A Newton-Type Method for ℓ0-Regularized Accelerated Failure Time Model Under the Case–Cohort Design

The case–cohort design has been widely used to reduce the cost of covariate measurements in large cohort studies. In this paper, we study the high-dimensional accelerated failure time (AFT) model under the case–cohort design. Based on ℓ 0 -regularization and a newly defined weight function, we propo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Acta mathematica Sinica. English series Ročník 41; číslo 9; s. 2275 - 2300
Hlavní autori: Liu, Yanyan, Tian, Ke, Wang, Danlu, Zhang, Jing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Springer Nature B.V
Predmet:
ISSN:1439-8516, 1439-7617
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The case–cohort design has been widely used to reduce the cost of covariate measurements in large cohort studies. In this paper, we study the high-dimensional accelerated failure time (AFT) model under the case–cohort design. Based on ℓ 0 -regularization and a newly defined weight function, we propose a weighted least squares procedure for variable selection and parameter estimation. Computationally, we develop a support detection and root finding (SDAR) algorithm, where the support is first determined based on the primal and dual information, then the estimator is obtained by solving the weighted least squares problem restricted to the estimated support. We show the proposed algorithm is essentially one Newton-type algorithm, thus it is more efficient and stable compared with other regularized methods. Theoretically, we establish a sharp error bound for the solution sequences generated from the proposed method. Furthermore, we propose an adaptive version of the proposed SDAR algorithm, which determines the support size of the estimated coefficient in a data-driven manner. Extensive simulation studies demonstrate the superior performance of the proposed procedures, especially for the computational efficiency. As an illustration, we apply the proposed method to a malignant breast tumor gene expression data.
AbstractList The case–cohort design has been widely used to reduce the cost of covariate measurements in large cohort studies. In this paper, we study the high-dimensional accelerated failure time (AFT) model under the case–cohort design. Based on ℓ 0 -regularization and a newly defined weight function, we propose a weighted least squares procedure for variable selection and parameter estimation. Computationally, we develop a support detection and root finding (SDAR) algorithm, where the support is first determined based on the primal and dual information, then the estimator is obtained by solving the weighted least squares problem restricted to the estimated support. We show the proposed algorithm is essentially one Newton-type algorithm, thus it is more efficient and stable compared with other regularized methods. Theoretically, we establish a sharp error bound for the solution sequences generated from the proposed method. Furthermore, we propose an adaptive version of the proposed SDAR algorithm, which determines the support size of the estimated coefficient in a data-driven manner. Extensive simulation studies demonstrate the superior performance of the proposed procedures, especially for the computational efficiency. As an illustration, we apply the proposed method to a malignant breast tumor gene expression data.
The case–cohort design has been widely used to reduce the cost of covariate measurements in large cohort studies. In this paper, we study the high-dimensional accelerated failure time (AFT) model under the case–cohort design. Based on ℓ0-regularization and a newly defined weight function, we propose a weighted least squares procedure for variable selection and parameter estimation. Computationally, we develop a support detection and root finding (SDAR) algorithm, where the support is first determined based on the primal and dual information, then the estimator is obtained by solving the weighted least squares problem restricted to the estimated support. We show the proposed algorithm is essentially one Newton-type algorithm, thus it is more efficient and stable compared with other regularized methods. Theoretically, we establish a sharp error bound for the solution sequences generated from the proposed method. Furthermore, we propose an adaptive version of the proposed SDAR algorithm, which determines the support size of the estimated coefficient in a data-driven manner. Extensive simulation studies demonstrate the superior performance of the proposed procedures, especially for the computational efficiency. As an illustration, we apply the proposed method to a malignant breast tumor gene expression data.
Author Zhang, Jing
Tian, Ke
Liu, Yanyan
Wang, Danlu
Author_xml – sequence: 1
  givenname: Yanyan
  surname: Liu
  fullname: Liu, Yanyan
  organization: School of Mathematics and Statistics, Wuhan University
– sequence: 2
  givenname: Ke
  surname: Tian
  fullname: Tian, Ke
  organization: School of Mathematics and Statistics, Wuhan University
– sequence: 3
  givenname: Danlu
  surname: Wang
  fullname: Wang, Danlu
  organization: School of Mathematics and Statistics, Wuhan University
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  email: jing66@zuel.edu.cn
  organization: School of Statistics and Mathematics, Zhongnan University of Economics and Law
BookMark eNp9kM1OAjEUhRuDiYA-gLsmrqv9YdqZJUFRE9TEwLop7R0YMkyxHWJw5cI34A15EoeMiStd3bP4zrnJ10OdyleA0CWj14xSdRMZZWxAKE-I4FwSfoK6bCAyoiRTnZ-cJkyeoV6MK0qTJKOyixZD_Azvta_IdLcB_AT10juc-4APX3tKXmGxLU0oPsDhobVQQjB1k8emKLcB8LRYNyXvoMSzykHA9RLwyEQ4fO5HfulDjW8hFovqHJ3mpoxw8XP7aDa-m44eyOTl_nE0nBDLs7Qm3CojMum4U86oOR3kqRRpIiWjwBJFrbRMWulSmksDhoJzdpA2wDwTigkr-uiq3d0E_7aFWOuV34aqeakFV4nIOKf8f0pmksukYfuItZQNPsYAud6EYm3CTjOqj9Z1a1031vXRuj4u87YTG7ZaQPhd_rv0DXNvhjc
Cites_doi 10.1002/sim.4780070116
10.1093/biostatistics/kxs025
10.1093/biomet/86.4.755
10.1111/j.1541-0420.2006.00562.x
10.1073/pnas.0932692100
10.1214/aos/1176349016
10.1093/biomet/93.4.747
10.1002/sim.2576
10.1016/j.csda.2022.107430
10.1007/s10463-006-0086-0
10.1111/j.1541-0420.2008.01074.x
10.1016/j.spl.2020.108925
10.1111/sjos.12503
10.1111/j.1467-9868.2008.00674.x
10.1007/s11222-015-9555-8
10.1111/j.1467-9469.2010.00701.x
10.1093/biomet/66.3.429
10.1002/sim.6623
10.1111/j.1467-9868.2008.00639.x
10.1214/aos/1176349273
10.1023/A:1009691327335
10.1111/j.1541-0420.2008.01055.x
10.1214/13-AOS1159
10.1093/biomet/91.2.305
10.1007/s10985-009-9144-2
10.1198/016214508000000184
10.1515/9783112479926-011
10.1007/BF01581275
10.1214/10-AOAS388
10.1007/s11222-013-9388-2
10.1093/biomet/90.2.341
10.1016/j.jspi.2009.04.023
10.1137/1.9780898718614
10.1016/j.jmva.2013.07.011
10.1093/biomet/73.1.1
10.1016/j.jkss.2016.10.006
10.1007/s10985-017-9402-7
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025
Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025.
Copyright_xml – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025
– notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2025.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10114-025-3226-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-7617
EndPage 2300
ExternalDocumentID 10_1007_s10114_025_3226_2
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFEXP
AFFHD
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TGP
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c298t-2c7a396d2d7da7b04f863856610e1570c6c16c6d80f6aea0eddc48856b93713c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001609737100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1439-8516
IngestDate Thu Nov 27 04:23:19 EST 2025
Sat Nov 08 05:26:57 EST 2025
Sat Nov 29 06:52:12 EST 2025
Fri Nov 07 01:13:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 62N01
62P10
62N02
newton-type method
regularization
case–cohort design
62D99
Accelerated failure time model
support detection and root finding algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-2c7a396d2d7da7b04f863856610e1570c6c16c6d80f6aea0eddc48856b93713c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3269626575
PQPubID 54875
PageCount 26
ParticipantIDs proquest_journals_3275392202
proquest_journals_3269626575
crossref_primary_10_1007_s10114_025_3226_2
springer_journals_10_1007_s10114_025_3226_2
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Acta mathematica Sinica. English series
PublicationTitleAbbrev Acta. Math. Sin.-English Ser
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References B M Brown (3226_CR2) 2007; 26
J Huang (3226_CR12) 2010; 16
T Sørlie (3226_CR31) 2003; 100
W Stute (3226_CR33) 1993; 21
Y H Chen (3226_CR7) 2009; 139
B Kummer (3226_CR26) 1988; 45
S H Chiou (3226_CR9) 2014; 24
A Ni (3226_CR27) 2018; 24
W Stute (3226_CR32) 1996; 23
T Cai (3226_CR4) 2009; 65
M Yu (3226_CR37) 2011; 38
J Huang (3226_CR14) 2018; 19
K Chen (3226_CR6) 1999; 86
J Huang (3226_CR15) 2021; 168
J Fan (3226_CR10) 2008; 70
Z L Ying (3226_CR36) 1993; 21
L Wang (3226_CR35) 2013; 41
L Q Qi (3226_CR30) 1993; 58
Q Q Yu (3226_CR38) 2007; 59
P Breheny (3226_CR1) 2011; 5
J Huang (3226_CR13) 2006; 62
S Kim (3226_CR23) 2016; 35
J W Hu (3226_CR11) 2013; 122
L Kong (3226_CR25) 2009; 65
B A Johnson (3226_CR18) 2008; 70
Z Z Jin (3226_CR17) 2003; 90
J D Kalbfleisch (3226_CR20) 1988; 7
T M Therneau (3226_CR34) 1999; 5
L Kong (3226_CR24) 2004; 91
J Buckley (3226_CR3) 1979; 66
K Ito (3226_CR16) 2008
B Nan (3226_CR28) 2006; 93
C Cheng (3226_CR8) 2022; 170
S Kang (3226_CR21) 2013; 14
R L Prentice (3226_CR29) 1986; 73
J Zhang (3226_CR39) 2021; 48
Y X Cao (3226_CR5) 2017; 46
M H R Khan (3226_CR22) 2016; 26
B A Johnson (3226_CR19) 2008; 103
References_xml – volume: 19
  start-page: 403
  year: 2018
  ident: 3226_CR14
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 149
  year: 1988
  ident: 3226_CR20
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780070116
– volume: 14
  start-page: 28
  year: 2013
  ident: 3226_CR21
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxs025
– volume: 86
  start-page: 755
  year: 1999
  ident: 3226_CR6
  publication-title: Biometrika
  doi: 10.1093/biomet/86.4.755
– volume: 62
  start-page: 813
  year: 2006
  ident: 3226_CR13
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00562.x
– volume: 100
  start-page: 8418
  year: 2003
  ident: 3226_CR31
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0932692100
– volume: 21
  start-page: 76
  year: 1993
  ident: 3226_CR36
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176349016
– volume: 93
  start-page: 747
  year: 2006
  ident: 3226_CR28
  publication-title: Biometrika
  doi: 10.1093/biomet/93.4.747
– volume: 26
  start-page: 828
  year: 2007
  ident: 3226_CR2
  publication-title: Stat. Med.
  doi: 10.1002/sim.2576
– volume: 170
  start-page: 107430
  year: 2022
  ident: 3226_CR8
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2022.107430
– volume: 59
  start-page: 675
  year: 2007
  ident: 3226_CR38
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1007/s10463-006-0086-0
– volume: 23
  start-page: 461
  year: 1996
  ident: 3226_CR32
  publication-title: Scand. J. Stat.
– volume: 65
  start-page: 394
  year: 2009
  ident: 3226_CR4
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01074.x
– volume: 168
  start-page: 108925
  year: 2021
  ident: 3226_CR15
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2020.108925
– volume: 48
  start-page: 349
  year: 2021
  ident: 3226_CR39
  publication-title: Scand. J. Stat.
  doi: 10.1111/sjos.12503
– volume: 70
  start-page: 849
  issue: 5
  year: 2008
  ident: 3226_CR10
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 26
  start-page: 725
  year: 2016
  ident: 3226_CR22
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-015-9555-8
– volume: 38
  start-page: 252
  year: 2011
  ident: 3226_CR37
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2010.00701.x
– volume: 66
  start-page: 429
  year: 1979
  ident: 3226_CR3
  publication-title: Biometrika
  doi: 10.1093/biomet/66.3.429
– volume: 35
  start-page: 282
  year: 2016
  ident: 3226_CR23
  publication-title: Stat. Med.
  doi: 10.1002/sim.6623
– volume: 70
  start-page: 351
  year: 2008
  ident: 3226_CR18
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2008.00639.x
– volume: 21
  start-page: 1591
  year: 1993
  ident: 3226_CR33
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176349273
– volume: 5
  start-page: 99
  year: 1999
  ident: 3226_CR34
  publication-title: Lifetime Data Anal.
  doi: 10.1023/A:1009691327335
– volume: 65
  start-page: 135
  year: 2009
  ident: 3226_CR25
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01055.x
– volume: 41
  start-page: 2505
  year: 2013
  ident: 3226_CR35
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1159
– volume: 91
  start-page: 305
  year: 2004
  ident: 3226_CR24
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.305
– volume: 16
  start-page: 176
  issue: 2
  year: 2010
  ident: 3226_CR12
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-009-9144-2
– volume: 103
  start-page: 672
  issue: 482
  year: 2008
  ident: 3226_CR19
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214508000000184
– volume: 45
  start-page: 114
  year: 1988
  ident: 3226_CR26
  publication-title: Adv. Math. Optim.
  doi: 10.1515/9783112479926-011
– volume: 58
  start-page: 353
  year: 1993
  ident: 3226_CR30
  publication-title: Math. Program.
  doi: 10.1007/BF01581275
– volume: 5
  start-page: 232
  year: 2011
  ident: 3226_CR1
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS388
– volume: 24
  start-page: 559
  year: 2014
  ident: 3226_CR9
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-013-9388-2
– volume: 90
  start-page: 341
  year: 2003
  ident: 3226_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.341
– volume: 139
  start-page: 3706
  year: 2009
  ident: 3226_CR7
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2009.04.023
– volume-title: Lagrange Multiplier Approach to Variational Problems and Applications
  year: 2008
  ident: 3226_CR16
  doi: 10.1137/1.9780898718614
– volume: 122
  start-page: 96
  year: 2013
  ident: 3226_CR11
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.07.011
– volume: 73
  start-page: 1
  year: 1986
  ident: 3226_CR29
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.1
– volume: 46
  start-page: 298
  year: 2017
  ident: 3226_CR5
  publication-title: J. Korean Stat. Soc.
  doi: 10.1016/j.jkss.2016.10.006
– volume: 24
  start-page: 443
  year: 2018
  ident: 3226_CR27
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-017-9402-7
SSID ssj0055906
Score 2.3705642
Snippet The case–cohort design has been widely used to reduce the cost of covariate measurements in large cohort studies. In this paper, we study the high-dimensional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2275
SubjectTerms Algorithms
Failure times
Gene expression
Least squares method
Mathematics
Mathematics and Statistics
Newton methods
Parameter estimation
Regularization
Weighting functions
Title A Newton-Type Method for ℓ0-Regularized Accelerated Failure Time Model Under the Case–Cohort Design
URI https://link.springer.com/article/10.1007/s10114-025-3226-2
https://www.proquest.com/docview/3269626575
https://www.proquest.com/docview/3275392202
Volume 41
WOSCitedRecordID wos001609737100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1439-7617
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055906
  issn: 1439-8516
  databaseCode: RSV
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBN6JQkAcmkCXXaZxkrAoVA61QgapblPgBlVCLmsLAxMA_6D_sL-HOTSggOsAWybET3dl3n3WPj5AT3wDI1zJh0qYeqwVWsxRZU8F5Cu6L1Pqub0H3Kmi3w14vus7ruLMi270ISTpL_aXYDbA7w4VgE0oGdncZe5cgbUHnpluYX0DIfFZS5EUM4IQsQpm_LfHdGc0R5o-gqPM1zY1__eUmWc-hJa3P9sIWWTKDbbLW-uzLmu2Q-zoFq4aswXj_pC1HH00Bt9Lp-4SzjiOmH_VfjaZ1pcAjYSMJTZtJH7PXKdaLUGRPe6SOL4nC0rQBfnD6NmkMHwDJ03OXEbJL7poXt41LllMtMCWicMyEChIvklroQCdByms2hIMJUK_KTdUPuJKqKpXUIbcyMQk3Wis4-r5MsZ-ep7w9UhoMB2af0NSTktvAT01owSDYNLH4ZMH2GqF4VCanhczjp1lHjXjeOxmlF4P0YpReLMqkUmglzg9XBkMS1I4RowXDcAWLhOAw-6xQ0nx44bcO_vT2IVkVqGWXblYhpfHo2RyRFfUy7mejY7clPwBQL9sL
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQIAEDb0ShgAcmkCXHaZxkrApVEW2FSqm6RYkfUAm1qCkMTAz8g_7D_hLObkIB0QG2SI6d6Hy--6x7fAidegpAvuQx4TpxScnXkiSGNRWcJ6MeS7Rn-xZ06n6zGXS74U1Wx53m2e55SNJa6i_FboDdiVkIlJATsLtLJea4Rq1bt53c_AJCptOSIjckACd4Hsr8bYnvzmiGMH8ERa2vqW786y830XoGLXF5qgtbaEH1t9Fa47Mva7qD7ssYrJphDTb3T9yw9NEYcCuevI8paVli-mHvVUlcFgI8kmkkIXE17pnsdWzqRbBhT3vEli8Jw9K4An5w8jauDB4AyeMLmxGyi-6ql-1KjWRUC0SwMBgRJvzYDblk0pexn9CSDuBgAtRzqHI8nwouHC64DKjmsYqpklLA0fd4YvrpucLdQ4v9QV_tI5y4nFPte4kKNBgEncTaPGmwvYoJGhbQWS7z6GnaUSOa9U420otAepGRXsQKqJjvSpQdrhSGeAj3MACac4bhChYyRmH2eb5Js-G53zr409snaKXWbtSj-lXz-hCtMrPjNvWsiBZHw2d1hJbFy6iXDo-ten4AnWjd7w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ERfTgW6xW3YMnZel202ySY2kNim0pPkpvIdmHFqQtTfXgyYP_oP-wv8TZPKyKPYi3wCabMLuZ-Yad-T6ETm0FIF_ykHAdWaTiaEkio5oKwZNRm0XaTngLOg2n1XK7Xa-d6ZzGebV7fiSZ9jQYlqb-uDSUuvSl8Q1wPDGTwobkBHzwUsWQoZl0_baTu2JAyzRtL7I8AtCC58eav03xPTDN0OaPA9Ik7vgb__7iTbSeQU5cTffIFlpQ_W201vzka4130EMVg7czasImL8XNRFYaA57F0_cJJTeJYP2o96okrgoBkcoQTEjshz1T1Y5NHwk2qmpPONFRwjA1rkF8nL5NaoNHQPi4nlSK7KJ7_-KudkkyCQYimOeOCRNOaHlcMunI0IloRbvwwwIELFNVth0quChzwaVLNQ9VSJWUAlyCzSPDs2cJaw8t9gd9tY9wZHFOtWNHytXgKHQUanOlwScrJqhXQGe5_YNhyrQRzDiVjfUCsF5grBewAirmKxRkP10MQ9yD_AwA6JxhSM08xig8fZ4v2Gx47rsO_nT3CVpp1_2gcdW6PkSrzCx4UpFWRIvj0bM6QsviZdyLR8fJTv0Ar5fm0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Newton-Type+Method+for+%E2%84%930-Regularized+Accelerated+Failure+Time+Model+Under+the+Case%E2%80%93Cohort+Design&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Liu%2C+Yanyan&rft.au=Tian%2C+Ke&rft.au=Wang%2C+Danlu&rft.au=Zhang%2C+Jing&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=41&rft.issue=9&rft.spage=2275&rft.epage=2300&rft_id=info:doi/10.1007%2Fs10114-025-3226-2&rft.externalDocID=10_1007_s10114_025_3226_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon