Performance Evaluation of Keyword Extraction Methods and Visualization for Student Online Comments
Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment, students often post comments in subject forums. The automatic and accurate extraction of keywords from these comments are beneficial to lecture...
Uložené v:
| Vydané v: | Symmetry (Basel) Ročník 12; číslo 11; s. 1923 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.11.2020
|
| Predmet: | |
| ISSN: | 2073-8994, 2073-8994 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment, students often post comments in subject forums. The automatic and accurate extraction of keywords from these comments are beneficial to lecturers (particular when it comes to repeatedly delivered subjects). In this paper, we compare the performance of traditional machine learning algorithms and two deep learning methods in extracting topic keywords from student comments posted in subject forums. For this purpose, we collected student comment data from a period of two years, manually tagging part of the raw data for our experiments. Based on this dataset, we comprehensively compared the five typical algorithms of naïve Bayes, logistic regression, support vector machine, convolutional neural networks, and Long Short-Term Memory with Attention (Att-LSTM). The performances were measured by the four evaluation metrics. We further examined the keywords by visualization. From the results of our experiment and visualization, we conclude that the Att-LSTM method is the best approach for topic keyword extraction from student comments. Further, the results from the algorithms and visualization are symmetry, to some degree. In particular, the extracted topics from the comments posted at the same stages of different teaching sessions are, almost, reflection symmetry. |
|---|---|
| AbstractList | Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment, students often post comments in subject forums. The automatic and accurate extraction of keywords from these comments are beneficial to lecturers (particular when it comes to repeatedly delivered subjects). In this paper, we compare the performance of traditional machine learning algorithms and two deep learning methods in extracting topic keywords from student comments posted in subject forums. For this purpose, we collected student comment data from a period of two years, manually tagging part of the raw data for our experiments. Based on this dataset, we comprehensively compared the five typical algorithms of naïve Bayes, logistic regression, support vector machine, convolutional neural networks, and Long Short-Term Memory with Attention (Att-LSTM). The performances were measured by the four evaluation metrics. We further examined the keywords by visualization. From the results of our experiment and visualization, we conclude that the Att-LSTM method is the best approach for topic keyword extraction from student comments. Further, the results from the algorithms and visualization are symmetry, to some degree. In particular, the extracted topics from the comments posted at the same stages of different teaching sessions are, almost, reflection symmetry. |
| Author | Duan, Sophia Xiaoxia Huang, Xiaodi Liu, Feng Huang, Weidong |
| Author_xml | – sequence: 1 givenname: Feng surname: Liu fullname: Liu, Feng – sequence: 2 givenname: Xiaodi orcidid: 0000-0002-6084-1851 surname: Huang fullname: Huang, Xiaodi – sequence: 3 givenname: Weidong surname: Huang fullname: Huang, Weidong – sequence: 4 givenname: Sophia Xiaoxia orcidid: 0000-0002-8235-0092 surname: Duan fullname: Duan, Sophia Xiaoxia |
| BookMark | eNptkEtLAzEQx4MoWGtPfoGAR1nNY59HKfWBlQo-rks2O8GU3aQmWbV-emProYhzmBe_mWH-R2jfWAMInVByznlFLvy6p4xSWjG-h0aMFDwpqyrd38kP0cT7JYmWkSzNyQg1D-CUdb0wEvDsXXSDCNoabBW-g_WHdS2efQYn5KZ7D-HVth4L0-IX7QfR6a8tH3fgxzC0YAJemE4bwFPb97H0x-hAic7D5DeO0fPV7Gl6k8wX17fTy3kiWVWGJKVFJVlOBTSiyUgJQCAvBJCS8gyIysumoIq1LVENsFbSsmFM0VKIrOCS53yMTrd7V86-DeBDvbSDM_FkzdI8zVISfaTOtpR01nsHql453Qu3rimpf3Ssd3SMNP1DSx02H0dNdPfvzDci73lO |
| CitedBy_id | crossref_primary_10_1108_EL_12_2023_0310 crossref_primary_10_3390_knowledge2020015 crossref_primary_10_1145_3761805 crossref_primary_10_3390_electronics12224560 crossref_primary_10_61186_jsdp_21_4_113 |
| Cites_doi | 10.3745/JIPS.2012.8.4.693 10.1016/j.cola.2020.100946 10.1145/1183614.1183683 10.1007/BF00994018 10.1109/IEEM.2017.8290290 10.1007/978-3-030-29513-4_31 10.1016/S0167-9236(99)00038-X 10.1001/jama.2016.7653 10.3115/v1/D14-1181 10.1016/0306-4573(88)90021-0 10.1016/j.cola.2019.03.004 10.1007/978-3-642-13654-2_12 10.1147/rd.14.0309 10.1007/978-3-319-01692-4_12 10.1007/s10462-018-09677-1 10.18653/v1/P16-2034 10.1002/(SICI)1097-4571(199504)46:3<162::AID-ASI2>3.0.CO;2-6 10.1109/ICTER.2016.7829895 10.1108/IJWIS-11-2017-0081 10.1109/BESC.2017.8256391 10.1007/11775300 10.18653/v1/N16-1065 10.1016/j.jvlc.2014.12.007 10.1145/1141753.1141819 10.1145/3065386 10.1007/978-3-319-46307-0_11 10.1016/j.cola.2018.12.007 10.1109/TKDE.2008.76 10.1016/j.jvlc.2018.11.004 10.1145/2766462.2767780 10.1016/j.jvlc.2005.10.003 10.1162/neco.1997.9.8.1735 10.18653/v1/D16-1058 10.1016/j.ymeth.2018.05.026 10.1016/j.cola.2020.101000 10.1145/122860.122863 10.1016/j.ipm.2007.01.015 10.1016/j.neunet.2014.09.003 10.1142/S0218213004001466 10.3115/v1/P14-1119 10.3115/1119355.1119383 10.1023/A:1009976227802 10.1007/978-3-030-60816-3 10.1007/978-3-030-00560-3_40 10.1109/TKDE.2006.180 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.3390/sym12111923 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym12111923 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c298t-4179c261aebab508ee0e67ae08135e0f68b71f2dd0fbe2dc18b22f18aa573c363 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594509700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 11:54:32 EDT 2025 Tue Nov 18 22:23:32 EST 2025 Sat Nov 29 07:18:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-4179c261aebab508ee0e67ae08135e0f68b71f2dd0fbe2dc18b22f18aa573c363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8235-0092 0000-0002-6084-1851 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2464540464?pq-origsite=%requestingapplication% |
| PQID | 2464540464 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2464540464 crossref_primary_10_3390_sym12111923 crossref_citationtrail_10_3390_sym12111923 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Isa (ref_45) 2008; 20 Huang (ref_68) 2015; 28 Padmavathi (ref_41) 2012; 3 Hochreiter (ref_55) 1997; 9 Ilias (ref_2) 2008; 1 ref_14 ref_58 ref_13 ref_57 ref_12 ref_56 ref_10 ref_54 ref_53 ref_52 Ercan (ref_20) 2007; 43 ref_51 ref_59 Zhang (ref_15) 2008; 4 ref_61 Yoo (ref_71) 2019; 53 ref_60 Schmidhuber (ref_29) 2015; 61 ref_69 ref_24 ref_23 Kim (ref_38) 2006; 18 ref_22 ref_66 ref_21 ref_64 ref_63 ref_62 Seipp (ref_70) 2019; 50 Diyanati (ref_5) 2020; 61 ref_28 Cohen (ref_18) 1995; 46 ref_27 Angelini (ref_72) 2019; 52 ref_26 Gutwin (ref_31) 1999; 27 You (ref_4) 2018; 145 Krizhevsky (ref_65) 2017; 60 Luhn (ref_17) 1957; 1 ref_35 Tolles (ref_39) 2016; 316 ref_33 Tsien (ref_40) 1998; 98 ref_30 Du (ref_73) 2020; 57 Igiri (ref_43) 2015; 17 ref_37 Kosovac (ref_32) 2000; 5 Turney (ref_9) 2000; 2 Matsuo (ref_19) 2004; 13 Kadhim (ref_11) 2019; 52 Cortes (ref_42) 1995; 20 ref_47 Kohavi (ref_36) 1996; 96 ref_46 Salton (ref_16) 1988; 24 ref_44 ref_1 ref_3 Sarkar (ref_34) 2012; 8 ref_49 ref_48 ref_8 Casalino (ref_25) 2018; 14 ref_7 ref_6 Huang (ref_67) 2006; 17 |
| References_xml | – volume: 8 start-page: 693 year: 2012 ident: ref_34 article-title: Machine Learning Based Keyphrase Extraction: Comparing Decision Trees, Naïve Bayes, and Artificial Neural Networks publication-title: J. Inf. Process. Syst. doi: 10.3745/JIPS.2012.8.4.693 – volume: 57 start-page: 100946 year: 2020 ident: ref_73 article-title: Visual analysis of customer switching behavior pattern mining for takeout service publication-title: J. Comput. Lang. doi: 10.1016/j.cola.2020.100946 – ident: ref_8 doi: 10.1145/1183614.1183683 – ident: ref_26 – ident: ref_51 – volume: 20 start-page: 273 year: 1995 ident: ref_42 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_57 doi: 10.1109/IEEM.2017.8290290 – ident: ref_61 doi: 10.1007/978-3-030-29513-4_31 – volume: 27 start-page: 81 year: 1999 ident: ref_31 article-title: Improving browsing in digital libraries with keyphrase indexes publication-title: J. Decis. Support Syst. doi: 10.1016/S0167-9236(99)00038-X – volume: 17 start-page: 21 year: 2015 ident: ref_43 article-title: Support Vector Machine—Based Prediction System for a Football Match Result publication-title: IOSR J. Comput. Eng. – ident: ref_1 – ident: ref_35 – volume: 316 start-page: 533 year: 2016 ident: ref_39 article-title: Logistic regression: Relating patient characteristics to outcomes publication-title: JAMA doi: 10.1001/jama.2016.7653 – ident: ref_49 doi: 10.3115/v1/D14-1181 – volume: 24 start-page: 513 year: 1988 ident: ref_16 article-title: Term-weighting approaches in automatic text retrieval publication-title: Inf. Process. Manag. doi: 10.1016/0306-4573(88)90021-0 – ident: ref_58 – volume: 53 start-page: 9 year: 2019 ident: ref_71 article-title: Visual analytics and visualization for android security risk publication-title: J. Comput. Lang. doi: 10.1016/j.cola.2019.03.004 – ident: ref_46 doi: 10.1007/978-3-642-13654-2_12 – volume: 1 start-page: 309 year: 1957 ident: ref_17 article-title: A statistical approach to mechanized encoding and searching of literary information publication-title: Ibm J. Res. Dev. doi: 10.1147/rd.14.0309 – ident: ref_6 doi: 10.1007/978-3-319-01692-4_12 – volume: 52 start-page: 273 year: 2019 ident: ref_11 article-title: Survey on supervised machine learning techniques for automatic text classification publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-09677-1 – ident: ref_27 – ident: ref_52 – ident: ref_59 doi: 10.18653/v1/P16-2034 – volume: 46 start-page: 162 year: 1995 ident: ref_18 article-title: Highlights: Language-and domain-independent automatic indexing terms for abstracting publication-title: J. Am. Soc. Inf. Sci. doi: 10.1002/(SICI)1097-4571(199504)46:3<162::AID-ASI2>3.0.CO;2-6 – ident: ref_48 – volume: 4 start-page: 1169 year: 2008 ident: ref_15 article-title: Automatic keyword extraction from documents using conditional random fields publication-title: J. Comput. Inf. Syst. – ident: ref_13 doi: 10.1109/ICTER.2016.7829895 – volume: 14 start-page: 334 year: 2018 ident: ref_25 article-title: A framework for intelligent Twitter data analysis with non-negative matrix factorization publication-title: Int. J. Web Inf. Syst. doi: 10.1108/IJWIS-11-2017-0081 – ident: ref_7 doi: 10.1109/BESC.2017.8256391 – ident: ref_44 doi: 10.1007/11775300 – ident: ref_50 doi: 10.18653/v1/N16-1065 – ident: ref_66 – volume: 28 start-page: 71 year: 2015 ident: ref_68 article-title: GO: A cluster algorithm for graph visualization publication-title: J. Vis. Lang. Comput. doi: 10.1016/j.jvlc.2014.12.007 – ident: ref_10 doi: 10.1145/1141753.1141819 – ident: ref_62 – volume: 60 start-page: 84 year: 2017 ident: ref_65 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 96 start-page: 202 year: 1996 ident: ref_36 article-title: Scaling Up the Accuracy of Naïve-Bayes Classifiers: A Decision-Tree Hybrid publication-title: KDD – ident: ref_24 doi: 10.1007/978-3-319-46307-0_11 – volume: 3 start-page: 1 year: 2012 ident: ref_41 article-title: Logistic regression in feature selection in data mining publication-title: Int. J. Sci. Eng. Res. – volume: 52 start-page: 10 year: 2019 ident: ref_72 article-title: MAD: A visual analytics solution for Multi-step cyber Attacks Detection publication-title: J. Comput. Lang. doi: 10.1016/j.cola.2018.12.007 – ident: ref_28 – volume: 20 start-page: 1264 year: 2008 ident: ref_45 article-title: Text document preprocessing with the Bayes formula for classification using the support vector machine publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.76 – ident: ref_53 – ident: ref_30 – ident: ref_3 – volume: 50 start-page: 1 year: 2019 ident: ref_70 article-title: Towards a visual guide for communicating uncertainty in visual analytics publication-title: J. Comput. Lang. doi: 10.1016/j.jvlc.2018.11.004 – ident: ref_47 – ident: ref_64 doi: 10.1145/2766462.2767780 – volume: 17 start-page: 225 year: 2006 ident: ref_67 article-title: Clustering graphs for visualization via node similarities publication-title: J. Vis. Lang. Comput. doi: 10.1016/j.jvlc.2005.10.003 – volume: 9 start-page: 1735 year: 1997 ident: ref_55 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_56 doi: 10.18653/v1/D16-1058 – volume: 145 start-page: 82 year: 2018 ident: ref_4 article-title: DeepText2Go: Improving large-scale protein function prediction with deep semantic text representation publication-title: Methods doi: 10.1016/j.ymeth.2018.05.026 – volume: 61 start-page: 101000 year: 2020 ident: ref_5 article-title: A proposed approach to determining expertise level of StackOverflow programmers based on mining of user comments publication-title: J. Comput. Lang. doi: 10.1016/j.cola.2020.101000 – ident: ref_37 – ident: ref_63 – ident: ref_23 doi: 10.1145/122860.122863 – volume: 5 start-page: 25 year: 2000 ident: ref_32 article-title: Use of keyphrase extraction software for creation of an AEC/FM thesaurus publication-title: J. Inf. Technol. Constr. – volume: 43 start-page: 1705 year: 2007 ident: ref_20 article-title: Using lexical chains for keyword extraction publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2007.01.015 – volume: 61 start-page: 85 year: 2015 ident: ref_29 article-title: Deep Learning in Neural Networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 13 start-page: 157 year: 2004 ident: ref_19 article-title: Keyword extraction from a single document using word co-occurrence statistical information publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S0218213004001466 – ident: ref_33 – ident: ref_54 – ident: ref_12 doi: 10.3115/v1/P14-1119 – ident: ref_21 doi: 10.3115/1119355.1119383 – volume: 2 start-page: 303 year: 2000 ident: ref_9 article-title: Learning Algorithms for Keyphrase Extraction publication-title: Inf. Retr. doi: 10.1023/A:1009976227802 – ident: ref_60 – ident: ref_14 doi: 10.1007/978-3-030-60816-3 – volume: 98 start-page: 493 year: 1998 ident: ref_40 article-title: Using classification tree and logistic regression methods to diagnose myocardial infarction publication-title: Medinfo – ident: ref_22 – volume: 1 start-page: 131 year: 2008 ident: ref_2 article-title: Student Satisfaction and Service Quality: Any Differences in Demographic Factors? publication-title: Int. Bus. Res. – ident: ref_69 doi: 10.1007/978-3-030-00560-3_40 – volume: 18 start-page: 1457 year: 2006 ident: ref_38 article-title: Some effective techniques for Naïve Bayes text classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.180 |
| SSID | ssj0000505460 |
| Score | 2.2514956 |
| Snippet | Topic keyword extraction (as a typical task in information retrieval) refers to extracting the core keywords from document topics. In an online environment,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1923 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Datasets Decision trees Deep learning Indexing Information retrieval Keywords Linguistics Machine learning Natural language processing Neural networks Parameter estimation Performance evaluation Sentiment analysis Support vector machines Symmetry Visualization |
| Title | Performance Evaluation of Keyword Extraction Methods and Visualization for Student Online Comments |
| URI | https://www.proquest.com/docview/2464540464 |
| Volume | 12 |
| WOSCitedRecordID | wos000594509700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5By8AClId4lMpDB0CKmldTZ0KAgkBAFfESTJHt2FIlSKEJjy78dnyJW0BCTCxZYlmWzj7f-e77PoC2TqNDYUtmuUwxyw-9rsWV71s85EEQOozZpZzP7Xmv36d3d2Fs4NG5aauc-MTSUVdsz9i3rZ1wJx0KfDHvuCUTFZbl9p-eLdSQwlqrEdSYhToSb9k1qMenF_H99M0FVdv8wK5gep5eZicfPyLHGYY5Py-mn365vGyOF_93mUuwYIJOclDtkgbMyGwZGuZY52THcE_vrgCPv4AEJJoygZOhImdy_KYzVRK9F6MKDUEuSvnpnLAsJbeDHPGZFaqT6DnIVUWbSSo2U4JQFOzaWIWb4-j66MQyMgyWcENaWKhRJnSixSRnXMdzUtoy6DGpgwmvK20VUN5zlJumtuLSTYVDuesqhzLW7XnCC7w1qGXDTK4D0eGZcLCqzKnjpymnQaq0p5bCU4xSTjdgb2KDRBiOcpTKeEh0roIGS74ZbAPa08FPFTXH78OaE0sl5nzmyZdhNv_-vQXzLmbYJfqwCbVi9CK3YU68FoN81IL6YdSPL1vYMXqF34-oZTbdJ-w159w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwGP3QKeiLOi84nZoHBRWKbdp16YOI6GRjFwpO0aeapAkIus21Xvan_I0mvWwK4tsefG4obXL4LknOOQD7qo32uCmogamkhuPZFYNJxzGYx1zXsyg1Ezuf21a10yF3d54_A585F0Zfq8xjYhKowz7Xe-QnONGe0gdxZ4MXQ7tG6dPV3EIjhUVTjN5VyxadNi7V-h5gfFXrXtSNzFXA4NgjsaEtt7jqG6hglKnyRAhTuFUqVG60K8KULmFVS-IwNCUTOOQWYRhLi1Baqdrcdm313lmYcxTYzQLM-Y22fz_e1dG-cI5rpkRAW03ESTR61ipqupD6mfp-Rv4knV0t_7eJWIGlrHBG5ynSizAjeqtQzEJThA4z_eyjNWD-hAyBamM1c9SXKPtiVPuIhymjA7UTC-0I0V6Ibh8jzTFNmalIvQNdp9KfKFVkRZpOo2-erMPNVP51Awq9fk9sAlIlJrf0yTgjlhOGjLihVNlGcFtSQhgpwXG-ygHPdNa13cdToPotDYngGyRKsD8ePEjlRX4fVs6xEGQxJgomQNj6-_EeLNS77VbQanSa27CI9Y5BwqYsQyEevoodmOdv8WM03M3gjOBh2sD5Av5MNtk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwGP3QKeKLd3Fe86CgQlmbdm36IKJuQ3GO4WXsrSZpAgPddK23v-avM2nTqSC--eBzQ2iT0-_Ll-ScA7CtyuiQ24JamEpqeaFbtZj0PIuFzPdDh1I7s_PpNINWi3S7YXsM3gsujL5WWcTELFDHA673yCs4057SB3EVaa5FtGuNw4dHSztI6ZPWwk4jh8i5eHtR5VtycFZTc72DcaN-fXJqGYcBi-OQpJa23-KqhqCCUaaWKkLYwg-oUHnSrQpb-oQFjsRxbEsmcMwdwjCWDqG0Grjc9V3V7zhMBK4qekowcVxvtS9HOzzaI87z7ZwU6KpBqSRv91pRTS-qvqfB71kgS22N2f88KHMwYxbU6Cj_A-ZhTPQXYN6ErATtGl3tvUVg7U-SBKqPVM7RQCLzxqj-mg5zpge6yKy1E0T7Mer0Es09zRmrSPWBrnJJUJQrtSJNs9E3Upbg5k--dRlK_UFfrABSS0_u6BNzRhwvjhnxY6mykOCupIQwUob9YsYjbvTXtQ3IXaTqMA2P6As8yrA9avyQy4783Gy9wEVkYk8SfYJi9ffHWzCl0BI1z1rnazCN9UZCRrJch1I6fBIbMMmf014y3DTIRnD717j5AJ56P3M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Keyword+Extraction+Methods+and+Visualization+for+Student+Online+Comments&rft.jtitle=Symmetry+%28Basel%29&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=11&rft.spage=1923&rft_id=info:doi/10.3390%2Fsym12111923&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |