Riemann–Hilbert Approach for Constructing Analytical Solutions and Conservation Laws of a Local Time-Fractional Nonlinear Schrödinger Type Equation

Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution with fractal characteristics in time and soliton characteristics in space as well as the long-time asymptotic solution of a local time-fractio...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 13; no. 9; p. 1593
Main Authors: Xu, Bo, Zhang, Sheng
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2021
Subjects:
ISSN:2073-8994, 2073-8994
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution with fractal characteristics in time and soliton characteristics in space as well as the long-time asymptotic solution of a local time-fractional nonlinear Schrödinger (NLS)-type equation, are obtained by extending the Riemann–Hilbert (RH) approach together with the symmetries of the associated spectral function, jump matrix, and solution of the related RH problem. In addition, infinitely many conservation laws determined by an expression, one end of which is the partial derivative of local fractional-order in time, and the other end is the partial derivative of integral order in space of the local time-fractional NLS-type equation are also obtained. Constraining the time variable to the Cantor set, the obtained one-fractal-soliton solution is simulated, which shows the solution possesses continuous and non-differentiable characteristics in the time direction but keeps the soliton continuous and differentiable in the space direction. The essence of the fractal-soliton feature is that the time and space variables are set into two different dimensions of 0.631 and 1, respectively. This is also a concrete example of the same object showing different geometric characteristics on two scales.
AbstractList Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution with fractal characteristics in time and soliton characteristics in space as well as the long-time asymptotic solution of a local time-fractional nonlinear Schrödinger (NLS)-type equation, are obtained by extending the Riemann–Hilbert (RH) approach together with the symmetries of the associated spectral function, jump matrix, and solution of the related RH problem. In addition, infinitely many conservation laws determined by an expression, one end of which is the partial derivative of local fractional-order in time, and the other end is the partial derivative of integral order in space of the local time-fractional NLS-type equation are also obtained. Constraining the time variable to the Cantor set, the obtained one-fractal-soliton solution is simulated, which shows the solution possesses continuous and non-differentiable characteristics in the time direction but keeps the soliton continuous and differentiable in the space direction. The essence of the fractal-soliton feature is that the time and space variables are set into two different dimensions of 0.631 and 1, respectively. This is also a concrete example of the same object showing different geometric characteristics on two scales.
Author Zhang, Sheng
Xu, Bo
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-7956-4882
  surname: Xu
  fullname: Xu, Bo
– sequence: 2
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
BookMark eNptkUtOwzAQhi0EEqV0xQUssUQBJ07SellVLUWKQKJlHU0ch7pK7dZ2QN1xBySOwgW4CSfBaVlUiNl4Ht_8mvGcoWOllUDoIiTXlDJyY7erkBIWJoweoU5E-jQYMBYfH_inqGftknhLSBKnpIM-HqVYgVLfb-9TWRfCODxcr40GvsCVNniklXWm4U6qZzxUUG-d5FDjma4bJ30Rgyp3lDAv0GZwBq8W6woDznSLzuVKBBMDvK36-F6rWioBBs_4wnx9ll5aGDzfrgUeb5qdyDk6qaC2ovf7dtHTZDwfTYPs4fZuNMwCHrGBCyIoKsY57bOkoAWLB4QRlgpRsYLGbFDEZQxVFPJSJKngEBapICGjPgYgnDPaRZd7Xb_yphHW5UvdGD-lzaOknyaE-q_zVLinuNHWGlHlXLrdnM6ArPOQ5O0F8oML-J6rPz1rI1dgtv_SP_MSjrw
CitedBy_id crossref_primary_10_1155_2023_1294070
crossref_primary_10_1016_j_rinp_2023_107002
crossref_primary_10_3390_sym15061211
crossref_primary_10_1142_S0217984924502282
crossref_primary_10_2298_TSCI22S1019X
crossref_primary_10_2298_TSCI23S1077X
crossref_primary_10_3390_math10071043
Cites_doi 10.3390/sym13040730
10.1016/j.aml.2020.106365
10.1108/HFF-03-2020-0178
10.1155/2021/6669087
10.1016/j.cam.2014.01.002
10.1063/1.4960543
10.2298/TSCI190408138A
10.1371/journal.pone.0059483
10.1142/S0217984921502080
10.1016/j.ijleo.2020.164574
10.1016/j.geomphys.2018.05.024
10.1007/978-981-13-6581-2
10.1016/j.physleta.2009.12.051
10.1016/j.jelechem.2021.115388
10.1137/1.9780898719680
10.2298/TSCI1904131H
10.1142/S0217984921501943
10.1016/j.jde.2016.09.033
10.2307/2946540
10.1155/2021/6664039
10.1002/mma.7060
10.1103/PhysRevLett.19.1095
10.1142/S0218348X17400023
10.1155/2019/7952871
10.1007/s11071-021-06286-6
10.1016/j.rinp.2018.06.011
10.1142/S0218348X20501418
10.1186/s13662-021-03374-0
10.1142/S0218348X21501929
10.1108/HFF-03-2013-0092
10.1016/j.jde.2018.10.053
10.1007/BF01077483
10.1007/s11071-020-06166-5
10.1615/HeatTransRes.2013005856
10.1063/1.166197
10.2298/TSCI191123102X
10.1007/s10773-014-2123-8
10.3390/fractalfract5030093
10.1007/s11040-021-09388-0
10.1016/B978-0-12-804002-7.00004-8
10.1016/j.physleta.2011.01.029
10.1007/BF01736697
10.2298/TSCI2102217H
10.1177/14613484211026407
10.1007/s11040-013-9132-3
10.2298/TSCI11S1145H
10.1017/CBO9780511623998
10.1142/S0218348X21400120
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.3390/sym13091593
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym13091593
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c298t-2abf9cc3795b3b94809096eef9b3498b4d4af21cde56eca1b6e0193cdeaa0cc93
IEDL.DBID PIMPY
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700184000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 12:06:32 EDT 2025
Sat Nov 29 07:15:48 EST 2025
Tue Nov 18 22:10:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-2abf9cc3795b3b94809096eef9b3498b4d4af21cde56eca1b6e0193cdeaa0cc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7956-4882
OpenAccessLink https://www.proquest.com/publiccontent/docview/2576503073?pq-origsite=%requestingapplication%
PQID 2576503073
PQPubID 2032326
ParticipantIDs proquest_journals_2576503073
crossref_citationtrail_10_3390_sym13091593
crossref_primary_10_3390_sym13091593
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References He (ref_1) 2018; 10
Ain (ref_47) 2020; 28
Zhang (ref_8) 2011; 375
Tian (ref_36) 2016; 262
ref_12
ref_11
Plemelj (ref_49) 1908; 19
Guo (ref_42) 2021; 103
ref_51
Xu (ref_35) 2013; 16
ref_17
Yang (ref_28) 2017; 25
Ghanbari (ref_29) 2021; 44
Hu (ref_38) 2018; 332
Hu (ref_40) 2020; 381
ref_24
Zakharov (ref_50) 1979; 13
ref_21
Wu (ref_25) 2020; 106
He (ref_19) 2019; 23
Li (ref_43) 2021; 35
Fujioka (ref_10) 2010; 374
Zhang (ref_44) 2021; 35
Gardner (ref_31) 1967; 19
Wang (ref_39) 2019; 266
He (ref_4) 2014; 53
Ain (ref_16) 2019; 23
Chen (ref_41) 2021; 24
ref_33
ref_32
Xu (ref_23) 2021; 25
Yang (ref_27) 2016; 26
Xu (ref_13) 2021; 2021
Wei (ref_45) 2021; 104
He (ref_52) 2021; 895
Ma (ref_37) 2018; 132
Xu (ref_15) 2021; 2021
Xu (ref_14) 2021; 2021
ref_46
Jafari (ref_30) 2021; 29
Fang (ref_26) 2020; 209
ref_3
He (ref_18) 2021; 25
Fan (ref_6) 2013; 44
Zhang (ref_48) 2019; 2019
Khalil (ref_22) 2014; 264
He (ref_2) 2011; 15
ref_5
ref_7
Kolwankar (ref_20) 1996; 6
Deift (ref_34) 1993; 137
Zhang (ref_9) 2015; 25
References_xml – ident: ref_7
  doi: 10.3390/sym13040730
– volume: 106
  start-page: 106365
  year: 2020
  ident: ref_25
  article-title: Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106365
– ident: ref_17
  doi: 10.1108/HFF-03-2020-0178
– volume: 2021
  start-page: 6669087
  year: 2021
  ident: ref_14
  article-title: Fractional rogue waves with translational coordination, steep crest and modified asymmetry
  publication-title: Complexity
  doi: 10.1155/2021/6669087
– volume: 264
  start-page: 65
  year: 2014
  ident: ref_22
  article-title: A new definition of fractional derivative
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.01.002
– volume: 26
  start-page: 110
  year: 2016
  ident: ref_27
  article-title: On exact traveling-wave solutions for local fractional Korteweg-de Vries equation
  publication-title: Chaos
  doi: 10.1063/1.4960543
– volume: 23
  start-page: 1707
  year: 2019
  ident: ref_16
  article-title: On two-scale dimension and its applications
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI190408138A
– ident: ref_11
  doi: 10.1371/journal.pone.0059483
– volume: 35
  start-page: 2150208
  year: 2021
  ident: ref_44
  article-title: Riemann-Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984921502080
– volume: 209
  start-page: 164574
  year: 2020
  ident: ref_26
  article-title: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164574
– volume: 132
  start-page: 45
  year: 2018
  ident: ref_37
  article-title: Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system
  publication-title: J. Geo. Phys.
  doi: 10.1016/j.geomphys.2018.05.024
– ident: ref_46
  doi: 10.1007/978-981-13-6581-2
– volume: 374
  start-page: 1126
  year: 2010
  ident: ref_10
  article-title: Fractional optical solitons
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.12.051
– volume: 895
  start-page: 115388
  year: 2021
  ident: ref_52
  article-title: Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin fluids by He-Laplace method
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115388
– ident: ref_33
  doi: 10.1137/1.9780898719680
– volume: 23
  start-page: 2131
  year: 2019
  ident: ref_19
  article-title: Two-scale mathematics and fractional calculus for thermodynamics
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI1904131H
– volume: 35
  start-page: 2150194
  year: 2021
  ident: ref_43
  article-title: Riemann-Hilbert approach and multi-soliton solutions of a variable-coefficient fifth-order nonlinear Schrödinger equation with N distinct arbitrary-order poles
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984921501943
– volume: 262
  start-page: 506
  year: 2016
  ident: ref_36
  article-title: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method
  publication-title: J. Diff. Equ.
  doi: 10.1016/j.jde.2016.09.033
– volume: 137
  start-page: 295
  year: 1993
  ident: ref_34
  article-title: A steepest descent method for oscillatory Riemann-Hilbert problems
  publication-title: Ann. Math.
  doi: 10.2307/2946540
– volume: 2021
  start-page: 6664039
  year: 2021
  ident: ref_13
  article-title: Line soliton interactions for shallow ocean-waves and novel solutions with peakon, ring, conical, columnar and lump structures based on fractional KP equation
  publication-title: Adv. Math. Phys.
  doi: 10.1155/2021/6664039
– volume: 44
  start-page: 4673
  year: 2021
  ident: ref_29
  article-title: On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique
  publication-title: Math. Method. Appl. Sci.
  doi: 10.1002/mma.7060
– volume: 19
  start-page: 1095
  year: 1967
  ident: ref_31
  article-title: Method for solving the Korteweg-deVries equation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.19.1095
– volume: 25
  start-page: 1740002
  year: 2017
  ident: ref_28
  article-title: Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets
  publication-title: Fractal
  doi: 10.1142/S0218348X17400023
– volume: 2019
  start-page: 7952871
  year: 2019
  ident: ref_48
  article-title: Fractional soliton dynamics and spectral transform of time-fractional nonlinear systems: An concrete example
  publication-title: Complexity
  doi: 10.1155/2019/7952871
– volume: 104
  start-page: 649
  year: 2021
  ident: ref_45
  article-title: Riemann-Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrödinger equation in the birefringent or two-mode fiber
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06286-6
– volume: 10
  start-page: 272
  year: 2018
  ident: ref_1
  article-title: Fractal calculus and its geometrical explanation
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.06.011
– ident: ref_3
– volume: 28
  start-page: 2050141
  year: 2020
  ident: ref_47
  article-title: The fractional complex transform: A novel approach to the time-fractional Schrödinger equation
  publication-title: Fractals
  doi: 10.1142/S0218348X20501418
– volume: 2021
  start-page: 223
  year: 2021
  ident: ref_15
  article-title: Fractional isospectral and non-isospectral AKNS hierarchies and their analytic methods for N-fractal solutions with Mittag-Leffler functions
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03374-0
– ident: ref_24
  doi: 10.1142/S0218348X21501929
– volume: 25
  start-page: 1531
  year: 2015
  ident: ref_9
  article-title: Variable separation method for nonlinear time fractional biological population model
  publication-title: Int. J. Numer. Method. H.
  doi: 10.1108/HFF-03-2013-0092
– volume: 266
  start-page: 5209
  year: 2019
  ident: ref_39
  article-title: Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2018.10.053
– ident: ref_21
– volume: 13
  start-page: 166
  year: 1979
  ident: ref_50
  article-title: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II
  publication-title: Func. Anal. Appl.
  doi: 10.1007/BF01077483
– volume: 103
  start-page: 1805
  year: 2021
  ident: ref_42
  article-title: Multi-soliton solutions for a higher-order coupled nonlinear Schrödinger system in an optical fiber via Riemann–Hilbert approach
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06166-5
– volume: 44
  start-page: 399
  year: 2013
  ident: ref_6
  article-title: Fractal heat transfer in wool fiber hierarchy
  publication-title: Heat Transf. Res.
  doi: 10.1615/HeatTransRes.2013005856
– volume: 6
  start-page: 505
  year: 1996
  ident: ref_20
  article-title: Fractional differentiability of nowhere differentiable functions and dimensions
  publication-title: Chaos
  doi: 10.1063/1.166197
– volume: 25
  start-page: 2159
  year: 2021
  ident: ref_23
  article-title: Analytical methods for non-linear fractional Kolmogorov-Petrovskii-Piskunov equation: Soliton solution and operator solution
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI191123102X
– volume: 53
  start-page: 3698
  year: 2014
  ident: ref_4
  article-title: A tutorial review on fractal spacetime and fractional calculus
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-014-2123-8
– ident: ref_12
  doi: 10.3390/fractalfract5030093
– volume: 24
  start-page: 17
  year: 2021
  ident: ref_41
  article-title: Long-time asymptotics for the focusing Hirota equation with non-zero boundary conditions at infinity via the Deift-Zhou approach. Math
  publication-title: Phys. Anal. Geom.
  doi: 10.1007/s11040-021-09388-0
– ident: ref_5
  doi: 10.1016/B978-0-12-804002-7.00004-8
– volume: 375
  start-page: 1069
  year: 2011
  ident: ref_8
  article-title: Fractional sub-equation method and its applications to nonlinear fractional PDEs
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.01.029
– volume: 19
  start-page: 211
  year: 1908
  ident: ref_49
  article-title: Riemannsche Funktionenscharen mit gegebener Monodromiegruppe
  publication-title: Monatsch. Math. Phys.
  doi: 10.1007/BF01736697
– volume: 25
  start-page: 1217
  year: 2021
  ident: ref_18
  article-title: Seeing with a single scale is always unbelieving from magic to two-scale fractal
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI2102217H
– ident: ref_51
  doi: 10.1177/14613484211026407
– volume: 381
  start-page: 125262
  year: 2020
  ident: ref_40
  article-title: On the Riemann-Hilbert problem of the Kundu equation
  publication-title: Appl. Math. Comput.
– volume: 16
  start-page: 253
  year: 2013
  ident: ref_35
  article-title: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value
  publication-title: Math. Phys. Anal. Geo.
  doi: 10.1007/s11040-013-9132-3
– volume: 15
  start-page: S145
  year: 2011
  ident: ref_2
  article-title: A new fractal derivation
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI11S1145H
– ident: ref_32
  doi: 10.1017/CBO9780511623998
– volume: 332
  start-page: 148
  year: 2018
  ident: ref_38
  article-title: Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 2140012
  year: 2021
  ident: ref_30
  article-title: On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative
  publication-title: Fractals
  doi: 10.1142/S0218348X21400120
SSID ssj0000505460
Score 2.2636328
Snippet Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1593
SubjectTerms Asymptotic methods
Conservation laws
Derivatives
Exact solutions
Fractal analysis
Fractals
Fractional calculus
Integrals
Ordinary differential equations
Partial differential equations
Securities prices
Solitary waves
Symmetry
Title Riemann–Hilbert Approach for Constructing Analytical Solutions and Conservation Laws of a Local Time-Fractional Nonlinear Schrödinger Type Equation
URI https://www.proquest.com/docview/2576503073
Volume 13
WOSCitedRecordID wos000700184000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC5014MXNT4wGpc65KBCs_PoefRJouwSYV2WRCGehn5NXDCzyc6ieAn5D0J-Sv6A_8RfYldP72pAPHkZaKYOA1Vdr6n6PoBd6wwlia1gdZkIxlWRM1mWnBGzdWx0rXjsF4UnxXRaHh2JWViPbsNY5donekfdoT3T3LZzwkOz0NQxH1KanHn7fHV6xohDiv61BkKNm9An4K2oB_3Z23ezj5ueC7G28Tzq1vRSV-0P228nzokLF9PT64Hpul_2wWZ89_9-5j24E5JO3OusZAtu2OY-bIVr3eLzgD394gFcHsztiWyanxff9-cEf7XCvYA6ji69ReL37BBnm2P0gCa-F46b7hrKxnipdbMXJ_Jri4saJU4obiItnbDxsluocOdpB9Yhl3ioPy1_XBnfaEQqkHF01iGRP4QP49H7N_ssUDcwnYhyxRKpaqF1WohMpUrwMhKuVrK2FirlolTccFknsTY2y62WscqtyzVTd5Yy0lqkj6DXLBr7GLBQplZGFeQ9eGbIhrRJiixxiW1uRbQNL9d6q3TANSd6jc-Vq29IydUfSt6G3Y3waQfn8XexnbV2q3Cn2-q3Mp_8-_VTuJ3Q5IufRNuBnlOLfQa39JfVvF0OoP96NJ0dDGjK9JCe56NBMNRf4A78lw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKRJsCuUhWgrcRZEAyWriOA8vEKqgoxk1HY2gSGUV_Aodqc20k1Gr7voPSHwGS36AP-FL8HWSgUqIXRcsrXhlH597feN7DiGb1gGFhVbQMmOCcpUmVGYZp-hsHRpdKh76RuE8HY2ygwMxXiLful4YfFbZcaInajPVWCPfwsQ49oh8fXJK0TUK_652FhoNLHbtxbm7stWvhm_d_j5jrL-z_2ZAW1cBqpnI5pRJVQqto1TEKlKCZ4Fwaby1pVARF5nihsuShdrYOLFahiqxLg2K3FjKQGsUX3KUv8wd2IMeWR4P98YfF1Ud9IXjSdA0AkaRCLbqi2MXJoTLGqKroe8q8_tw1r_9vy3EHbLSJs6w3SB9lSzZ6i5ZbamphuetfvaLe-Tru4k9llX18_LLYIISXnPYbpXTwaXogB6ljWpu9Rm8KIuv58OiQgiyMn5WV7CGXJ7XMC1BQo6xH7BxhvZnTVOIG48awRE5g_f6cPbju_HFUsBLPuycNmrq98mHa1mfB6RXTSv7kECqTKmMSpEBeWzwHGjD0pi55DyxIlgjLztkFLrVZkeLkKPC3dEQRsUfMFojm4vJJ40kyd-nbXT4KVpeqovf4Fn_9-en5OZgfy8v8uFo9xG5xfAlj39Zt0F6bovsY3JDn80n9exJewSAfLpusP0C-E9Njw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpgixoZSH-gK8KBIgWZM4zsMLhAqdUauOolEBqbvgV2Akmmkno1bd8Q9IfAoLtvxJv6S-iTNQCbHrgqUVr-zje49vfM8B2LYOKCy0gpYZE5SrNKEyyzhFZ-vQ6FLxsGkUHqV5nh0difES_Ox6YfBZZRcTm0Btphpr5H0kxnGDyH7pn0WMd4evT04pOkjhn9bOTqOFyIG9OHfXt_rV_q7b62eMDQfv3-5R7zBANRPZnDKpSqF1lIpYRUrwLBCO0ltbChVxkSluuCxZqI2NE6tlqBLrKFHkxlIGWqMQkwv_y2nkLj09WH4zyMeHiwoPesTxJGibAqNIBP364tilDOEYRHQ9DV7PAk1qG678z4tyD-56Qk122hOwCku2ug-rPmTV5LnX1X7xAL4fTuyxrKrLr9_2JijtNSc7XlGdOOpO0Lu0VdOtPpFGrKWp85NF5ZDIyjSzukI2GcnzmkxLIskIOQHBhho6nLXNIm6ct0Ikckbe6c-zXz9MU0QlePkng9NWZf0hfLiR9XkEvWpa2TUgqTKlMirFyMhjg-dDG5bGzJH2xIpgHV52KCm012xH65Avhbu7IaSKPyC1DtuLySetVMnfp211WCp8vKqL30Da-Pfnp3DbIawY7ecHm3CH4QMf9NPItqDndsg-hlv6bD6pZ0_8aSDw8aaxdgVeA1Yx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riemann%E2%80%93Hilbert+Approach+for+Constructing+Analytical+Solutions+and+Conservation+Laws+of+a+Local+Time-Fractional+Nonlinear+Schr%C3%B6dinger+Type+Equation&rft.jtitle=Symmetry+%28Basel%29&rft.au=Xu%2C+Bo&rft.au=Zhang%2C+Sheng&rft.date=2021-09-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=13&rft.issue=9&rft.spage=1593&rft_id=info:doi/10.3390%2Fsym13091593&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym13091593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon