Principal Component Wavelet Networks for Solving Linear Inverse Problems

In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet de...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 13; no. 6; p. 1083
Main Authors: Tiddeman, Bernard, Ghahremani, Morteza
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2021
Subjects:
ISSN:2073-8994, 2073-8994
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet decomposition is comprised of the application of an invertible 2D wavelet filter-bank comprising symmetric and anti-symmetric filters, in combination with a set of 1×1 convolution filters learnt from Principal Component Analysis (PCA). The 1×1 filters are needed to control the size of the decomposition. We show that the application of PCA across wavelet subbands in this way produces an architecture equivalent to a separable Convolutional Neural Network (CNN), with the principal components forming the 1×1 filters and the subtraction of the mean forming the bias terms. The use of an invertible filter bank and (approximately) invertible PCA allows us to create a deep autoencoder very simply, and avoids issues of overfitting. We investigate the construction and learning of such networks, and their application to linear inverse problems via the Alternating Direction of Multipliers Method (ADMM). We use our network as a drop-in replacement for traditional discrete wavelet transform, using wavelet shrinkage as the projection operator. The results show good potential on a number of inverse problems such as compressive sensing, in-painting, denoising and super-resolution, and significantly close the performance gap with Generative Adversarial Network (GAN)-based methods.
AbstractList In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet decomposition is comprised of the application of an invertible 2D wavelet filter-bank comprising symmetric and anti-symmetric filters, in combination with a set of 1×1 convolution filters learnt from Principal Component Analysis (PCA). The 1×1 filters are needed to control the size of the decomposition. We show that the application of PCA across wavelet subbands in this way produces an architecture equivalent to a separable Convolutional Neural Network (CNN), with the principal components forming the 1×1 filters and the subtraction of the mean forming the bias terms. The use of an invertible filter bank and (approximately) invertible PCA allows us to create a deep autoencoder very simply, and avoids issues of overfitting. We investigate the construction and learning of such networks, and their application to linear inverse problems via the Alternating Direction of Multipliers Method (ADMM). We use our network as a drop-in replacement for traditional discrete wavelet transform, using wavelet shrinkage as the projection operator. The results show good potential on a number of inverse problems such as compressive sensing, in-painting, denoising and super-resolution, and significantly close the performance gap with Generative Adversarial Network (GAN)-based methods.
Author Ghahremani, Morteza
Tiddeman, Bernard
Author_xml – sequence: 1
  givenname: Bernard
  orcidid: 0000-0001-7570-1192
  surname: Tiddeman
  fullname: Tiddeman, Bernard
– sequence: 2
  givenname: Morteza
  orcidid: 0000-0001-6423-6475
  surname: Ghahremani
  fullname: Ghahremani, Morteza
BookMark eNptkE9LAzEUxINUsNae_AIBj7Kaf7ubHKWoLRQtVPC4JNu3krqbrEms9Nu7Ug9FfJd5h9_MwJyjkfMOELqk5IZzRW7jvqOcFJRIfoLGjJQ8k0qJ0dF_hqYxbslwOclFQcZovgrW1bbXLZ75rh8SXcKvegctJPwE6cuH94gbH_Datzvr3vDSOtABL9wOQgS8Ct600MULdNroNsL0Vydo_XD_Mptny-fHxexumdVMyZQxoJopYSgtWaMLUzPRGMMg1zkvylqLTVkWpgClNpQYxozkYKgaOC0bwyfo6pDaB__xCTFVW_8Z3FBYsVwIxaVk5UBdH6g6-BgDNFUfbKfDvqKk-tmqOtpqoOkfurZJJ-tdCtq2_3q-AUfGbvU
CitedBy_id crossref_primary_10_3390_sym13122393
crossref_primary_10_3390_sym17060887
crossref_primary_10_3390_sym14081674
Cites_doi 10.1109/18.382009
10.1109/ICCV.2017.627
10.1109/ICIP.2006.312611
10.1007/s10851-006-5257-3
10.1007/978-3-319-10593-2_13
10.1109/TPAMI.2018.2855738
10.1109/CVPR.2016.55
10.1109/TPAMI.2012.230
10.3390/math8020216
10.1109/TIP.2003.818640
10.1109/TIP.2011.2108306
10.1007/s11263-015-0816-y
10.1109/CVPR.2017.19
10.1006/acha.2000.0343
10.3390/sym11060835
10.1109/EMBC.2016.7591117
10.1109/ICCV.2019.00570
10.1109/TIP.2015.2475625
10.1109/ICASSP.2017.7952561
10.1137/070697653
10.1109/TSP.2004.826174
10.3390/rs12244135
10.1109/MSP.2005.1550194
10.1109/CVPR.2016.278
10.1109/34.93808
10.1117/1.482742
10.3390/math8122258
10.1109/ACCESS.2018.2865425
10.1007/s10915-018-0757-z
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym13061083
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym13061083
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-2e1a294b1172fa6bc24fbb2e5a5367ca4d776b6e99d10b22b83eb19bc2a8fb3
IEDL.DBID M7S
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 12:05:02 EDT 2025
Sat Nov 29 07:15:55 EST 2025
Tue Nov 18 22:12:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-2e1a294b1172fa6bc24fbb2e5a5367ca4d776b6e99d10b22b83eb19bc2a8fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7570-1192
0000-0001-6423-6475
OpenAccessLink https://www.proquest.com/docview/2544938827?pq-origsite=%requestingapplication%
PQID 2544938827
PQPubID 2032326
ParticipantIDs proquest_journals_2544938827
crossref_primary_10_3390_sym13061083
crossref_citationtrail_10_3390_sym13061083
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chan (ref_29) 2015; 24
ref_14
ref_36
ref_13
ref_12
ref_34
ref_11
ref_33
ref_10
ref_31
Freeman (ref_18) 1991; 13
Portilla (ref_2) 2003; 12
Selesnick (ref_20) 2005; 22
Oyallon (ref_24) 2018; 41
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
Dong (ref_5) 2011; 20
Kong (ref_30) 2018; 6
Russakovsky (ref_35) 2015; 115
Selesnick (ref_21) 2004; 52
Mairal (ref_3) 2008; 7
Donoho (ref_1) 1995; 41
ref_25
Bruna (ref_23) 2013; 35
ref_22
Kingsbury (ref_19) 2001; 10
Wang (ref_32) 2019; 78
Feng (ref_27) 2000; 9
ref_28
ref_26
ref_9
ref_8
Chan (ref_4) 2006; 25
ref_7
ref_6
References_xml – volume: 41
  start-page: 613
  year: 1995
  ident: ref_1
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.382009
– ident: ref_12
  doi: 10.1109/ICCV.2017.627
– ident: ref_26
  doi: 10.1109/ICIP.2006.312611
– volume: 25
  start-page: 107
  year: 2006
  ident: ref_4
  article-title: Total variation wavelet inpainting
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-006-5257-3
– ident: ref_34
– ident: ref_10
  doi: 10.1007/978-3-319-10593-2_13
– volume: 41
  start-page: 2208
  year: 2018
  ident: ref_24
  article-title: Scattering networks for hybrid representation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2855738
– ident: ref_8
  doi: 10.1109/CVPR.2016.55
– ident: ref_11
– volume: 35
  start-page: 1872
  year: 2013
  ident: ref_23
  article-title: Invariant Scattering Convolution Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.230
– ident: ref_39
  doi: 10.3390/math8020216
– volume: 12
  start-page: 1338
  year: 2003
  ident: ref_2
  article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.818640
– volume: 20
  start-page: 1838
  year: 2011
  ident: ref_5
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2108306
– ident: ref_14
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_35
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_9
  doi: 10.1109/CVPR.2017.19
– volume: 10
  start-page: 234
  year: 2001
  ident: ref_19
  article-title: Complex wavelets for shift invariant analysis and filtering of signals
  publication-title: J. Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.2000.0343
– ident: ref_38
  doi: 10.3390/sym11060835
– ident: ref_28
  doi: 10.1109/EMBC.2016.7591117
– ident: ref_25
– ident: ref_31
– ident: ref_33
– ident: ref_16
  doi: 10.1109/ICCV.2019.00570
– volume: 24
  start-page: 5017
  year: 2015
  ident: ref_29
  article-title: PCANet: A simple deep learning baseline for image classification?
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2475625
– ident: ref_7
  doi: 10.1109/ICASSP.2017.7952561
– volume: 7
  start-page: 214
  year: 2008
  ident: ref_3
  article-title: Learning multiscale sparse representations for image and video restoration
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/070697653
– ident: ref_15
– ident: ref_13
– volume: 52
  start-page: 1304
  year: 2004
  ident: ref_21
  article-title: The double-density dual-tree DWT
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.826174
– ident: ref_37
  doi: 10.3390/rs12244135
– volume: 22
  start-page: 123
  year: 2005
  ident: ref_20
  article-title: The dual-tree complex wavelet transform
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2005.1550194
– ident: ref_6
  doi: 10.1109/CVPR.2016.278
– ident: ref_17
– ident: ref_22
– volume: 13
  start-page: 891
  year: 1991
  ident: ref_18
  article-title: The design and use of steerable filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.93808
– volume: 9
  start-page: 226
  year: 2000
  ident: ref_27
  article-title: Human face recognition using PCA on wavelet subband
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.482742
– ident: ref_36
  doi: 10.3390/math8122258
– volume: 6
  start-page: 45153
  year: 2018
  ident: ref_30
  article-title: Face recognition based on CSGF (2D) 2 PCANet
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2865425
– volume: 78
  start-page: 29
  year: 2019
  ident: ref_32
  article-title: Global convergence of ADMM in nonconvex nonsmooth optimization
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0757-z
SSID ssj0000505460
Score 2.2228782
Snippet In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1083
SubjectTerms Algorithms
Artificial neural networks
Convolution
Decomposition
Deep learning
Discrete Wavelet Transform
Electromagnetic wave filters
Filter banks
Forward problem
Generative adversarial networks
Inverse problems
Neural networks
Noise reduction
Principal components analysis
Subtraction
Success
Wavelet transforms
Title Principal Component Wavelet Networks for Solving Linear Inverse Problems
URI https://www.proquest.com/docview/2544938827
Volume 13
WOSCitedRecordID wos000666431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efCizh84nSOHHVQoW9O0TU6isjFBS3GC81SSNANhbnOtghf_dl_abDoQL156SN8h5OV97-Xl5X0ItQQnSlIJGkhD4dCUl_e7Dh11FFXc50IUmr4No4gNhzy2CbfMllUuMLEA6nSqTI68bVppcQ_iwfBi9uoY1ihzu2opNNZR1XRJcIvSvcEyx2JY2mjQKZ_leXC6b2cfLwDaEDIwb9URreJw4Vx62_-d1g7asmElviz3QQ2t6ckuqlnDzfCp7S59tof6cZleB2mDBdMJeB38KAz_RI6jsig8wxDK4sF0bLINGI6rYA7YdOSYZxrHJQVNto8Gve7Ddd-xdAqOIpzlDtGuIJxKF2KWkQikInQkJdG-8L0gVIKmYRjIQHOeuh1JiGQeADkHOcFG0jtAlQnM6RBhFgIMMJaC8TLqy4BJAUMQJ3BXMyJ1HZ0vVjZRttO4IbwYJ3DiMGpIfqihjlpL4VnZYON3scZi_RNrZVnyvfhHf_8-RpvE1KIU2ZMGquTzN32CNtR7_pzNm6h61Y3i-2axecz3swtj8c1d_PQF7MrQvQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFfSi1gdWq-6hggrBdrNNdg8i4oNKaym0oCfD7mYLgra1qUr_kz_S2TzUgnjrwWsyhCTf8M3s7Ox8AGUpqFZMIQKhLx0WimR_12G9imZa1ISUMdJNv9Xi9_einYOP7CyMbavMODEm6nCgbY38xI7SEi7mg_7Z8MWxqlF2dzWT0EjcomEm77hki05vLhHfA0qvr7oXdSdVFXA0FXzsUFOVVDBVxdDdk57SlPWUoqYma67na8lC3_eUZ4QIqxVFqeIu8plAO8l7ysWnzsE8JhFUxI2Cna-KjtWEY14lOQTouqJyEk2eMURggsLd6bA3zfpxKLte-V8_YRWW05SZnCc-XoCc6a9BISWliBymk7OP1qHeTrYO0Nry3KCPEZXcSautMSatpOE9Ipimk87gyVZSCC7F8XOInTYyigxpJ_I60QZ0ZvA9m5Dv4zttAeE-UhznIRITZzXlcSXxEuZAomo4VaYIxxmOgU6nqFsxj6cAV1MW9OAH6EUofxkPk-Ehv5uVMrSDlEGi4Bvq7b9v78NivXvbDJo3rcYOLFHbcxNXiUqQH49ezS4s6LfxYzTai92VwMNsHeMTmMIpPQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB1qFfHit_jtHhRUCE0322T3ICLWYlFLoIL1YtjdbEDQVpuq-M_8ec42iVoQbz14TYaQZB5vZmdn5wHsSkG1Ygo9EAfSYbHI9ncdlriaaVETUg49fRm0WrzTEWEJPoqzMLatsuDEIVHHPW1r5BU7Skt4mA8GlSRviwjrjeOnZ8cqSNmd1kJOI4PIhXl_w-VbetSso6_3KG2cXZ-eO7nCgKOp4AOHmqqkgqkqhvFE-kpTlihFTU3WPD_QksVB4CvfCBFXXUWp4h5ym0A7yRPl4VMnYBITckbLMBk2r8Lbr_qOVYhjvpsdCfQ84VbS90cMGJiucG80CI7GgGFga8z9318yD7N5Mk1OMvQvQMl0F2Ehp6uU7OcztQ-W4DzMNhXQ2jJgr4uxltxIq7oxIK2sFT4lmMCTdu_B1lgILtLxc4idQ9JPDQkz4Z10Gdpj-J4VKHfxnVaB8ADJj_MYKYuzmvK5kngJsyNRNZwqswaHhU8jnc9XtzIfDxGusywAoh8AWIPdL-OnbKzI72abheejnFvS6Nvt63_f3oFpxEN02WxdbMAMtc04w_LRJpQH_RezBVP6dXCf9rdz7BK4Gy8yPgGBZzNz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+Component+Wavelet+Networks+for+Solving+Linear+Inverse+Problems&rft.jtitle=Symmetry+%28Basel%29&rft.au=Tiddeman%2C+Bernard&rft.au=Ghahremani%2C+Morteza&rft.date=2021-06-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=13&rft.issue=6&rft.spage=1083&rft_id=info:doi/10.3390%2Fsym13061083&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym13061083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon