Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations
Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against a...
Uložené v:
| Vydané v: | Computers & mathematics with applications (1987) Ročník 175; s. 49 - 61 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2024
|
| Predmet: | |
| ISSN: | 0898-1221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!