal. Numér.197527784400739
– reference: TröltzschFOptimal control of partial differential equations, Theory2010Providence, RIMethods and Applications. AMS
– reference: VerfürthRA posteriori error estimates for nonlinear problems: Lρ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\rho }({\Omega })$$\end{document}-error estimates for finite element discretization of parabolic equationsMath. Comp.199867133513601604371
– reference: MenonSNatarajNPaniAKAn a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problemsSIAM J. Numer. Anal.201250136713932970747
– reference: BietermanMBabuškaIThe finite element method for parabolic equations, 2: a posteriori error estimation and adaptive approachNumer. Math.198240373406695603
– reference: JohnsonCThoméeVError estimates for some mixed finite elements methods for parabolic type problemsRAIRO Analyse Numerique.1981154178610597
– reference: LuZNew a posteriori L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} and L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problemsAppl. Math.2016611351633470771
– reference: Neittaanmäki, P.: Tiba, D.: Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Dekker: New York (1994)
– reference: ManoharRSinhaRKA posteriori L∞(L∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(L^{\infty })$$\end{document} error estimates for finite element approximations to parabolic optimal control problemsComput. Appl. Math.2021402984338780
– reference: LasieckaIRitz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditionsSIAM J. Control Optim.198422477500739837
– reference: HinzeMA variational discretization concept in control constrained optimization: the linear quadratic caseComput. Optim. Appl.20053045632122182
– reference: LiLMixed discontinuous Galerkin time-stepping method for semilinear parabolic optimal control problemsComput. Math. Model.201627953436578
– reference: ScottLRZhangSFinite element interpolation of nonsmooth functions satisfying boundary condiitionMath. Comp.1990544834931011446
– reference: MakridakisCNochettoRHElliptic reconstruction and a posteriori error estimates for parabolic problemsSIAM J. Numer. Anal.200341158515942034895
– reference: ShakyaPSinhaRKA priori and a posteriori error estimates of finite element approximations for elliptic optimal control problem with measure dataOptim. Control Appl. Meth.201940241264
– reference: BabuškaIOhnimusSA posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equationsComput. Meth. Appl. Mech. Engrg.200119046914712
– reference: ChenYHuangYLiuWBYanNError estimates and superconvergence of mixed finite element methods for convex optimal control problemsJ. Sci. Comput.2009423824032585589
– reference: LasieckaIMalanowskiKOn discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systemsControl Cybernet.197872136484630
– reference: TangYHuaYElliptic reconstruction and a posteriori error estimates for parabolic optimal control problemsJ. Appl. Anal. Comp.201442953063226457
– reference: ChenYSuperconvergence of mixed finite elements methods for optimal control problemsMath. Comp.200877126912912398768
– reference: HechtFNew development in FreeFem++J. Numer. Math.2012202512653043640
– reference: ManoharRSinhaRKA posteriori error estimates for parabolic optimal control problems with controls acting on lower dimensional manifoldsJ. Sci. Comput.202189394321845
– reference: AltWMackenrothUConvergence of finite element approximations to state constrained convex parabolic boundary control problemsSIAM J. Control Optim.1987277187361001916
– reference: ChenYLiuWA posteriori error estimates for mixed finite element solutions of convex optimal control problemsJ. Comp. Appl. Math.200821176892386830
– reference: ChenYLiuLLuZA posteriori error estimates of mixed methods for parabolic optimal control problemsNumer. Funct. Anal. Optim.201031113511572738842
– reference: ErikssonKJohnsonCAdaptive finite element methods for parabolic problems 1: a linear model problemSIAM J. Numer. Anal.19912843771083324
– reference: LionsJLOptimal control of systems governed by parabolic differential equations1971BerlinSpringer-Verlag
– reference: RaviartPAThomasJMA mixed finite element method for 2nd order elliptic problems1977BerlinSpringer292315
– reference: MeidnerDVexlerBA priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraintsSIAM J. Control Optim.200847130113292407017
– reference: LakkisOMakridakisCElliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problemsMath. Comp.200675162716582240628
– reference: LiuWYanNA posteriori error estimates for optimal control problems governed by parabolic equationsNumer. Math.2003934975211953750
– reference: ArayaRVenegasPAn a posteriori error estimator for an unsteady advection diffusion reaction problemComput. Math. Appl.201466245624763128572
– reference: BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer-Verlag
– reference: Adams, R.A., Fournier, J.J.F.: Sobolev spaces, pure and applied mathematics. Elsevier, Amsterdam (2003)
– reference: ChenYLuZHigh efficient and accuracy numerical methods for optimal control problems2015BeijingScience Press
– reference: JohnsonCNieYYThoméeVAn a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problemSIAM J. Numer. Anal.1990272772911043607
– reference: NochettoRHSavareGVerdiCA posteriori error estimates for variable time step discretizations of nonlinear evolution equationsComm. Pure Appl. Math.2000535255891737503
– reference: BoffiDBrezziFDemkowiczLFDuránRGFalkRSFortinMMixed finite elements, compatibility conditions and applications2006ItalySpringer
– reference: HouTChenYMixed discontinuous Galerkin time-stepping method for linear parabolic problemsJ. Comput. Math.2015331581783326008
– reference: Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn, Verlag (2006)
– reference: VerfürthRA posteriori error estimates for nonlinear problems: Lr(0,T;W1,ρ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(0, T;W^{1, \rho }({\Omega }))$$\end{document}-error estimates for finite element discretization of parabolic equationsNumer. Methods Partial Differ. Equ.199814487518
– reference: McKnightRSBosargeWEJrThe Ritz-Galerkin procedure for parabolic control problemsSIAM J. Control Optim.197311510524403754
– reference: BietermanMBabuškaIThe finite element method for parabolic equations, 1: a posteriori error estimationNumer. Math.198240339371695602
– reference: VerfürthRA posteriori error estimates and adaptive mesh refinement techniquesJ Comput. Appl. Math.19945067831284252
– reference: BrennerSCScottLRThe mathematical theory of finite element methods2008New YorkSpringer
– reference: WheelerMFA priori L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-error estimates for Galerkin approximations to parabolic differential equationsSIAM J. Numer. Anal.197310723749351124
– reference: FalkFSApproximation of a class of optimal control problems with order of convergence estimatesJ. Math. Anal. Appl.1973442847686788
– volume: 28
  start-page: 43
  year: 1991
  ident: 1669_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728003
– volume-title: Mixed finite elements, compatibility conditions and applications
  year: 2006
  ident: 1669_CR8
– volume: 7
  start-page: 21
  year: 1978
  ident: 1669_CR25
  publication-title: Control Cybernet.
– volume: 15
  start-page: 41
  year: 1981
  ident: 1669_CR22
  publication-title: RAIRO Analyse Numerique.
  doi: 10.1051/m2an/1981150100411
– volume: 27
  start-page: 95
  year: 2016
  ident: 1669_CR26
  publication-title: Comput. Math. Model.
  doi: 10.1007/s10598-015-9306-x
– volume: 14
  start-page: 487
  year: 1998
  ident: 1669_CR45
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G
– volume-title: The mathematical theory of finite element methods
  year: 2008
  ident: 1669_CR7
  doi: 10.1007/978-0-387-75934-0
– volume: 211
  start-page: 76
  year: 2008
  ident: 1669_CR12
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2006.11.015
– volume: 61
  start-page: 135
  year: 2016
  ident: 1669_CR29
  publication-title: Appl. Math.
  doi: 10.1007/s10492-016-0126-x
– start-page: 292
  volume-title: A mixed finite element method for 2nd order elliptic problems
  year: 1977
  ident: 1669_CR38
– volume: 40
  start-page: 373
  year: 1982
  ident: 1669_CR6
  publication-title: Numer. Math.
  doi: 10.1007/BF01396452
– ident: 1669_CR35
– volume: 33
  start-page: 158
  year: 2015
  ident: 1669_CR20
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.1211-m4267
– volume: 27
  start-page: 277
  year: 1990
  ident: 1669_CR21
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727019
– volume: 10
  start-page: 723
  year: 1973
  ident: 1669_CR47
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0710062
– volume: 31
  start-page: 1135
  year: 2010
  ident: 1669_CR13
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2010.492046
– volume: 40
  start-page: 241
  year: 2019
  ident: 1669_CR39
  publication-title: Optim. Control Appl. Meth.
  doi: 10.1002/oca.2476
– volume: 77
  start-page: 1269
  year: 2008
  ident: 1669_CR10
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-08-02104-2
– volume: 66
  start-page: 2456
  year: 2014
  ident: 1669_CR3
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2013.09.022
– volume: 4
  start-page: 295
  year: 2014
  ident: 1669_CR41
  publication-title: J. Appl. Anal. Comp.
– volume: 54
  start-page: 483
  year: 1990
  ident: 1669_CR40
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1990-1011446-7
– volume: 50
  start-page: 67
  year: 1994
  ident: 1669_CR43
  publication-title: J Comput. Appl. Math.
  doi: 10.1016/0377-0427(94)90290-9
– volume: 27
  start-page: 718
  year: 1987
  ident: 1669_CR2
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0327038
– ident: 1669_CR42
– volume: 53
  start-page: 525
  year: 2000
  ident: 1669_CR36
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
– volume-title: Optimal control of partial differential equations, Theory
  year: 2010
  ident: 1669_CR44
– volume: 50
  start-page: 1367
  year: 2012
  ident: 1669_CR34
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100782760
– volume: 11
  start-page: 510
  year: 1973
  ident: 1669_CR32
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0311040
– volume: 93
  start-page: 497
  year: 2003
  ident: 1669_CR28
  publication-title: Numer. Math.
  doi: 10.1007/s002110100380
– volume: 42
  start-page: 382
  year: 2009
  ident: 1669_CR11
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9327-8
– volume: 22
  start-page: 477
  year: 1984
  ident: 1669_CR24
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0322029
– volume-title: Mixed and hybrid finite element methods
  year: 1991
  ident: 1669_CR9
  doi: 10.1007/978-1-4612-3172-1
– volume: 75
  start-page: 1627
  year: 2006
  ident: 1669_CR23
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-06-01858-8
– volume: 47
  start-page: 1301
  year: 2008
  ident: 1669_CR33
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070694028
– volume: 40
  start-page: 339
  year: 1982
  ident: 1669_CR5
  publication-title: Numer. Math.
  doi: 10.1007/BF01396451
– volume: 20
  start-page: 251
  year: 2012
  ident: 1669_CR18
  publication-title: J. Numer. Math.
  doi: 10.1515/jnum-2012-0013
– volume: 89
  start-page: 39
  year: 2021
  ident: 1669_CR31
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01645-2
– volume: 67
  start-page: 1335
  year: 1998
  ident: 1669_CR46
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-98-01011-4
– volume-title: High efficient and accuracy numerical methods for optimal control problems
  year: 2015
  ident: 1669_CR14
– volume: 30
  start-page: 45
  year: 2005
  ident: 1669_CR19
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-005-4559-5
– volume-title: Optimal control of systems governed by parabolic differential equations
  year: 1971
  ident: 1669_CR27
  doi: 10.1007/978-3-642-65024-6
– volume: 41
  start-page: 1585
  year: 2003
  ident: 1669_CR30
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902406314
– volume: 2
  start-page: 77
  year: 1975
  ident: 1669_CR15
  publication-title: RAIRO Sér. Rouge Anal. Numér.
– volume: 40
  start-page: 298
  year: 2021
  ident: 1669_CR37
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-021-01682-5
– volume: 190
  start-page: 4691
  year: 2001
  ident: 1669_CR4
  publication-title: Comput. Meth. Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00340-6
– volume: 44
  start-page: 28
  year: 1973
  ident: 1669_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90022-X
– ident: 1669_CR1
SSID ssj0010027
Score 2.352966
Snippet This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 879
SubjectTerms Algebra
Algorithms
Approximation
Computer Science
Discretization
Error analysis
Estimates
Estimators
Finite element method
Implicit methods
Numeric Computing
Numerical Analysis
Optimal control
Original Paper
Spacetime
Theory of Computation
Variables
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD1apYrbIHbxpI89w9ilg8aBF80FvYbDYQsE1Jqnj1nzuTbBoUe9BLCLubbNjH7DeZmW8AzlHnsJNEupbr48UbxjbZd6XlKOWnXPrcjSt2_btwPOaTiXgwQWFl4-3emCQrSd0Gu6GmQtHE5P8TBMIS67DhE9sM6eiPL0vbAWlalY0T5S_iG25CZX5_x_fjqMWYP8yi1Wkz6v7vO3dhx6BLdlUvhz1Y07MedA3SZGYfl1jUJHNoynqwfb8kcC334bMhK2EIahlWMJQ8SluUip5JNqfQkCLLi4zposAWxNUxJdhatZ9mH9hdmhGeZbp2UGfLRc7ylBHjeEyUxCyf05OvzPjMM5PhpjyA59HN0_WtZbI1WMoRfEF_JZPUVl6oyJYaSlsrhF4oSzVPfTslV9pAOcNEcrz1giRx4kD40uExV05sK_cQOrN8po-Aeb4cKh2nSkvb004Qi1DKIBSEjxLUufpw0UxaNK9JOaKWfpmGP8Lhj6rhj0QfBs28RmaDlhFpTgKhFPdWVYeEZIZ-Hy6baW6rV3d2_LfmJ7DlIEqqfc8G0FkUb_oUNtX7IiuLs2pdfwGMQ_NS
  priority: 102
  providerName: Springer Nature
Title Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems
URI https://link.springer.com/article/10.1007/s11075-023-01669-9
https://www.proquest.com/docview/3056955484
https://www.proquest.com/docview/3057185315
Volume 96
WOSCitedRecordID wos001085817500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB2s9aAHq1WxWssevGkwSfOxOYmKRVBLaVV6C5vNBgLa1qSKV_-5M8mmRUEvXkJgN9mQ2Z19szPzBuAYbQ4zjkXX6Lp4cazIJP-uMGwp3YQLl3ejgl3_zu_3-XgcDPSBW67DKiudWCjqeCrpjPyMoG6Aex93zmevBlWNIu-qLqFRgzqxJFhF6N5o4UUgm6vwdqImRqTDddJMmTqHdg_lJlM0kecFRvB9Y1qizR8O0mLf6TX--8VbsKkRJ7sop8g2rKhJExoafTK9tvMmbNwvGFzzHfis2EoYolqGDQxVj1QG1aJngs0oNyRLcTimsgx7EFnHC-HWov9L-oHvTlICtEyVEepsMcvZNGFEOR4RJzGbzujJZ6aD5pkucZPvwmPv-uHqxtDlGgxpB3xOx5JxYkrHl-RM9YWpJGIvVKaKJ66ZUCytJ20rFhxvHS-O7Qj_j7B5xKUdmbK7B6uT6UTtA3NcYUkVJVIJ01G2FwW-EJ4fEECK0ehqwUklq3BWsnKES_5lkmyIkg0LyYZBC9qVgEK9QvNwKZ3fmn2CMpbbgtNqBiybfx_s4O_BDmHdRlhUBpu1YXWevakjWJPv8zTPOlC_vO4Phh2o3fpGp5jMeB2Onr4AILz6lw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BLhLtodtCK7bd0jm0pxKRdV7Ooar6AIFYVqgCiVtwHEeK1H2QbF_H_qH-xs4kzq6oRG8cuESR7MSK83n8jecF8Jp0DjfLlOd4AV38YeqyfVc5QusglyqQXlpn1x9F47G8vIzP1uBPGwvDbpWtTKwFdTbTfEa-z1Q3pr1P-u_n1w5XjWLraltCo4HFifn1g1S26t3xZ_q_b4Q4PDj_dOTYqgKOFrFc8OlZlrvajzTb_CLlGk0Ugda8kXng5uzyGWoxzJSkWz_MMpHSwErIVGqRutqj965D1_f8MOhA9-PB-OzL0m7BWl5tXyXZT9xK2jCdJliPNC2Ohmb_pTCMnfjmVrjit_-YZOud7rB33-boMTyynBo_NIvgCayZ6Rb0LL9GK72qLXh4usxRW23D7zYfCxJvR2pAEq7aOItiYlDhnKNfyoI-D01ZUg9ORzJhZl73nxQ_6d15wZQdTeODj8t1jLMcOal6ylmXcTbnJ7-iDQtAW8SnegoXdzItz6AznU3NDqAfqKE2aa6Ncn0jwjSOlAqjmClgRmplH9622EjmTd6RZJVhmpGUEJKSGklJ3IdBC4jEyqAqWaHhtuaIydow6MNei7hV8-2DPf__YK9g8-j8dJSMjscnL-CBIBLYuNYNoLMov5mXsKG_L4qq3LWLB-HqrrH4F6rHU6o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DNw2maR67R1GLYi3FF72FzWYDAfsgqeLVf-5MHq2KPYiXEHY22bDPbzIz3wAco85hhqFsGS0HL3YzMMm-Kw1LKSfi0uGtIGPX73jdLu_3Re9LFH_m7V6aJPOYBmJpGk7OxmF0Ngt8Q62FIovJF8h1hSEWYcnGMnLqun94ntoRSOvK7J24FyPW4UXYzO_v-H40zfDmDxNpdvK0q___5g1YL1AnO8-nySYs6GENqgUCZcX6TrGoTPJQltVg7W5K7JpuwUdJYsIQ7DIUMNyRlDYoRT2TbEwhI0k8SmKmkwRrEIfHgOBsVn8Qv2NzUUw4l-nccZ1NJz8bRYyYyAOiKmajMT35wgpfelZkvkm34al99XhxbRRZHAxlCT6hv5VhZCrbU2Rj9aSpFUIy3GM1jxwzIhdbV1nNUHK8td0wtAJXONLiAVdWYKrWDlSGo6HeBWY7sql0ECktTVtbbiA8KV1PEG4KURerw0k5gP44J-vwZ7TM1P0-dr-fdb8v6tAox9gvFm7qk0YlEGJxe57YI4TTdOpwWg75TDy_sb2_VT-Cld5l2-_cdG_3YdVCIJW7pzWgMkle9QEsq7dJnCaH2XT_BH3K_xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+for+the+space-time+a+posteriori+error+estimates+for+mixed+finite+element+solutions+of+parabolic+optimal+control+problems&rft.jtitle=Numerical+algorithms&rft.au=Shakya+Pratibha&rft.au=Kumar+Sinha+Rajen&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=96&rft.issue=2&rft.spage=879&rft.epage=924&rft_id=info:doi/10.1007%2Fs11075-023-01669-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon