Performance Evaluation of Keyword Extraction Methods and Visualization for Student Online Comments

Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment, students often post comments in subject forums. The automatic and accurate extraction of keywords from these comments are beneficial to lecture...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Symmetry (Basel) Ročník 12; číslo 11; s. 1923
Hlavní autori: Liu, Feng, Huang, Xiaodi, Huang, Weidong, Duan, Sophia Xiaoxia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2020
Predmet:
ISSN:2073-8994, 2073-8994
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment, students often post comments in subject forums. The automatic and accurate extraction of keywords from these comments are beneficial to lecturers (particular when it comes to repeatedly delivered subjects). In this paper, we compare the performance of traditional machine learning algorithms and two deep learning methods in extracting topic keywords from student comments posted in subject forums. For this purpose, we collected student comment data from a period of two years, manually tagging part of the raw data for our experiments. Based on this dataset, we comprehensively compared the five typical algorithms of naïve Bayes, logistic regression, support vector machine, convolutional neural networks, and Long Short-Term Memory with Attention (Att-LSTM). The performances were measured by the four evaluation metrics. We further examined the keywords by visualization. From the results of our experiment and visualization, we conclude that the Att-LSTM method is the best approach for topic keyword extraction from student comments. Further, the results from the algorithms and visualization are symmetry, to some degree. In particular, the extracted topics from the comments posted at the same stages of different teaching sessions are, almost, reflection symmetry.
AbstractList Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment, students often post comments in subject forums. The automatic and accurate extraction of keywords from these comments are beneficial to lecturers (particular when it comes to repeatedly delivered subjects). In this paper, we compare the performance of traditional machine learning algorithms and two deep learning methods in extracting topic keywords from student comments posted in subject forums. For this purpose, we collected student comment data from a period of two years, manually tagging part of the raw data for our experiments. Based on this dataset, we comprehensively compared the five typical algorithms of naïve Bayes, logistic regression, support vector machine, convolutional neural networks, and Long Short-Term Memory with Attention (Att-LSTM). The performances were measured by the four evaluation metrics. We further examined the keywords by visualization. From the results of our experiment and visualization, we conclude that the Att-LSTM method is the best approach for topic keyword extraction from student comments. Further, the results from the algorithms and visualization are symmetry, to some degree. In particular, the extracted topics from the comments posted at the same stages of different teaching sessions are, almost, reflection symmetry.
Author Duan, Sophia Xiaoxia
Huang, Xiaodi
Liu, Feng
Huang, Weidong
Author_xml – sequence: 1
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
– sequence: 2
  givenname: Xiaodi
  orcidid: 0000-0002-6084-1851
  surname: Huang
  fullname: Huang, Xiaodi
– sequence: 3
  givenname: Weidong
  surname: Huang
  fullname: Huang, Weidong
– sequence: 4
  givenname: Sophia Xiaoxia
  orcidid: 0000-0002-8235-0092
  surname: Duan
  fullname: Duan, Sophia Xiaoxia
BookMark eNptkEtLAzEQx4MoWGtPfoGAR1nNY59HKfWBlQo-rks2O8GU3aQmWbV-emProYhzmBe_mWH-R2jfWAMInVByznlFLvy6p4xSWjG-h0aMFDwpqyrd38kP0cT7JYmWkSzNyQg1D-CUdb0wEvDsXXSDCNoabBW-g_WHdS2efQYn5KZ7D-HVth4L0-IX7QfR6a8tH3fgxzC0YAJemE4bwFPb97H0x-hAic7D5DeO0fPV7Gl6k8wX17fTy3kiWVWGJKVFJVlOBTSiyUgJQCAvBJCS8gyIysumoIq1LVENsFbSsmFM0VKIrOCS53yMTrd7V86-DeBDvbSDM_FkzdI8zVISfaTOtpR01nsHql453Qu3rimpf3Ssd3SMNP1DSx02H0dNdPfvzDci73lO
CitedBy_id crossref_primary_10_1108_EL_12_2023_0310
crossref_primary_10_3390_knowledge2020015
crossref_primary_10_1145_3761805
crossref_primary_10_3390_electronics12224560
crossref_primary_10_61186_jsdp_21_4_113
Cites_doi 10.3745/JIPS.2012.8.4.693
10.1016/j.cola.2020.100946
10.1145/1183614.1183683
10.1007/BF00994018
10.1109/IEEM.2017.8290290
10.1007/978-3-030-29513-4_31
10.1016/S0167-9236(99)00038-X
10.1001/jama.2016.7653
10.3115/v1/D14-1181
10.1016/0306-4573(88)90021-0
10.1016/j.cola.2019.03.004
10.1007/978-3-642-13654-2_12
10.1147/rd.14.0309
10.1007/978-3-319-01692-4_12
10.1007/s10462-018-09677-1
10.18653/v1/P16-2034
10.1002/(SICI)1097-4571(199504)46:3<162::AID-ASI2>3.0.CO;2-6
10.1109/ICTER.2016.7829895
10.1108/IJWIS-11-2017-0081
10.1109/BESC.2017.8256391
10.1007/11775300
10.18653/v1/N16-1065
10.1016/j.jvlc.2014.12.007
10.1145/1141753.1141819
10.1145/3065386
10.1007/978-3-319-46307-0_11
10.1016/j.cola.2018.12.007
10.1109/TKDE.2008.76
10.1016/j.jvlc.2018.11.004
10.1145/2766462.2767780
10.1016/j.jvlc.2005.10.003
10.1162/neco.1997.9.8.1735
10.18653/v1/D16-1058
10.1016/j.ymeth.2018.05.026
10.1016/j.cola.2020.101000
10.1145/122860.122863
10.1016/j.ipm.2007.01.015
10.1016/j.neunet.2014.09.003
10.1142/S0218213004001466
10.3115/v1/P14-1119
10.3115/1119355.1119383
10.1023/A:1009976227802
10.1007/978-3-030-60816-3
10.1007/978-3-030-00560-3_40
10.1109/TKDE.2006.180
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.3390/sym12111923
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym12111923
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c298t-4179c261aebab508ee0e67ae08135e0f68b71f2dd0fbe2dc18b22f18aa573c363
IEDL.DBID PIMPY
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594509700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:54:32 EDT 2025
Tue Nov 18 22:23:32 EST 2025
Sat Nov 29 07:18:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-4179c261aebab508ee0e67ae08135e0f68b71f2dd0fbe2dc18b22f18aa573c363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8235-0092
0000-0002-6084-1851
OpenAccessLink https://www.proquest.com/publiccontent/docview/2464540464?pq-origsite=%requestingapplication%
PQID 2464540464
PQPubID 2032326
ParticipantIDs proquest_journals_2464540464
crossref_primary_10_3390_sym12111923
crossref_citationtrail_10_3390_sym12111923
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Isa (ref_45) 2008; 20
Huang (ref_68) 2015; 28
Padmavathi (ref_41) 2012; 3
Hochreiter (ref_55) 1997; 9
Ilias (ref_2) 2008; 1
ref_14
ref_58
ref_13
ref_57
ref_12
ref_56
ref_10
ref_54
ref_53
ref_52
Ercan (ref_20) 2007; 43
ref_51
ref_59
Zhang (ref_15) 2008; 4
ref_61
Yoo (ref_71) 2019; 53
ref_60
Schmidhuber (ref_29) 2015; 61
ref_69
ref_24
ref_23
Kim (ref_38) 2006; 18
ref_22
ref_66
ref_21
ref_64
ref_63
ref_62
Seipp (ref_70) 2019; 50
Diyanati (ref_5) 2020; 61
ref_28
Cohen (ref_18) 1995; 46
ref_27
Angelini (ref_72) 2019; 52
ref_26
Gutwin (ref_31) 1999; 27
You (ref_4) 2018; 145
Krizhevsky (ref_65) 2017; 60
Luhn (ref_17) 1957; 1
ref_35
Tolles (ref_39) 2016; 316
ref_33
Tsien (ref_40) 1998; 98
ref_30
Du (ref_73) 2020; 57
Igiri (ref_43) 2015; 17
ref_37
Kosovac (ref_32) 2000; 5
Turney (ref_9) 2000; 2
Matsuo (ref_19) 2004; 13
Kadhim (ref_11) 2019; 52
Cortes (ref_42) 1995; 20
ref_47
Kohavi (ref_36) 1996; 96
ref_46
Salton (ref_16) 1988; 24
ref_44
ref_1
ref_3
Sarkar (ref_34) 2012; 8
ref_49
ref_48
ref_8
Casalino (ref_25) 2018; 14
ref_7
ref_6
Huang (ref_67) 2006; 17
References_xml – volume: 8
  start-page: 693
  year: 2012
  ident: ref_34
  article-title: Machine Learning Based Keyphrase Extraction: Comparing Decision Trees, Naïve Bayes, and Artificial Neural Networks
  publication-title: J. Inf. Process. Syst.
  doi: 10.3745/JIPS.2012.8.4.693
– volume: 57
  start-page: 100946
  year: 2020
  ident: ref_73
  article-title: Visual analysis of customer switching behavior pattern mining for takeout service
  publication-title: J. Comput. Lang.
  doi: 10.1016/j.cola.2020.100946
– ident: ref_8
  doi: 10.1145/1183614.1183683
– ident: ref_26
– ident: ref_51
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_42
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_57
  doi: 10.1109/IEEM.2017.8290290
– ident: ref_61
  doi: 10.1007/978-3-030-29513-4_31
– volume: 27
  start-page: 81
  year: 1999
  ident: ref_31
  article-title: Improving browsing in digital libraries with keyphrase indexes
  publication-title: J. Decis. Support Syst.
  doi: 10.1016/S0167-9236(99)00038-X
– volume: 17
  start-page: 21
  year: 2015
  ident: ref_43
  article-title: Support Vector Machine—Based Prediction System for a Football Match Result
  publication-title: IOSR J. Comput. Eng.
– ident: ref_1
– ident: ref_35
– volume: 316
  start-page: 533
  year: 2016
  ident: ref_39
  article-title: Logistic regression: Relating patient characteristics to outcomes
  publication-title: JAMA
  doi: 10.1001/jama.2016.7653
– ident: ref_49
  doi: 10.3115/v1/D14-1181
– volume: 24
  start-page: 513
  year: 1988
  ident: ref_16
  article-title: Term-weighting approaches in automatic text retrieval
  publication-title: Inf. Process. Manag.
  doi: 10.1016/0306-4573(88)90021-0
– ident: ref_58
– volume: 53
  start-page: 9
  year: 2019
  ident: ref_71
  article-title: Visual analytics and visualization for android security risk
  publication-title: J. Comput. Lang.
  doi: 10.1016/j.cola.2019.03.004
– ident: ref_46
  doi: 10.1007/978-3-642-13654-2_12
– volume: 1
  start-page: 309
  year: 1957
  ident: ref_17
  article-title: A statistical approach to mechanized encoding and searching of literary information
  publication-title: Ibm J. Res. Dev.
  doi: 10.1147/rd.14.0309
– ident: ref_6
  doi: 10.1007/978-3-319-01692-4_12
– volume: 52
  start-page: 273
  year: 2019
  ident: ref_11
  article-title: Survey on supervised machine learning techniques for automatic text classification
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-09677-1
– ident: ref_27
– ident: ref_52
– ident: ref_59
  doi: 10.18653/v1/P16-2034
– volume: 46
  start-page: 162
  year: 1995
  ident: ref_18
  article-title: Highlights: Language-and domain-independent automatic indexing terms for abstracting
  publication-title: J. Am. Soc. Inf. Sci.
  doi: 10.1002/(SICI)1097-4571(199504)46:3<162::AID-ASI2>3.0.CO;2-6
– ident: ref_48
– volume: 4
  start-page: 1169
  year: 2008
  ident: ref_15
  article-title: Automatic keyword extraction from documents using conditional random fields
  publication-title: J. Comput. Inf. Syst.
– ident: ref_13
  doi: 10.1109/ICTER.2016.7829895
– volume: 14
  start-page: 334
  year: 2018
  ident: ref_25
  article-title: A framework for intelligent Twitter data analysis with non-negative matrix factorization
  publication-title: Int. J. Web Inf. Syst.
  doi: 10.1108/IJWIS-11-2017-0081
– ident: ref_7
  doi: 10.1109/BESC.2017.8256391
– ident: ref_44
  doi: 10.1007/11775300
– ident: ref_50
  doi: 10.18653/v1/N16-1065
– ident: ref_66
– volume: 28
  start-page: 71
  year: 2015
  ident: ref_68
  article-title: GO: A cluster algorithm for graph visualization
  publication-title: J. Vis. Lang. Comput.
  doi: 10.1016/j.jvlc.2014.12.007
– ident: ref_10
  doi: 10.1145/1141753.1141819
– ident: ref_62
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_65
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 96
  start-page: 202
  year: 1996
  ident: ref_36
  article-title: Scaling Up the Accuracy of Naïve-Bayes Classifiers: A Decision-Tree Hybrid
  publication-title: KDD
– ident: ref_24
  doi: 10.1007/978-3-319-46307-0_11
– volume: 3
  start-page: 1
  year: 2012
  ident: ref_41
  article-title: Logistic regression in feature selection in data mining
  publication-title: Int. J. Sci. Eng. Res.
– volume: 52
  start-page: 10
  year: 2019
  ident: ref_72
  article-title: MAD: A visual analytics solution for Multi-step cyber Attacks Detection
  publication-title: J. Comput. Lang.
  doi: 10.1016/j.cola.2018.12.007
– ident: ref_28
– volume: 20
  start-page: 1264
  year: 2008
  ident: ref_45
  article-title: Text document preprocessing with the Bayes formula for classification using the support vector machine
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.76
– ident: ref_53
– ident: ref_30
– ident: ref_3
– volume: 50
  start-page: 1
  year: 2019
  ident: ref_70
  article-title: Towards a visual guide for communicating uncertainty in visual analytics
  publication-title: J. Comput. Lang.
  doi: 10.1016/j.jvlc.2018.11.004
– ident: ref_47
– ident: ref_64
  doi: 10.1145/2766462.2767780
– volume: 17
  start-page: 225
  year: 2006
  ident: ref_67
  article-title: Clustering graphs for visualization via node similarities
  publication-title: J. Vis. Lang. Comput.
  doi: 10.1016/j.jvlc.2005.10.003
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_55
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_56
  doi: 10.18653/v1/D16-1058
– volume: 145
  start-page: 82
  year: 2018
  ident: ref_4
  article-title: DeepText2Go: Improving large-scale protein function prediction with deep semantic text representation
  publication-title: Methods
  doi: 10.1016/j.ymeth.2018.05.026
– volume: 61
  start-page: 101000
  year: 2020
  ident: ref_5
  article-title: A proposed approach to determining expertise level of StackOverflow programmers based on mining of user comments
  publication-title: J. Comput. Lang.
  doi: 10.1016/j.cola.2020.101000
– ident: ref_37
– ident: ref_63
– ident: ref_23
  doi: 10.1145/122860.122863
– volume: 5
  start-page: 25
  year: 2000
  ident: ref_32
  article-title: Use of keyphrase extraction software for creation of an AEC/FM thesaurus
  publication-title: J. Inf. Technol. Constr.
– volume: 43
  start-page: 1705
  year: 2007
  ident: ref_20
  article-title: Using lexical chains for keyword extraction
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2007.01.015
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_29
  article-title: Deep Learning in Neural Networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 13
  start-page: 157
  year: 2004
  ident: ref_19
  article-title: Keyword extraction from a single document using word co-occurrence statistical information
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213004001466
– ident: ref_33
– ident: ref_54
– ident: ref_12
  doi: 10.3115/v1/P14-1119
– ident: ref_21
  doi: 10.3115/1119355.1119383
– volume: 2
  start-page: 303
  year: 2000
  ident: ref_9
  article-title: Learning Algorithms for Keyphrase Extraction
  publication-title: Inf. Retr.
  doi: 10.1023/A:1009976227802
– ident: ref_60
– ident: ref_14
  doi: 10.1007/978-3-030-60816-3
– volume: 98
  start-page: 493
  year: 1998
  ident: ref_40
  article-title: Using classification tree and logistic regression methods to diagnose myocardial infarction
  publication-title: Medinfo
– ident: ref_22
– volume: 1
  start-page: 131
  year: 2008
  ident: ref_2
  article-title: Student Satisfaction and Service Quality: Any Differences in Demographic Factors?
  publication-title: Int. Bus. Res.
– ident: ref_69
  doi: 10.1007/978-3-030-00560-3_40
– volume: 18
  start-page: 1457
  year: 2006
  ident: ref_38
  article-title: Some effective techniques for Naïve Bayes text classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.180
SSID ssj0000505460
Score 2.2514956
Snippet Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1923
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Datasets
Decision trees
Deep learning
Indexing
Information retrieval
Keywords
Linguistics
Machine learning
Natural language processing
Neural networks
Parameter estimation
Performance evaluation
Sentiment analysis
Support vector machines
Symmetry
Visualization
Title Performance Evaluation of Keyword Extraction Methods and Visualization for Student Online Comments
URI https://www.proquest.com/docview/2464540464
Volume 12
WOSCitedRecordID wos000594509700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5By8AClId4lMpDB0CKmldTZ0KAgkBAFfESTJHt2FIlSKEJjy78dnyJW0BCTCxZYlmWzj7f-e77PoC2TqNDYUtmuUwxyw-9rsWV71s85EEQOozZpZzP7Xmv36d3d2Fs4NG5aauc-MTSUVdsz9i3rZ1wJx0KfDHvuCUTFZbl9p-eLdSQwlqrEdSYhToSb9k1qMenF_H99M0FVdv8wK5gep5eZicfPyLHGYY5Py-mn365vGyOF_93mUuwYIJOclDtkgbMyGwZGuZY52THcE_vrgCPv4AEJJoygZOhImdy_KYzVRK9F6MKDUEuSvnpnLAsJbeDHPGZFaqT6DnIVUWbSSo2U4JQFOzaWIWb4-j66MQyMgyWcENaWKhRJnSixSRnXMdzUtoy6DGpgwmvK20VUN5zlJumtuLSTYVDuesqhzLW7XnCC7w1qGXDTK4D0eGZcLCqzKnjpymnQaq0p5bCU4xSTjdgb2KDRBiOcpTKeEh0roIGS74ZbAPa08FPFTXH78OaE0sl5nzmyZdhNv_-vQXzLmbYJfqwCbVi9CK3YU68FoN81IL6YdSPL1vYMXqF34-oZTbdJ-w159w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwGP3QKeiLOi84nZoHBRWKbdp16YOI6GRjFwpO0aeapAkIus21Xvan_I0mvWwK4tsefG4obXL4LknOOQD7qo32uCmogamkhuPZFYNJxzGYx1zXsyg1Ezuf21a10yF3d54_A585F0Zfq8xjYhKowz7Xe-QnONGe0gdxZ4MXQ7tG6dPV3EIjhUVTjN5VyxadNi7V-h5gfFXrXtSNzFXA4NgjsaEtt7jqG6hglKnyRAhTuFUqVG60K8KULmFVS-IwNCUTOOQWYRhLi1Baqdrcdm313lmYcxTYzQLM-Y22fz_e1dG-cI5rpkRAW03ESTR61ipqupD6mfp-Rv4knV0t_7eJWIGlrHBG5ynSizAjeqtQzEJThA4z_eyjNWD-hAyBamM1c9SXKPtiVPuIhymjA7UTC-0I0V6Ibh8jzTFNmalIvQNdp9KfKFVkRZpOo2-erMPNVP51Awq9fk9sAlIlJrf0yTgjlhOGjLihVNlGcFtSQhgpwXG-ygHPdNa13cdToPotDYngGyRKsD8ePEjlRX4fVs6xEGQxJgomQNj6-_EeLNS77VbQanSa27CI9Y5BwqYsQyEevoodmOdv8WM03M3gjOBh2sD5Av5MNtk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwGP3QKeKLd3Fe86CgQlmbdm36IKJuQ3GO4WXsrSZpAgPddK23v-avM2nTqSC--eBzQ2iT0-_Ll-ScA7CtyuiQ24JamEpqeaFbtZj0PIuFzPdDh1I7s_PpNINWi3S7YXsM3gsujL5WWcTELFDHA673yCs4057SB3EVaa5FtGuNw4dHSztI6ZPWwk4jh8i5eHtR5VtycFZTc72DcaN-fXJqGYcBi-OQpJa23-KqhqCCUaaWKkLYwg-oUHnSrQpb-oQFjsRxbEsmcMwdwjCWDqG0Grjc9V3V7zhMBK4qekowcVxvtS9HOzzaI87z7ZwU6KpBqSRv91pRTS-qvqfB71kgS22N2f88KHMwYxbU6Cj_A-ZhTPQXYN6ErATtGl3tvUVg7U-SBKqPVM7RQCLzxqj-mg5zpge6yKy1E0T7Mer0Es09zRmrSPWBrnJJUJQrtSJNs9E3Upbg5k--dRlK_UFfrABSS0_u6BNzRhwvjhnxY6mykOCupIQwUob9YsYjbvTXtQ3IXaTqMA2P6As8yrA9avyQy4783Gy9wEVkYk8SfYJi9ffHWzCl0BI1z1rnazCN9UZCRrJch1I6fBIbMMmf014y3DTIRnD717j5AJ56P3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Keyword+Extraction+Methods+and+Visualization+for+Student+Online+Comments&rft.jtitle=Symmetry+%28Basel%29&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=11&rft.spage=1923&rft_id=info:doi/10.3390%2Fsym12111923&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon