Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations

Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) Jg. 175; S. 49 - 61
Hauptverfasser: Heiland, Jan, Kim, Yongho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:0898-1221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.
AbstractList Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional states such as in reduced order models deriving from, say, Proper Orthogonal Decomposition (POD) trade in a reduced model complexity against accuracy and can be a solution to lessen the computational burdens. However, for really low-dimensional parametrizations of the states as they may be needed for example for controller design, linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work, we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider a deep clustering model where a CAE is integrated with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in three scenarios: single- and double-cylinder wakes modeled by incompressible Navier-Stokes equations and flow setup described by viscous Burgers' equations.
Author Kim, Yongho
Heiland, Jan
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0003-0228-8522
  surname: Heiland
  fullname: Heiland, Jan
  email: heiland@mpi-magdeburg.mpg.de
  organization: Department of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
– sequence: 2
  givenname: Yongho
  orcidid: 0000-0003-4181-7968
  surname: Kim
  fullname: Kim, Yongho
  email: ykim@mpi-magdeburg.mpg.de
  organization: Department of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
BookMark eNp9kM9OwzAMh3MYEtvgCbjkAdbipFGXHjig8VeaNA5wjtLUQZnaZCTtJnh6uo0zJ8uWP_unb0YmPngk5IZBzoCVt9vc6O6gcw5c5CBzKPiETEFWMmOcs0syS2kLAKLgMCW4Cn4f2qF3weuW6qEP6E1oMKYFNe2QeozOfy6o9g192zxQGyJtwyFrXIc-namdjrrDProffbxDg6V23KH4NZwG6YpcWN0mvP6rc_Lx9Pi-esnWm-fX1f06M7ySfSbANhwMjJFrKMtCQF3WZikqW9vKCClKKEAWtpZCGCFYiUsr5NhgyY2oRDEnxfmuiSGliFbtout0_FYM1NGO2qqTHXW0o0Cq8dVI3Z0pHKPtHUaVjBstYOMiml41wf3L_wIVSnPv
Cites_doi 10.1016/j.jcp.2019.108973
10.1109/5.726791
10.1051/m2an/2015029
10.2514/1.J058462
10.1016/j.ipm.2004.10.005
10.1016/j.cma.2023.116072
10.1016/j.jcp.2019.05.026
10.1007/s10589-022-00359-x
10.1016/j.camwa.2022.08.006
10.1016/j.patrec.2020.07.028
10.1016/j.cma.2021.114181
10.1017/jfm.2019.959
10.1016/j.ifacol.2022.11.091
10.1007/s10915-020-01294-x
10.1109/LCSYS.2023.3291231
10.3389/fams.2022.879140
10.1146/annurev.fl.25.010193.002543
10.1016/j.jcp.2020.110079
10.1016/j.neucom.2017.06.053
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.camwa.2024.08.032
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 61
ExternalDocumentID 10_1016_j_camwa_2024_08_032
S0898122124003997
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABVKL
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
T5K
TN5
XPP
ZMT
~G-
29F
9DU
AALRI
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFFNX
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
R2-
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c298t-40fd20c0032b066340b6bc749fbf9c484603083fb844c4416e7f48844e62c4943
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314112400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0898-1221
IngestDate Sat Nov 29 05:42:58 EST 2025
Sat Dec 21 15:59:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Linear parameter varying (LPV) systems
Model order reduction
Convolutional autoencoders
Clustering
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-40fd20c0032b066340b6bc749fbf9c484603083fb844c4416e7f48844e62c4943
ORCID 0000-0003-4181-7968
0000-0003-0228-8522
OpenAccessLink https://dx.doi.org/10.1016/j.camwa.2024.08.032
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_camwa_2024_08_032
elsevier_sciencedirect_doi_10_1016_j_camwa_2024_08_032
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bank, Koenigstein, Giryes (br0070) 2020
Li, Li, Jiang, Weng, Geng, Li, Ke, Li, Cheng, Nie, Li, Zhang, Liang, Zhou, Xu, Chu, Wei, Wei (br0120) 2022
Kim, Choi (br0180) 2022; 123
He, Zhang, Ren, Sun (br0090) 2016
Gao, Zhang (br0260) 2005; 41
Fresca, Manzoni (br0050) 2022; 388
Ding, Zhang, Ma, Han, Ding, Sun (br0110) 2021
Winovich, Ramani, Lin (br0190) 2019; 394
(br0250) 2017; vol. 10635
Hashemi, Werner (br0320) 2011
Taira, Hemati, Brunton, Sun, Duraisamy, Bagheri, Dawson, Yeh (br0350) 2020; 58
Heiland, Kim (br0200) 2022; 55
Berkooz, Holmes, Lumley (br0300) 1993; 25
Conti, Gobat, Fresca, Manzoni, Frangi (br0340) 2023; 411
Ohlberger, Rave (br0010) 2016
Simonyan, Zisserman (br0080) 2015
Heiland, Werner (br0330) 2023; 7
Clevert, Unterthiner, Hochreiter (br0380) 2016
Cracco, Stabile, Lario, Larcher, Casadei, Valsamos, Rozza (br0140) 2022
Goodfellow, Bengio, Courville (br0060) 2016
Lee, Jang, Lee, Cho, Shin (br0150) 2023
Saxena, Prasad, Gupta, Bharill, Patel, Tiwari, Er, Ding, Lin (br0210) 2017; 267
Lee, Carlberg (br0030) 2020; 404
Sculley (br0220) 2010
Kundu, Pani (br0290) 2020; 84
Koelewijn, Tóth (br0130) 2020
(br0240) 2016; vol. 48
Kingma, Ba (br0390) 2015
Yosinski, Clune, Nguyen, Fuchs, Lipson (br0310) 2015
Altmann, Heiland (br0280) 2015; 49
Tan, Le (br0100) 2019; vol. 97
Benner, Heiland, Werner (br0370) 2022; 82
Fard, Thonet, Gaussier (br0230) 2020; 138
Heiland, Benner, Bahmani (br0020) 2022; 8
Rizvi, Abbasi, Velni (br0040) 2018
Deng, Noack, Morzyński, Pastur (br0360) 2020; 884
Gao, Sun, Wang (br0170) 2021; 428
Behr, Benner, Heiland (br0270) 2017
Lecun, Bottou, Bengio, Haffner (br0160) 1998; 86
Benner (10.1016/j.camwa.2024.08.032_br0370) 2022; 82
Rizvi (10.1016/j.camwa.2024.08.032_br0040) 2018
Fresca (10.1016/j.camwa.2024.08.032_br0050) 2022; 388
Gao (10.1016/j.camwa.2024.08.032_br0170) 2021; 428
Conti (10.1016/j.camwa.2024.08.032_br0340) 2023; 411
Goodfellow (10.1016/j.camwa.2024.08.032_br0060) 2016
Lee (10.1016/j.camwa.2024.08.032_br0030) 2020; 404
Ding (10.1016/j.camwa.2024.08.032_br0110) 2021
Kim (10.1016/j.camwa.2024.08.032_br0180) 2022; 123
Hashemi (10.1016/j.camwa.2024.08.032_br0320) 2011
Heiland (10.1016/j.camwa.2024.08.032_br0200) 2022; 55
Altmann (10.1016/j.camwa.2024.08.032_br0280) 2015; 49
Kundu (10.1016/j.camwa.2024.08.032_br0290) 2020; 84
Heiland (10.1016/j.camwa.2024.08.032_br0330) 2023; 7
Heiland (10.1016/j.camwa.2024.08.032_br0020) 2022; 8
Gao (10.1016/j.camwa.2024.08.032_br0260) 2005; 41
Lee (10.1016/j.camwa.2024.08.032_br0150) 2023
Koelewijn (10.1016/j.camwa.2024.08.032_br0130) 2020
Clevert (10.1016/j.camwa.2024.08.032_br0380) 2016
Li (10.1016/j.camwa.2024.08.032_br0120)
He (10.1016/j.camwa.2024.08.032_br0090) 2016
Simonyan (10.1016/j.camwa.2024.08.032_br0080) 2015
Ohlberger (10.1016/j.camwa.2024.08.032_br0010) 2016
Yosinski (10.1016/j.camwa.2024.08.032_br0310)
Tan (10.1016/j.camwa.2024.08.032_br0100) 2019; vol. 97
(10.1016/j.camwa.2024.08.032_br0250) 2017; vol. 10635
Deng (10.1016/j.camwa.2024.08.032_br0360) 2020; 884
Cracco (10.1016/j.camwa.2024.08.032_br0140)
Kingma (10.1016/j.camwa.2024.08.032_br0390) 2015
Berkooz (10.1016/j.camwa.2024.08.032_br0300) 1993; 25
Winovich (10.1016/j.camwa.2024.08.032_br0190) 2019; 394
Fard (10.1016/j.camwa.2024.08.032_br0230) 2020; 138
Saxena (10.1016/j.camwa.2024.08.032_br0210) 2017; 267
Sculley (10.1016/j.camwa.2024.08.032_br0220) 2010
Lecun (10.1016/j.camwa.2024.08.032_br0160) 1998; 86
Taira (10.1016/j.camwa.2024.08.032_br0350) 2020; 58
Behr (10.1016/j.camwa.2024.08.032_br0270)
(10.1016/j.camwa.2024.08.032_br0240) 2016; vol. 48
Bank (10.1016/j.camwa.2024.08.032_br0070)
References_xml – start-page: 13733
  year: 2021
  end-page: 13742
  ident: br0110
  article-title: RepVGG: making VGG-style ConvNets great again
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 82
  start-page: 225
  year: 2022
  end-page: 249
  ident: br0370
  article-title: Robust output-feedback stabilization for incompressible flows using low-dimensional
  publication-title: Comput. Optim. Appl.
– volume: 41
  year: 2005
  ident: br0260
  article-title: Clustered SVD strategies in latent semantic indexing
  publication-title: Inf. Process. Manag.
– volume: 8
  year: 2022
  ident: br0020
  article-title: Convolutional neural networks for very low-dimensional LPV approximations of incompressible Navier-Stokes equations
  publication-title: Front. Appl. Math. Stat.
– year: 2022
  ident: br0120
  article-title: YOLOv6: a single-stage object detection framework for industrial applications
– start-page: 1111
  year: 2020
  end-page: 1117
  ident: br0130
  article-title: Scheduling dimension reduction of LPV models - a deep neural network approach
  publication-title: Proceedings of the IEEE
– volume: 404
  year: 2020
  ident: br0030
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
– volume: 428
  year: 2021
  ident: br0170
  article-title: PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
– volume: 58
  start-page: 998
  year: 2020
  end-page: 1022
  ident: br0350
  article-title: Modal analysis of fluid flows: applications and outlook
  publication-title: AIAA J.
– volume: vol. 97
  start-page: 6105
  year: 2019
  end-page: 6114
  ident: br0100
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– volume: 123
  start-page: 115
  year: 2022
  end-page: 122
  ident: br0180
  article-title: Learning finite difference methods for reaction-diffusion type equations with FCNN
  publication-title: Comput. Math. Appl.
– volume: vol. 10635
  year: 2017
  ident: br0250
  publication-title: Deep Clustering with Convolutional Autoencoders
– start-page: 6415
  year: 2018
  end-page: 6420
  ident: br0040
  article-title: Model reduction in linear parameter-varying models using autoencoder neural networks
  publication-title: 2018 Annul ACC
– year: 2020
  ident: br0070
  article-title: Autoencoders
– year: 2023
  ident: br0150
  article-title: Parametric model order reduction by machine learning for fluid–structure interaction analysis
  publication-title: Eng. Comput.
– volume: 49
  start-page: 1489
  year: 2015
  end-page: 1509
  ident: br0280
  article-title: Finite element decomposition and minimal extension for flow equations
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 394
  start-page: 263
  year: 2019
  end-page: 279
  ident: br0190
  article-title: ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
  publication-title: J. Comput. Phys.
– volume: 411
  year: 2023
  ident: br0340
  article-title: Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 7
  start-page: 3012
  year: 2023
  end-page: 3017
  ident: br0330
  article-title: Low-complexity linear parameter-varying approximations of incompressible Navier-Stokes equations for truncated state-dependent Riccati feedback
  publication-title: IEEE Control Syst. Lett.
– year: 2015
  ident: br0080
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: 3rd ICLR, Conference Track Proceedings
– year: 2016
  ident: br0060
  article-title: Deep Learning
– volume: 84
  start-page: 45
  year: 2020
  ident: br0290
  article-title: Global stabilization of two dimensional viscous Burgers' equation by nonlinear Neumann boundary feedback control and its finite element analysis
  publication-title: J. Sci. Comput.
– volume: 884
  start-page: A37
  year: 2020
  ident: br0360
  article-title: Low-order model for successive bifurcations of the fluidic pinball
  publication-title: J. Fluid Mech.
– volume: 388
  year: 2022
  ident: br0050
  article-title: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: br0300
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 138
  start-page: 185
  year: 2020
  end-page: 192
  ident: br0230
  article-title: Deep k-means: jointly clustering with k-means and learning representations
  publication-title: Pattern Recognit. Lett.
– start-page: 2010
  year: 2011
  end-page: 2015
  ident: br0320
  article-title: Observer-based LPV control of a nonlinear PDE
  publication-title: 50th IEEE Conference on Decision and Control (CDC)
– start-page: 1177
  year: 2010
  end-page: 1178
  ident: br0220
  article-title: Web-scale k-means clustering
  publication-title: WWW'10
– year: 2016
  ident: br0380
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: ICLR 2016 (Poster)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: br0160
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– year: 2022
  ident: br0140
  article-title: Deep learning-based reduced-order methods for fast transient dynamics
– volume: vol. 48
  year: 2016
  ident: br0240
  publication-title: Unsupervised Deep Embedding for Clustering Analysis
– year: 2015
  ident: br0310
  article-title: Understanding neural networks through deep visualization
– year: 2017
  ident: br0270
  article-title: Example setups of Navier-Stokes equations with control and observation: spatial discretization and representation via linear-quadratic matrix coefficients
– volume: 267
  start-page: 664
  year: 2017
  end-page: 681
  ident: br0210
  article-title: A review of clustering techniques and developments
  publication-title: Neurocomputing
– volume: 55
  start-page: 430
  year: 2022
  end-page: 435
  ident: br0200
  article-title: Convolutional autoencoders and clustering for low-dimensional parametrization of incompressible flows
  publication-title: IFAC-PapersOnLine
– year: 2015
  ident: br0390
  article-title: Adam: a method for stochastic optimization
  publication-title: ICLR 2015, Conference Track Proceedings
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0090
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2016
  end-page: 12
  ident: br0010
  article-title: Reduced basis methods: success, limitations and future challenges
  publication-title: Proceedings of the Conference Algoritmy
– ident: 10.1016/j.camwa.2024.08.032_br0310
– volume: 404
  year: 2020
  ident: 10.1016/j.camwa.2024.08.032_br0030
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108973
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.camwa.2024.08.032_br0160
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 13733
  year: 2021
  ident: 10.1016/j.camwa.2024.08.032_br0110
  article-title: RepVGG: making VGG-style ConvNets great again
– volume: 49
  start-page: 1489
  issue: 5
  year: 2015
  ident: 10.1016/j.camwa.2024.08.032_br0280
  article-title: Finite element decomposition and minimal extension for flow equations
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2015029
– volume: 58
  start-page: 998
  issue: 3
  year: 2020
  ident: 10.1016/j.camwa.2024.08.032_br0350
  article-title: Modal analysis of fluid flows: applications and outlook
  publication-title: AIAA J.
  doi: 10.2514/1.J058462
– ident: 10.1016/j.camwa.2024.08.032_br0120
– volume: 41
  issue: 5
  year: 2005
  ident: 10.1016/j.camwa.2024.08.032_br0260
  article-title: Clustered SVD strategies in latent semantic indexing
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2004.10.005
– year: 2015
  ident: 10.1016/j.camwa.2024.08.032_br0390
  article-title: Adam: a method for stochastic optimization
– start-page: 770
  year: 2016
  ident: 10.1016/j.camwa.2024.08.032_br0090
  article-title: Deep residual learning for image recognition
– start-page: 2010
  year: 2011
  ident: 10.1016/j.camwa.2024.08.032_br0320
  article-title: Observer-based LPV control of a nonlinear PDE
– volume: 411
  year: 2023
  ident: 10.1016/j.camwa.2024.08.032_br0340
  article-title: Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116072
– volume: vol. 10635
  year: 2017
  ident: 10.1016/j.camwa.2024.08.032_br0250
– ident: 10.1016/j.camwa.2024.08.032_br0140
– volume: vol. 97
  start-page: 6105
  year: 2019
  ident: 10.1016/j.camwa.2024.08.032_br0100
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
– ident: 10.1016/j.camwa.2024.08.032_br0070
– start-page: 6415
  year: 2018
  ident: 10.1016/j.camwa.2024.08.032_br0040
  article-title: Model reduction in linear parameter-varying models using autoencoder neural networks
– year: 2016
  ident: 10.1016/j.camwa.2024.08.032_br0060
– volume: 394
  start-page: 263
  year: 2019
  ident: 10.1016/j.camwa.2024.08.032_br0190
  article-title: ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.026
– year: 2016
  ident: 10.1016/j.camwa.2024.08.032_br0380
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– start-page: 1177
  year: 2010
  ident: 10.1016/j.camwa.2024.08.032_br0220
  article-title: Web-scale k-means clustering
– volume: 82
  start-page: 225
  issue: 1
  year: 2022
  ident: 10.1016/j.camwa.2024.08.032_br0370
  article-title: Robust output-feedback stabilization for incompressible flows using low-dimensional H∞-controllers
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00359-x
– year: 2023
  ident: 10.1016/j.camwa.2024.08.032_br0150
  article-title: Parametric model order reduction by machine learning for fluid–structure interaction analysis
  publication-title: Eng. Comput.
– volume: 123
  start-page: 115
  year: 2022
  ident: 10.1016/j.camwa.2024.08.032_br0180
  article-title: Learning finite difference methods for reaction-diffusion type equations with FCNN
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.08.006
– volume: 138
  start-page: 185
  year: 2020
  ident: 10.1016/j.camwa.2024.08.032_br0230
  article-title: Deep k-means: jointly clustering with k-means and learning representations
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.028
– volume: 388
  year: 2022
  ident: 10.1016/j.camwa.2024.08.032_br0050
  article-title: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114181
– volume: 884
  start-page: A37
  year: 2020
  ident: 10.1016/j.camwa.2024.08.032_br0360
  article-title: Low-order model for successive bifurcations of the fluidic pinball
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.959
– volume: 55
  start-page: 430
  issue: 30
  year: 2022
  ident: 10.1016/j.camwa.2024.08.032_br0200
  article-title: Convolutional autoencoders and clustering for low-dimensional parametrization of incompressible flows
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.11.091
– start-page: 1
  year: 2016
  ident: 10.1016/j.camwa.2024.08.032_br0010
  article-title: Reduced basis methods: success, limitations and future challenges
– volume: 84
  start-page: 45
  issue: 3
  year: 2020
  ident: 10.1016/j.camwa.2024.08.032_br0290
  article-title: Global stabilization of two dimensional viscous Burgers' equation by nonlinear Neumann boundary feedback control and its finite element analysis
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01294-x
– volume: 7
  start-page: 3012
  year: 2023
  ident: 10.1016/j.camwa.2024.08.032_br0330
  article-title: Low-complexity linear parameter-varying approximations of incompressible Navier-Stokes equations for truncated state-dependent Riccati feedback
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2023.3291231
– start-page: 1111
  year: 2020
  ident: 10.1016/j.camwa.2024.08.032_br0130
  article-title: Scheduling dimension reduction of LPV models - a deep neural network approach
– volume: 8
  year: 2022
  ident: 10.1016/j.camwa.2024.08.032_br0020
  article-title: Convolutional neural networks for very low-dimensional LPV approximations of incompressible Navier-Stokes equations
  publication-title: Front. Appl. Math. Stat.
  doi: 10.3389/fams.2022.879140
– ident: 10.1016/j.camwa.2024.08.032_br0270
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.camwa.2024.08.032_br0300
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 428
  year: 2021
  ident: 10.1016/j.camwa.2024.08.032_br0170
  article-title: PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110079
– volume: 267
  start-page: 664
  year: 2017
  ident: 10.1016/j.camwa.2024.08.032_br0210
  article-title: A review of clustering techniques and developments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.053
– year: 2015
  ident: 10.1016/j.camwa.2024.08.032_br0080
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: vol. 48
  year: 2016
  ident: 10.1016/j.camwa.2024.08.032_br0240
SSID ssj0004320
Score 2.4352612
Snippet Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 49
SubjectTerms Clustering
Convolutional autoencoders
Linear parameter varying (LPV) systems
Model order reduction
Title Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations
URI https://dx.doi.org/10.1016/j.camwa.2024.08.032
Volume 175
WOSCitedRecordID wos001314112400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0898-1221
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004320
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF610EMvhb5USqn20Bux5Gw2Xu8RURBwoJVKpXCy7H20IGJTkgDi1zOzD8cJqGor9bKKrNgbzXwafzuZ-YaQT2k_N6Xol4np2zIBRiySEsv-JEO9Oq3TXCs3bEIcH-ejkfwakjkTN05A1HV-eysv_6ur4Ro4G1tn_8Ld7UPhAnwGp8MKbof1jxy_29TXYQPUAZhNG9Sq1GEWmrqYoTRCmGTiWgW-fHa1hhfNTaJR69_rdGyjKPgY523dtazSwne2za9ZJ8sXRQ7CcIiJg9K41YKNzXOdv8mdNNRiDuLAnMUCy6OyUxbgsHra1D9-Nt3sBONLlR5t28y8RslFNglHV-Zbo9swLIadQOp1TMMr2cu1Pwj2Pu9wDgf58Q1KSDHu1FhDvnRRRfsb7olbYs0skDLxlKwyMZQQCFd3DvdGR_Nm2oHX8oy_MUpVuaLAB1s9Tmc6FOVknbwIZwu64zHxkjwx9SuyFl1DQxh_TcwCRGgXIj06B0iPgk8owIMCPOgSPOgSPGhjKcKDtvB4Q77v753sHiRh3EaimMynCU-tZqkC87AKiShPq6xSgktbWak4EFXUNhrYKudcAYvOjLAQ_jk3GVNc8sFbslI3tXlHaGmzSsshnH6N5RXTpQKim-mcG1hLJTZIL1qtuPSqKkUsNzwvnJELNHKBI1IHbINk0bJFIIae8BUAhd_d-P5fb9wkz-do_kBWplczs0Weqevp2eTqY4DMPbhEiy0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+autoencoders%2C+clustering%2C+and+POD+for+low-dimensional+parametrization+of+flow+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Heiland%2C+Jan&rft.au=Kim%2C+Yongho&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.volume=175&rft.spage=49&rft.epage=61&rft_id=info:doi/10.1016%2Fj.camwa.2024.08.032&rft.externalDocID=S0898122124003997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon