Principal Component Wavelet Networks for Solving Linear Inverse Problems
In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet de...
Saved in:
| Published in: | Symmetry (Basel) Vol. 13; no. 6; p. 1083 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2021
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet decomposition is comprised of the application of an invertible 2D wavelet filter-bank comprising symmetric and anti-symmetric filters, in combination with a set of 1×1 convolution filters learnt from Principal Component Analysis (PCA). The 1×1 filters are needed to control the size of the decomposition. We show that the application of PCA across wavelet subbands in this way produces an architecture equivalent to a separable Convolutional Neural Network (CNN), with the principal components forming the 1×1 filters and the subtraction of the mean forming the bias terms. The use of an invertible filter bank and (approximately) invertible PCA allows us to create a deep autoencoder very simply, and avoids issues of overfitting. We investigate the construction and learning of such networks, and their application to linear inverse problems via the Alternating Direction of Multipliers Method (ADMM). We use our network as a drop-in replacement for traditional discrete wavelet transform, using wavelet shrinkage as the projection operator. The results show good potential on a number of inverse problems such as compressive sensing, in-painting, denoising and super-resolution, and significantly close the performance gap with Generative Adversarial Network (GAN)-based methods. |
|---|---|
| AbstractList | In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse problems—these are asymmetric problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed. The wavelet decomposition is comprised of the application of an invertible 2D wavelet filter-bank comprising symmetric and anti-symmetric filters, in combination with a set of 1×1 convolution filters learnt from Principal Component Analysis (PCA). The 1×1 filters are needed to control the size of the decomposition. We show that the application of PCA across wavelet subbands in this way produces an architecture equivalent to a separable Convolutional Neural Network (CNN), with the principal components forming the 1×1 filters and the subtraction of the mean forming the bias terms. The use of an invertible filter bank and (approximately) invertible PCA allows us to create a deep autoencoder very simply, and avoids issues of overfitting. We investigate the construction and learning of such networks, and their application to linear inverse problems via the Alternating Direction of Multipliers Method (ADMM). We use our network as a drop-in replacement for traditional discrete wavelet transform, using wavelet shrinkage as the projection operator. The results show good potential on a number of inverse problems such as compressive sensing, in-painting, denoising and super-resolution, and significantly close the performance gap with Generative Adversarial Network (GAN)-based methods. |
| Author | Ghahremani, Morteza Tiddeman, Bernard |
| Author_xml | – sequence: 1 givenname: Bernard orcidid: 0000-0001-7570-1192 surname: Tiddeman fullname: Tiddeman, Bernard – sequence: 2 givenname: Morteza orcidid: 0000-0001-6423-6475 surname: Ghahremani fullname: Ghahremani, Morteza |
| BookMark | eNptkE9LAzEUxINUsNae_AIBj7Kaf7ubHKWoLRQtVPC4JNu3krqbrEms9Nu7Ug9FfJd5h9_MwJyjkfMOELqk5IZzRW7jvqOcFJRIfoLGjJQ8k0qJ0dF_hqYxbslwOclFQcZovgrW1bbXLZ75rh8SXcKvegctJPwE6cuH94gbH_Datzvr3vDSOtABL9wOQgS8Ct600MULdNroNsL0Vydo_XD_Mptny-fHxexumdVMyZQxoJopYSgtWaMLUzPRGMMg1zkvylqLTVkWpgClNpQYxozkYKgaOC0bwyfo6pDaB__xCTFVW_8Z3FBYsVwIxaVk5UBdH6g6-BgDNFUfbKfDvqKk-tmqOtpqoOkfurZJJ-tdCtq2_3q-AUfGbvU |
| CitedBy_id | crossref_primary_10_3390_sym13122393 crossref_primary_10_3390_sym17060887 crossref_primary_10_3390_sym14081674 |
| Cites_doi | 10.1109/18.382009 10.1109/ICCV.2017.627 10.1109/ICIP.2006.312611 10.1007/s10851-006-5257-3 10.1007/978-3-319-10593-2_13 10.1109/TPAMI.2018.2855738 10.1109/CVPR.2016.55 10.1109/TPAMI.2012.230 10.3390/math8020216 10.1109/TIP.2003.818640 10.1109/TIP.2011.2108306 10.1007/s11263-015-0816-y 10.1109/CVPR.2017.19 10.1006/acha.2000.0343 10.3390/sym11060835 10.1109/EMBC.2016.7591117 10.1109/ICCV.2019.00570 10.1109/TIP.2015.2475625 10.1109/ICASSP.2017.7952561 10.1137/070697653 10.1109/TSP.2004.826174 10.3390/rs12244135 10.1109/MSP.2005.1550194 10.1109/CVPR.2016.278 10.1109/34.93808 10.1117/1.482742 10.3390/math8122258 10.1109/ACCESS.2018.2865425 10.1007/s10915-018-0757-z |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym13061083 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central - New (Subscription) Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym13061083 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c298t-2e1a294b1172fa6bc24fbb2e5a5367ca4d776b6e99d10b22b83eb19bc2a8fb3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 12:05:02 EDT 2025 Sat Nov 29 07:15:55 EST 2025 Tue Nov 18 22:12:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-2e1a294b1172fa6bc24fbb2e5a5367ca4d776b6e99d10b22b83eb19bc2a8fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7570-1192 0000-0001-6423-6475 |
| OpenAccessLink | https://www.proquest.com/docview/2544938827?pq-origsite=%requestingapplication% |
| PQID | 2544938827 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2544938827 crossref_primary_10_3390_sym13061083 crossref_citationtrail_10_3390_sym13061083 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chan (ref_29) 2015; 24 ref_14 ref_36 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_31 Freeman (ref_18) 1991; 13 Portilla (ref_2) 2003; 12 Selesnick (ref_20) 2005; 22 Oyallon (ref_24) 2018; 41 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Dong (ref_5) 2011; 20 Kong (ref_30) 2018; 6 Russakovsky (ref_35) 2015; 115 Selesnick (ref_21) 2004; 52 Mairal (ref_3) 2008; 7 Donoho (ref_1) 1995; 41 ref_25 Bruna (ref_23) 2013; 35 ref_22 Kingsbury (ref_19) 2001; 10 Wang (ref_32) 2019; 78 Feng (ref_27) 2000; 9 ref_28 ref_26 ref_9 ref_8 Chan (ref_4) 2006; 25 ref_7 ref_6 |
| References_xml | – volume: 41 start-page: 613 year: 1995 ident: ref_1 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.382009 – ident: ref_12 doi: 10.1109/ICCV.2017.627 – ident: ref_26 doi: 10.1109/ICIP.2006.312611 – volume: 25 start-page: 107 year: 2006 ident: ref_4 article-title: Total variation wavelet inpainting publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-006-5257-3 – ident: ref_34 – ident: ref_10 doi: 10.1007/978-3-319-10593-2_13 – volume: 41 start-page: 2208 year: 2018 ident: ref_24 article-title: Scattering networks for hybrid representation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2855738 – ident: ref_8 doi: 10.1109/CVPR.2016.55 – ident: ref_11 – volume: 35 start-page: 1872 year: 2013 ident: ref_23 article-title: Invariant Scattering Convolution Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.230 – ident: ref_39 doi: 10.3390/math8020216 – volume: 12 start-page: 1338 year: 2003 ident: ref_2 article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.818640 – volume: 20 start-page: 1838 year: 2011 ident: ref_5 article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2108306 – ident: ref_14 – volume: 115 start-page: 211 year: 2015 ident: ref_35 article-title: ImageNet Large Scale Visual Recognition Challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_9 doi: 10.1109/CVPR.2017.19 – volume: 10 start-page: 234 year: 2001 ident: ref_19 article-title: Complex wavelets for shift invariant analysis and filtering of signals publication-title: J. Appl. Comput. Harmon. Anal. doi: 10.1006/acha.2000.0343 – ident: ref_38 doi: 10.3390/sym11060835 – ident: ref_28 doi: 10.1109/EMBC.2016.7591117 – ident: ref_25 – ident: ref_31 – ident: ref_33 – ident: ref_16 doi: 10.1109/ICCV.2019.00570 – volume: 24 start-page: 5017 year: 2015 ident: ref_29 article-title: PCANet: A simple deep learning baseline for image classification? publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2475625 – ident: ref_7 doi: 10.1109/ICASSP.2017.7952561 – volume: 7 start-page: 214 year: 2008 ident: ref_3 article-title: Learning multiscale sparse representations for image and video restoration publication-title: Multiscale Model. Simul. doi: 10.1137/070697653 – ident: ref_15 – ident: ref_13 – volume: 52 start-page: 1304 year: 2004 ident: ref_21 article-title: The double-density dual-tree DWT publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.826174 – ident: ref_37 doi: 10.3390/rs12244135 – volume: 22 start-page: 123 year: 2005 ident: ref_20 article-title: The dual-tree complex wavelet transform publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2005.1550194 – ident: ref_6 doi: 10.1109/CVPR.2016.278 – ident: ref_17 – ident: ref_22 – volume: 13 start-page: 891 year: 1991 ident: ref_18 article-title: The design and use of steerable filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.93808 – volume: 9 start-page: 226 year: 2000 ident: ref_27 article-title: Human face recognition using PCA on wavelet subband publication-title: J. Electron. Imaging doi: 10.1117/1.482742 – ident: ref_36 doi: 10.3390/math8122258 – volume: 6 start-page: 45153 year: 2018 ident: ref_30 article-title: Face recognition based on CSGF (2D) 2 PCANet publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2865425 – volume: 78 start-page: 29 year: 2019 ident: ref_32 article-title: Global convergence of ADMM in nonconvex nonsmooth optimization publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0757-z |
| SSID | ssj0000505460 |
| Score | 2.2228782 |
| Snippet | In this paper we propose a novel learning-based wavelet transform and demonstrate its utility as a representation in solving a number of linear inverse... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1083 |
| SubjectTerms | Algorithms Artificial neural networks Convolution Decomposition Deep learning Discrete Wavelet Transform Electromagnetic wave filters Filter banks Forward problem Generative adversarial networks Inverse problems Neural networks Noise reduction Principal components analysis Subtraction Success Wavelet transforms |
| Title | Principal Component Wavelet Networks for Solving Linear Inverse Problems |
| URI | https://www.proquest.com/docview/2544938827 |
| Volume | 13 |
| WOSCitedRecordID | wos000666431500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efCizh84nSOHHVQoW9O0TU6isjFBS3GC81SSNANhbnOtghf_dl_abDoQL156SN8h5OV97-Xl5X0ItQQnSlIJGkhD4dCUl_e7Dh11FFXc50IUmr4No4gNhzy2CbfMllUuMLEA6nSqTI68bVppcQ_iwfBi9uoY1ihzu2opNNZR1XRJcIvSvcEyx2JY2mjQKZ_leXC6b2cfLwDaEDIwb9URreJw4Vx62_-d1g7asmElviz3QQ2t6ckuqlnDzfCp7S59tof6cZleB2mDBdMJeB38KAz_RI6jsig8wxDK4sF0bLINGI6rYA7YdOSYZxrHJQVNto8Gve7Ddd-xdAqOIpzlDtGuIJxKF2KWkQikInQkJdG-8L0gVIKmYRjIQHOeuh1JiGQeADkHOcFG0jtAlQnM6RBhFgIMMJaC8TLqy4BJAUMQJ3BXMyJ1HZ0vVjZRttO4IbwYJ3DiMGpIfqihjlpL4VnZYON3scZi_RNrZVnyvfhHf_8-RpvE1KIU2ZMGquTzN32CNtR7_pzNm6h61Y3i-2axecz3swtj8c1d_PQF7MrQvQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFfSi1gdWq-6hggrBdrNNdg8i4oNKaym0oCfD7mYLgra1qUr_kz_S2TzUgnjrwWsyhCTf8M3s7Ox8AGUpqFZMIQKhLx0WimR_12G9imZa1ISUMdJNv9Xi9_einYOP7CyMbavMODEm6nCgbY38xI7SEi7mg_7Z8MWxqlF2dzWT0EjcomEm77hki05vLhHfA0qvr7oXdSdVFXA0FXzsUFOVVDBVxdDdk57SlPWUoqYma67na8lC3_eUZ4QIqxVFqeIu8plAO8l7ysWnzsE8JhFUxI2Cna-KjtWEY14lOQTouqJyEk2eMURggsLd6bA3zfpxKLte-V8_YRWW05SZnCc-XoCc6a9BISWliBymk7OP1qHeTrYO0Nry3KCPEZXcSautMSatpOE9Ipimk87gyVZSCC7F8XOInTYyigxpJ_I60QZ0ZvA9m5Dv4zttAeE-UhznIRITZzXlcSXxEuZAomo4VaYIxxmOgU6nqFsxj6cAV1MW9OAH6EUofxkPk-Ehv5uVMrSDlEGi4Bvq7b9v78NivXvbDJo3rcYOLFHbcxNXiUqQH49ezS4s6LfxYzTai92VwMNsHeMTmMIpPQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB1qFfHit_jtHhRUCE0322T3ICLWYlFLoIL1YtjdbEDQVpuq-M_8ec42iVoQbz14TYaQZB5vZmdn5wHsSkG1Ygo9EAfSYbHI9ncdlriaaVETUg49fRm0WrzTEWEJPoqzMLatsuDEIVHHPW1r5BU7Skt4mA8GlSRviwjrjeOnZ8cqSNmd1kJOI4PIhXl_w-VbetSso6_3KG2cXZ-eO7nCgKOp4AOHmqqkgqkqhvFE-kpTlihFTU3WPD_QksVB4CvfCBFXXUWp4h5ym0A7yRPl4VMnYBITckbLMBk2r8Lbr_qOVYhjvpsdCfQ84VbS90cMGJiucG80CI7GgGFga8z9318yD7N5Mk1OMvQvQMl0F2Ehp6uU7OcztQ-W4DzMNhXQ2jJgr4uxltxIq7oxIK2sFT4lmMCTdu_B1lgILtLxc4idQ9JPDQkz4Z10Gdpj-J4VKHfxnVaB8ADJj_MYKYuzmvK5kngJsyNRNZwqswaHhU8jnc9XtzIfDxGusywAoh8AWIPdL-OnbKzI72abheejnFvS6Nvt63_f3oFpxEN02WxdbMAMtc04w_LRJpQH_RezBVP6dXCf9rdz7BK4Gy8yPgGBZzNz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+Component+Wavelet+Networks+for+Solving+Linear+Inverse+Problems&rft.jtitle=Symmetry+%28Basel%29&rft.au=Tiddeman%2C+Bernard&rft.au=Ghahremani%2C+Morteza&rft.date=2021-06-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=13&rft.issue=6&rft.spage=1083&rft_id=info:doi/10.3390%2Fsym13061083&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym13061083 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |