Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems
This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Ravia...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 96; číslo 2; s. 879 - 924 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the
L
∞
(
L
2
)
-norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests. |
|---|---|
| AbstractList | This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the L∞(L2)-norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests. This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the L ∞ ( L 2 ) -norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests. |
| Author | Kumar Sinha, Rajen Shakya, Pratibha |
| Author_xml | – sequence: 1 givenname: Pratibha surname: Shakya fullname: Shakya, Pratibha email: shakya.pratibha10@gmail.com organization: Department of Mathematics, Indian Institute of Science – sequence: 2 givenname: Rajen surname: Kumar Sinha fullname: Kumar Sinha, Rajen organization: Department of Mathematics, Indian Institute of Technology Guwahati |
| BookMark | eNqFkctKxTAURYMo-PwBRwHH0SRtXsOL-ALBiY5Dmp5qLr1NTXJBh_650QrOdJQDWescNvsQ7U5xAoROGT1nlKqLzBhVglDeEMqkNMTsoAMmFCeGS7FbZ8oUYY3R--gw5zWlVePqAH2sJje-55DxEBMuL4Dz7DyQEjaAHZ5jLpBCTAFDSpWAXH9cgYXfhDfo8RCmUADDCBuYCs5x3JYQp4zjgGeXXBfH4HGcv8wR-ziVFEc8p9hVIx-jvcGNGU5-3iP0dH31eHlL7h9u7i5X98RzowtpddMP1LfK81ZI5Sh4w41hDPQg6CCVNNJz1jtdx1b2Pe-kEY7rTnveUd8cobNlbz38uq057DpuU02fbUOFYlo0TPxD1Y2i1W2l-EL5FHNOMNg51XDp3TJqvwqxSyG2FmK_C7GmSs0i5QpPz5B-V_9hfQKCKpE4 |
| Cites_doi | 10.1137/0728003 10.1051/m2an/1981150100411 10.1007/s10598-015-9306-x 10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G 10.1007/978-0-387-75934-0 10.1016/j.cam.2006.11.015 10.1007/s10492-016-0126-x 10.1007/BF01396452 10.4208/jcm.1211-m4267 10.1137/0727019 10.1137/0710062 10.1080/01630563.2010.492046 10.1002/oca.2476 10.1090/S0025-5718-08-02104-2 10.1016/j.camwa.2013.09.022 10.1090/S0025-5718-1990-1011446-7 10.1016/0377-0427(94)90290-9 10.1137/0327038 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M 10.1137/100782760 10.1137/0311040 10.1007/s002110100380 10.1007/s10915-009-9327-8 10.1137/0322029 10.1007/978-1-4612-3172-1 10.1090/S0025-5718-06-01858-8 10.1137/070694028 10.1007/BF01396451 10.1515/jnum-2012-0013 10.1007/s10915-021-01645-2 10.1090/S0025-5718-98-01011-4 10.1007/s10589-005-4559-5 10.1007/978-3-642-65024-6 10.1137/S0036142902406314 10.1007/s40314-021-01682-5 10.1016/S0045-7825(00)00340-6 10.1016/0022-247X(73)90022-X |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-023-01669-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Proquest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Computer Science Collection Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 924 |
| ExternalDocumentID | 10_1007_s11075_023_01669_9 |
| GrantInformation_xml | – fundername: Department of Science and Technology, Ministry of Science and Technology, India grantid: PDF/2021/000444 funderid: http://dx.doi.org/10.13039/501100001409 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c298t-483df0c47c24567a0ec929911e8f50f67696c21da867646dd2b695a28b8c2b0c3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085817500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 07:04:52 EST 2025 Wed Nov 05 15:30:38 EST 2025 Sat Nov 29 01:35:01 EST 2025 Fri Feb 21 02:40:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | The backward-Euler method 65N15 Mixed finite element method Variational discretization 49J20 A posteriori error estimates Parabolic optimal control problems 65N30 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-483df0c47c24567a0ec929911e8f50f67696c21da867646dd2b695a28b8c2b0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3056955484 |
| PQPubID | 2043837 |
| PageCount | 46 |
| ParticipantIDs | proquest_journals_3057185315 proquest_journals_3056955484 crossref_primary_10_1007_s11075_023_01669_9 springer_journals_10_1007_s11075_023_01669_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BietermanMBabuškaIThe finite element method for parabolic equations, 2: a posteriori error estimation and adaptive approachNumer. Math.198240373406695603 RaviartPAThomasJMA mixed finite element method for 2nd order elliptic problems1977BerlinSpringer292315 JohnsonCNieYYThoméeVAn a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problemSIAM J. Numer. Anal.1990272772911043607 BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer-Verlag LasieckaIRitz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditionsSIAM J. Control Optim.198422477500739837 ManoharRSinhaRKA posteriori error estimates for parabolic optimal control problems with controls acting on lower dimensional manifoldsJ. Sci. Comput.202189394321845 ChenYSuperconvergence of mixed finite elements methods for optimal control problemsMath. Comp.200877126912912398768 MeidnerDVexlerBA priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraintsSIAM J. Control Optim.200847130113292407017 TröltzschFOptimal control of partial differential equations, Theory2010Providence, RIMethods and Applications. AMS BoffiDBrezziFDemkowiczLFDuránRGFalkRSFortinMMixed finite elements, compatibility conditions and applications2006ItalySpringer ChenYHuangYLiuWBYanNError estimates and superconvergence of mixed finite element methods for convex optimal control problemsJ. Sci. Comput.2009423824032585589 ChenYLuZHigh efficient and accuracy numerical methods for optimal control problems2015BeijingScience Press ChenYLiuLLuZA posteriori error estimates of mixed methods for parabolic optimal control problemsNumer. Funct. Anal. Optim.201031113511572738842 JohnsonCThoméeVError estimates for some mixed finite elements methods for parabolic type problemsRAIRO Analyse Numerique.1981154178610597 LiuWYanNA posteriori error estimates for optimal control problems governed by parabolic equationsNumer. Math.2003934975211953750 VerfürthRA posteriori error estimates for nonlinear problems: Lr(0,T;W1,ρ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(0, T;W^{1, \rho }({\Omega }))$$\end{document}-error estimates for finite element discretization of parabolic equationsNumer. Methods Partial Differ. Equ.199814487518 MakridakisCNochettoRHElliptic reconstruction and a posteriori error estimates for parabolic problemsSIAM J. Numer. Anal.200341158515942034895 Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn, Verlag (2006) FalkFSApproximation of a class of optimal control problems with order of convergence estimatesJ. Math. Anal. Appl.1973442847686788 LionsJLOptimal control of systems governed by parabolic differential equations1971BerlinSpringer-Verlag NochettoRHSavareGVerdiCA posteriori error estimates for variable time step discretizations of nonlinear evolution equationsComm. Pure Appl. Math.2000535255891737503 BrennerSCScottLRThe mathematical theory of finite element methods2008New YorkSpringer AltWMackenrothUConvergence of finite element approximations to state constrained convex parabolic boundary control problemsSIAM J. Control Optim.1987277187361001916 MenonSNatarajNPaniAKAn a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problemsSIAM J. Numer. Anal.201250136713932970747 LasieckaIMalanowskiKOn discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systemsControl Cybernet.197872136484630 ErikssonKJohnsonCAdaptive finite element methods for parabolic problems 1: a linear model problemSIAM J. Numer. Anal.19912843771083324 WheelerMFA priori L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-error estimates for Galerkin approximations to parabolic differential equationsSIAM J. Numer. Anal.197310723749351124 ShakyaPSinhaRKA priori and a posteriori error estimates of finite element approximations for elliptic optimal control problem with measure dataOptim. Control Appl. Meth.201940241264 LiLMixed discontinuous Galerkin time-stepping method for semilinear parabolic optimal control problemsComput. Math. Model.201627953436578 BabuškaIOhnimusSA posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equationsComput. Meth. Appl. Mech. Engrg.200119046914712 HechtFNew development in FreeFem++J. Numer. Math.2012202512653043640 ScottLRZhangSFinite element interpolation of nonsmooth functions satisfying boundary condiitionMath. Comp.1990544834931011446 TangYHuaYElliptic reconstruction and a posteriori error estimates for parabolic optimal control problemsJ. Appl. Anal. Comp.201442953063226457 Neittaanmäki, P.: Tiba, D.: Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Dekker: New York (1994) ClémentPApproximation by finite element function using local regularizationRAIRO Sér. Rouge Anal. Numér.197527784400739 HouTChenYMixed discontinuous Galerkin time-stepping method for linear parabolic problemsJ. Comput. Math.2015331581783326008 ManoharRSinhaRKA posteriori L∞(L∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(L^{\infty })$$\end{document} error estimates for finite element approximations to parabolic optimal control problemsComput. Appl. Math.2021402984338780 LuZNew a posteriori L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} and L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problemsAppl. Math.2016611351633470771 ChenYLiuWA posteriori error estimates for mixed finite element solutions of convex optimal control problemsJ. Comp. Appl. Math.200821176892386830 VerfürthRA posteriori error estimates and adaptive mesh refinement techniquesJ Comput. Appl. Math.19945067831284252 VerfürthRA posteriori error estimates for nonlinear problems: Lρ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\rho }({\Omega })$$\end{document}-error estimates for finite element discretization of parabolic equationsMath. Comp.199867133513601604371 McKnightRSBosargeWEJrThe Ritz-Galerkin procedure for parabolic control problemsSIAM J. Control Optim.197311510524403754 Adams, R.A., Fournier, J.J.F.: Sobolev spaces, pure and applied mathematics. Elsevier, Amsterdam (2003) ArayaRVenegasPAn a posteriori error estimator for an unsteady advection diffusion reaction problemComput. Math. Appl.201466245624763128572 BietermanMBabuškaIThe finite element method for parabolic equations, 1: a posteriori error estimationNumer. Math.198240339371695602 HinzeMA variational discretization concept in control constrained optimization: the linear quadratic caseComput. Optim. Appl.20053045632122182 LakkisOMakridakisCElliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problemsMath. Comp.200675162716582240628 M Hinze (1669_CR19) 2005; 30 R Verfürth (1669_CR45) 1998; 14 K Eriksson (1669_CR16) 1991; 28 P Shakya (1669_CR39) 2019; 40 S Menon (1669_CR34) 2012; 50 Z Lu (1669_CR29) 2016; 61 R Verfürth (1669_CR46) 1998; 67 I Lasiecka (1669_CR25) 1978; 7 SC Brenner (1669_CR7) 2008 I Babuška (1669_CR4) 2001; 190 M Bieterman (1669_CR6) 1982; 40 Y Chen (1669_CR12) 2008; 211 1669_CR35 Y Chen (1669_CR14) 2015 W Liu (1669_CR28) 2003; 93 D Boffi (1669_CR8) 2006 1669_CR1 R Manohar (1669_CR31) 2021; 89 D Meidner (1669_CR33) 2008; 47 F Tröltzsch (1669_CR44) 2010 R Araya (1669_CR3) 2014; 66 PA Raviart (1669_CR38) 1977 Y Tang (1669_CR41) 2014; 4 1669_CR42 M Bieterman (1669_CR5) 1982; 40 P Clément (1669_CR15) 1975; 2 RS McKnight (1669_CR32) 1973; 11 MF Wheeler (1669_CR47) 1973; 10 Y Chen (1669_CR10) 2008; 77 L Li (1669_CR26) 2016; 27 C Makridakis (1669_CR30) 2003; 41 LR Scott (1669_CR40) 1990; 54 W Alt (1669_CR2) 1987; 27 FS Falk (1669_CR17) 1973; 44 I Lasiecka (1669_CR24) 1984; 22 C Johnson (1669_CR22) 1981; 15 F Brezzi (1669_CR9) 1991 R Verfürth (1669_CR43) 1994; 50 F Hecht (1669_CR18) 2012; 20 Y Chen (1669_CR13) 2010; 31 R Manohar (1669_CR37) 2021; 40 T Hou (1669_CR20) 2015; 33 C Johnson (1669_CR21) 1990; 27 Y Chen (1669_CR11) 2009; 42 JL Lions (1669_CR27) 1971 RH Nochetto (1669_CR36) 2000; 53 O Lakkis (1669_CR23) 2006; 75 |
| References_xml | – reference: ClémentPApproximation by finite element function using local regularizationRAIRO Sér. Rouge Anal. Numér.197527784400739 – reference: TröltzschFOptimal control of partial differential equations, Theory2010Providence, RIMethods and Applications. AMS – reference: VerfürthRA posteriori error estimates for nonlinear problems: Lρ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\rho }({\Omega })$$\end{document}-error estimates for finite element discretization of parabolic equationsMath. Comp.199867133513601604371 – reference: MenonSNatarajNPaniAKAn a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problemsSIAM J. Numer. Anal.201250136713932970747 – reference: BietermanMBabuškaIThe finite element method for parabolic equations, 2: a posteriori error estimation and adaptive approachNumer. Math.198240373406695603 – reference: JohnsonCThoméeVError estimates for some mixed finite elements methods for parabolic type problemsRAIRO Analyse Numerique.1981154178610597 – reference: LuZNew a posteriori L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (L^2)$$\end{document} and L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problemsAppl. Math.2016611351633470771 – reference: Neittaanmäki, P.: Tiba, D.: Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Dekker: New York (1994) – reference: ManoharRSinhaRKA posteriori L∞(L∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(L^{\infty })$$\end{document} error estimates for finite element approximations to parabolic optimal control problemsComput. Appl. Math.2021402984338780 – reference: LasieckaIRitz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditionsSIAM J. Control Optim.198422477500739837 – reference: HinzeMA variational discretization concept in control constrained optimization: the linear quadratic caseComput. Optim. Appl.20053045632122182 – reference: LiLMixed discontinuous Galerkin time-stepping method for semilinear parabolic optimal control problemsComput. Math. Model.201627953436578 – reference: ScottLRZhangSFinite element interpolation of nonsmooth functions satisfying boundary condiitionMath. Comp.1990544834931011446 – reference: MakridakisCNochettoRHElliptic reconstruction and a posteriori error estimates for parabolic problemsSIAM J. Numer. Anal.200341158515942034895 – reference: ShakyaPSinhaRKA priori and a posteriori error estimates of finite element approximations for elliptic optimal control problem with measure dataOptim. Control Appl. Meth.201940241264 – reference: BabuškaIOhnimusSA posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equationsComput. Meth. Appl. Mech. Engrg.200119046914712 – reference: ChenYHuangYLiuWBYanNError estimates and superconvergence of mixed finite element methods for convex optimal control problemsJ. Sci. Comput.2009423824032585589 – reference: LasieckaIMalanowskiKOn discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systemsControl Cybernet.197872136484630 – reference: TangYHuaYElliptic reconstruction and a posteriori error estimates for parabolic optimal control problemsJ. Appl. Anal. Comp.201442953063226457 – reference: ChenYSuperconvergence of mixed finite elements methods for optimal control problemsMath. Comp.200877126912912398768 – reference: HechtFNew development in FreeFem++J. Numer. Math.2012202512653043640 – reference: ManoharRSinhaRKA posteriori error estimates for parabolic optimal control problems with controls acting on lower dimensional manifoldsJ. Sci. Comput.202189394321845 – reference: AltWMackenrothUConvergence of finite element approximations to state constrained convex parabolic boundary control problemsSIAM J. Control Optim.1987277187361001916 – reference: ChenYLiuWA posteriori error estimates for mixed finite element solutions of convex optimal control problemsJ. Comp. Appl. Math.200821176892386830 – reference: ChenYLiuLLuZA posteriori error estimates of mixed methods for parabolic optimal control problemsNumer. Funct. Anal. Optim.201031113511572738842 – reference: ErikssonKJohnsonCAdaptive finite element methods for parabolic problems 1: a linear model problemSIAM J. Numer. Anal.19912843771083324 – reference: LionsJLOptimal control of systems governed by parabolic differential equations1971BerlinSpringer-Verlag – reference: RaviartPAThomasJMA mixed finite element method for 2nd order elliptic problems1977BerlinSpringer292315 – reference: MeidnerDVexlerBA priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraintsSIAM J. Control Optim.200847130113292407017 – reference: LakkisOMakridakisCElliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problemsMath. Comp.200675162716582240628 – reference: LiuWYanNA posteriori error estimates for optimal control problems governed by parabolic equationsNumer. Math.2003934975211953750 – reference: ArayaRVenegasPAn a posteriori error estimator for an unsteady advection diffusion reaction problemComput. Math. Appl.201466245624763128572 – reference: BrezziFFortinMMixed and hybrid finite element methods1991BerlinSpringer-Verlag – reference: Adams, R.A., Fournier, J.J.F.: Sobolev spaces, pure and applied mathematics. Elsevier, Amsterdam (2003) – reference: ChenYLuZHigh efficient and accuracy numerical methods for optimal control problems2015BeijingScience Press – reference: JohnsonCNieYYThoméeVAn a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problemSIAM J. Numer. Anal.1990272772911043607 – reference: NochettoRHSavareGVerdiCA posteriori error estimates for variable time step discretizations of nonlinear evolution equationsComm. Pure Appl. Math.2000535255891737503 – reference: BoffiDBrezziFDemkowiczLFDuránRGFalkRSFortinMMixed finite elements, compatibility conditions and applications2006ItalySpringer – reference: HouTChenYMixed discontinuous Galerkin time-stepping method for linear parabolic problemsJ. Comput. Math.2015331581783326008 – reference: Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn, Verlag (2006) – reference: VerfürthRA posteriori error estimates for nonlinear problems: Lr(0,T;W1,ρ(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r(0, T;W^{1, \rho }({\Omega }))$$\end{document}-error estimates for finite element discretization of parabolic equationsNumer. Methods Partial Differ. Equ.199814487518 – reference: McKnightRSBosargeWEJrThe Ritz-Galerkin procedure for parabolic control problemsSIAM J. Control Optim.197311510524403754 – reference: BietermanMBabuškaIThe finite element method for parabolic equations, 1: a posteriori error estimationNumer. Math.198240339371695602 – reference: VerfürthRA posteriori error estimates and adaptive mesh refinement techniquesJ Comput. Appl. Math.19945067831284252 – reference: BrennerSCScottLRThe mathematical theory of finite element methods2008New YorkSpringer – reference: WheelerMFA priori L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-error estimates for Galerkin approximations to parabolic differential equationsSIAM J. Numer. Anal.197310723749351124 – reference: FalkFSApproximation of a class of optimal control problems with order of convergence estimatesJ. Math. Anal. Appl.1973442847686788 – volume: 28 start-page: 43 year: 1991 ident: 1669_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0728003 – volume-title: Mixed finite elements, compatibility conditions and applications year: 2006 ident: 1669_CR8 – volume: 7 start-page: 21 year: 1978 ident: 1669_CR25 publication-title: Control Cybernet. – volume: 15 start-page: 41 year: 1981 ident: 1669_CR22 publication-title: RAIRO Analyse Numerique. doi: 10.1051/m2an/1981150100411 – volume: 27 start-page: 95 year: 2016 ident: 1669_CR26 publication-title: Comput. Math. Model. doi: 10.1007/s10598-015-9306-x – volume: 14 start-page: 487 year: 1998 ident: 1669_CR45 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G – volume-title: The mathematical theory of finite element methods year: 2008 ident: 1669_CR7 doi: 10.1007/978-0-387-75934-0 – volume: 211 start-page: 76 year: 2008 ident: 1669_CR12 publication-title: J. Comp. Appl. Math. doi: 10.1016/j.cam.2006.11.015 – volume: 61 start-page: 135 year: 2016 ident: 1669_CR29 publication-title: Appl. Math. doi: 10.1007/s10492-016-0126-x – start-page: 292 volume-title: A mixed finite element method for 2nd order elliptic problems year: 1977 ident: 1669_CR38 – volume: 40 start-page: 373 year: 1982 ident: 1669_CR6 publication-title: Numer. Math. doi: 10.1007/BF01396452 – ident: 1669_CR35 – volume: 33 start-page: 158 year: 2015 ident: 1669_CR20 publication-title: J. Comput. Math. doi: 10.4208/jcm.1211-m4267 – volume: 27 start-page: 277 year: 1990 ident: 1669_CR21 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727019 – volume: 10 start-page: 723 year: 1973 ident: 1669_CR47 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0710062 – volume: 31 start-page: 1135 year: 2010 ident: 1669_CR13 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2010.492046 – volume: 40 start-page: 241 year: 2019 ident: 1669_CR39 publication-title: Optim. Control Appl. Meth. doi: 10.1002/oca.2476 – volume: 77 start-page: 1269 year: 2008 ident: 1669_CR10 publication-title: Math. Comp. doi: 10.1090/S0025-5718-08-02104-2 – volume: 66 start-page: 2456 year: 2014 ident: 1669_CR3 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.09.022 – volume: 4 start-page: 295 year: 2014 ident: 1669_CR41 publication-title: J. Appl. Anal. Comp. – volume: 54 start-page: 483 year: 1990 ident: 1669_CR40 publication-title: Math. Comp. doi: 10.1090/S0025-5718-1990-1011446-7 – volume: 50 start-page: 67 year: 1994 ident: 1669_CR43 publication-title: J Comput. Appl. Math. doi: 10.1016/0377-0427(94)90290-9 – volume: 27 start-page: 718 year: 1987 ident: 1669_CR2 publication-title: SIAM J. Control Optim. doi: 10.1137/0327038 – ident: 1669_CR42 – volume: 53 start-page: 525 year: 2000 ident: 1669_CR36 publication-title: Comm. Pure Appl. Math. doi: 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M – volume-title: Optimal control of partial differential equations, Theory year: 2010 ident: 1669_CR44 – volume: 50 start-page: 1367 year: 2012 ident: 1669_CR34 publication-title: SIAM J. Numer. Anal. doi: 10.1137/100782760 – volume: 11 start-page: 510 year: 1973 ident: 1669_CR32 publication-title: SIAM J. Control Optim. doi: 10.1137/0311040 – volume: 93 start-page: 497 year: 2003 ident: 1669_CR28 publication-title: Numer. Math. doi: 10.1007/s002110100380 – volume: 42 start-page: 382 year: 2009 ident: 1669_CR11 publication-title: J. Sci. Comput. doi: 10.1007/s10915-009-9327-8 – volume: 22 start-page: 477 year: 1984 ident: 1669_CR24 publication-title: SIAM J. Control Optim. doi: 10.1137/0322029 – volume-title: Mixed and hybrid finite element methods year: 1991 ident: 1669_CR9 doi: 10.1007/978-1-4612-3172-1 – volume: 75 start-page: 1627 year: 2006 ident: 1669_CR23 publication-title: Math. Comp. doi: 10.1090/S0025-5718-06-01858-8 – volume: 47 start-page: 1301 year: 2008 ident: 1669_CR33 publication-title: SIAM J. Control Optim. doi: 10.1137/070694028 – volume: 40 start-page: 339 year: 1982 ident: 1669_CR5 publication-title: Numer. Math. doi: 10.1007/BF01396451 – volume: 20 start-page: 251 year: 2012 ident: 1669_CR18 publication-title: J. Numer. Math. doi: 10.1515/jnum-2012-0013 – volume: 89 start-page: 39 year: 2021 ident: 1669_CR31 publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01645-2 – volume: 67 start-page: 1335 year: 1998 ident: 1669_CR46 publication-title: Math. Comp. doi: 10.1090/S0025-5718-98-01011-4 – volume-title: High efficient and accuracy numerical methods for optimal control problems year: 2015 ident: 1669_CR14 – volume: 30 start-page: 45 year: 2005 ident: 1669_CR19 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-005-4559-5 – volume-title: Optimal control of systems governed by parabolic differential equations year: 1971 ident: 1669_CR27 doi: 10.1007/978-3-642-65024-6 – volume: 41 start-page: 1585 year: 2003 ident: 1669_CR30 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902406314 – volume: 2 start-page: 77 year: 1975 ident: 1669_CR15 publication-title: RAIRO Sér. Rouge Anal. Numér. – volume: 40 start-page: 298 year: 2021 ident: 1669_CR37 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-021-01682-5 – volume: 190 start-page: 4691 year: 2001 ident: 1669_CR4 publication-title: Comput. Meth. Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)00340-6 – volume: 44 start-page: 28 year: 1973 ident: 1669_CR17 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(73)90022-X – ident: 1669_CR1 |
| SSID | ssj0010027 |
| Score | 2.352966 |
| Snippet | This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 879 |
| SubjectTerms | Algebra Algorithms Approximation Computer Science Discretization Error analysis Estimates Estimators Finite element method Implicit methods Numeric Computing Numerical Analysis Optimal control Original Paper Spacetime Theory of Computation Variables |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD1apYrbIHbxpI89w9ilg8aBF80FvYbDYQsE1Jqnj1nzuTbBoUe9BLCLubbNjH7DeZmW8AzlHnsJNEupbr48UbxjbZd6XlKOWnXPrcjSt2_btwPOaTiXgwQWFl4-3emCQrSd0Gu6GmQtHE5P8TBMIS67DhE9sM6eiPL0vbAWlalY0T5S_iG25CZX5_x_fjqMWYP8yi1Wkz6v7vO3dhx6BLdlUvhz1Y07MedA3SZGYfl1jUJHNoynqwfb8kcC334bMhK2EIahlWMJQ8SluUip5JNqfQkCLLi4zposAWxNUxJdhatZ9mH9hdmhGeZbp2UGfLRc7ylBHjeEyUxCyf05OvzPjMM5PhpjyA59HN0_WtZbI1WMoRfEF_JZPUVl6oyJYaSlsrhF4oSzVPfTslV9pAOcNEcrz1giRx4kD40uExV05sK_cQOrN8po-Aeb4cKh2nSkvb004Qi1DKIBSEjxLUufpw0UxaNK9JOaKWfpmGP8Lhj6rhj0QfBs28RmaDlhFpTgKhFPdWVYeEZIZ-Hy6baW6rV3d2_LfmJ7DlIEqqfc8G0FkUb_oUNtX7IiuLs2pdfwGMQ_NS priority: 102 providerName: Springer Nature |
| Title | Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems |
| URI | https://link.springer.com/article/10.1007/s11075-023-01669-9 https://www.proquest.com/docview/3056955484 https://www.proquest.com/docview/3057185315 |
| Volume | 96 |
| WOSCitedRecordID | wos001085817500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB2s9aAHq1WxWssevGkwSfOxOYmKRVBLaVV6C5vNBgLa1qSKV_-5M8mmRUEvXkJgN9mQ2Z19szPzBuAYbQ4zjkXX6Lp4cazIJP-uMGwp3YQLl3ejgl3_zu_3-XgcDPSBW67DKiudWCjqeCrpjPyMoG6Aex93zmevBlWNIu-qLqFRgzqxJFhF6N5o4UUgm6vwdqImRqTDddJMmTqHdg_lJlM0kecFRvB9Y1qizR8O0mLf6TX--8VbsKkRJ7sop8g2rKhJExoafTK9tvMmbNwvGFzzHfis2EoYolqGDQxVj1QG1aJngs0oNyRLcTimsgx7EFnHC-HWov9L-oHvTlICtEyVEepsMcvZNGFEOR4RJzGbzujJZ6aD5pkucZPvwmPv-uHqxtDlGgxpB3xOx5JxYkrHl-RM9YWpJGIvVKaKJ66ZUCytJ20rFhxvHS-O7Qj_j7B5xKUdmbK7B6uT6UTtA3NcYUkVJVIJ01G2FwW-EJ4fEECK0ehqwUklq3BWsnKES_5lkmyIkg0LyYZBC9qVgEK9QvNwKZ3fmn2CMpbbgtNqBiybfx_s4O_BDmHdRlhUBpu1YXWevakjWJPv8zTPOlC_vO4Phh2o3fpGp5jMeB2Onr4AILz6lw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BLhLtodtCK7bd0jm0pxKRdV7Ooar6AIFYVqgCiVtwHEeK1H2QbF_H_qH-xs4kzq6oRG8cuESR7MSK83n8jecF8Jp0DjfLlOd4AV38YeqyfVc5QusglyqQXlpn1x9F47G8vIzP1uBPGwvDbpWtTKwFdTbTfEa-z1Q3pr1P-u_n1w5XjWLraltCo4HFifn1g1S26t3xZ_q_b4Q4PDj_dOTYqgKOFrFc8OlZlrvajzTb_CLlGk0Ugda8kXng5uzyGWoxzJSkWz_MMpHSwErIVGqRutqj965D1_f8MOhA9-PB-OzL0m7BWl5tXyXZT9xK2jCdJliPNC2Ohmb_pTCMnfjmVrjit_-YZOud7rB33-boMTyynBo_NIvgCayZ6Rb0LL9GK72qLXh4usxRW23D7zYfCxJvR2pAEq7aOItiYlDhnKNfyoI-D01ZUg9ORzJhZl73nxQ_6d15wZQdTeODj8t1jLMcOal6ylmXcTbnJ7-iDQtAW8SnegoXdzItz6AznU3NDqAfqKE2aa6Ncn0jwjSOlAqjmClgRmplH9622EjmTd6RZJVhmpGUEJKSGklJ3IdBC4jEyqAqWaHhtuaIydow6MNei7hV8-2DPf__YK9g8-j8dJSMjscnL-CBIBLYuNYNoLMov5mXsKG_L4qq3LWLB-HqrrH4F6rHU6o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DNw2maR67R1GLYi3FF72FzWYDAfsgqeLVf-5MHq2KPYiXEHY22bDPbzIz3wAco85hhqFsGS0HL3YzMMm-Kw1LKSfi0uGtIGPX73jdLu_3Re9LFH_m7V6aJPOYBmJpGk7OxmF0Ngt8Q62FIovJF8h1hSEWYcnGMnLqun94ntoRSOvK7J24FyPW4UXYzO_v-H40zfDmDxNpdvK0q___5g1YL1AnO8-nySYs6GENqgUCZcX6TrGoTPJQltVg7W5K7JpuwUdJYsIQ7DIUMNyRlDYoRT2TbEwhI0k8SmKmkwRrEIfHgOBsVn8Qv2NzUUw4l-nccZ1NJz8bRYyYyAOiKmajMT35wgpfelZkvkm34al99XhxbRRZHAxlCT6hv5VhZCrbU2Rj9aSpFUIy3GM1jxwzIhdbV1nNUHK8td0wtAJXONLiAVdWYKrWDlSGo6HeBWY7sql0ECktTVtbbiA8KV1PEG4KURerw0k5gP44J-vwZ7TM1P0-dr-fdb8v6tAox9gvFm7qk0YlEGJxe57YI4TTdOpwWg75TDy_sb2_VT-Cld5l2-_cdG_3YdVCIJW7pzWgMkle9QEsq7dJnCaH2XT_BH3K_xo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+for+the+space-time+a+posteriori+error+estimates+for+mixed+finite+element+solutions+of+parabolic+optimal+control+problems&rft.jtitle=Numerical+algorithms&rft.au=Shakya+Pratibha&rft.au=Kumar+Sinha+Rajen&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=96&rft.issue=2&rft.spage=879&rft.epage=924&rft_id=info:doi/10.1007%2Fs11075-023-01669-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |