Riemann–Hilbert Approach for Constructing Analytical Solutions and Conservation Laws of a Local Time-Fractional Nonlinear Schrödinger Type Equation
Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution with fractal characteristics in time and soliton characteristics in space as well as the long-time asymptotic solution of a local time-fractio...
Saved in:
| Published in: | Symmetry (Basel) Vol. 13; no. 9; p. 1593 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.09.2021
|
| Subjects: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution with fractal characteristics in time and soliton characteristics in space as well as the long-time asymptotic solution of a local time-fractional nonlinear Schrödinger (NLS)-type equation, are obtained by extending the Riemann–Hilbert (RH) approach together with the symmetries of the associated spectral function, jump matrix, and solution of the related RH problem. In addition, infinitely many conservation laws determined by an expression, one end of which is the partial derivative of local fractional-order in time, and the other end is the partial derivative of integral order in space of the local time-fractional NLS-type equation are also obtained. Constraining the time variable to the Cantor set, the obtained one-fractal-soliton solution is simulated, which shows the solution possesses continuous and non-differentiable characteristics in the time direction but keeps the soliton continuous and differentiable in the space direction. The essence of the fractal-soliton feature is that the time and space variables are set into two different dimensions of 0.631 and 1, respectively. This is also a concrete example of the same object showing different geometric characteristics on two scales. |
|---|---|
| AbstractList | Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution with fractal characteristics in time and soliton characteristics in space as well as the long-time asymptotic solution of a local time-fractional nonlinear Schrödinger (NLS)-type equation, are obtained by extending the Riemann–Hilbert (RH) approach together with the symmetries of the associated spectral function, jump matrix, and solution of the related RH problem. In addition, infinitely many conservation laws determined by an expression, one end of which is the partial derivative of local fractional-order in time, and the other end is the partial derivative of integral order in space of the local time-fractional NLS-type equation are also obtained. Constraining the time variable to the Cantor set, the obtained one-fractal-soliton solution is simulated, which shows the solution possesses continuous and non-differentiable characteristics in the time direction but keeps the soliton continuous and differentiable in the space direction. The essence of the fractal-soliton feature is that the time and space variables are set into two different dimensions of 0.631 and 1, respectively. This is also a concrete example of the same object showing different geometric characteristics on two scales. |
| Author | Zhang, Sheng Xu, Bo |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-7956-4882 surname: Xu fullname: Xu, Bo – sequence: 2 givenname: Sheng surname: Zhang fullname: Zhang, Sheng |
| BookMark | eNptkUtOwzAQhi0EEqV0xQUssUQBJ07SellVLUWKQKJlHU0ch7pK7dZ2QN1xBySOwgW4CSfBaVlUiNl4Ht_8mvGcoWOllUDoIiTXlDJyY7erkBIWJoweoU5E-jQYMBYfH_inqGftknhLSBKnpIM-HqVYgVLfb-9TWRfCODxcr40GvsCVNniklXWm4U6qZzxUUG-d5FDjma4bJ30Rgyp3lDAv0GZwBq8W6woDznSLzuVKBBMDvK36-F6rWioBBs_4wnx9ll5aGDzfrgUeb5qdyDk6qaC2ovf7dtHTZDwfTYPs4fZuNMwCHrGBCyIoKsY57bOkoAWLB4QRlgpRsYLGbFDEZQxVFPJSJKngEBapICGjPgYgnDPaRZd7Xb_yphHW5UvdGD-lzaOknyaE-q_zVLinuNHWGlHlXLrdnM6ArPOQ5O0F8oML-J6rPz1rI1dgtv_SP_MSjrw |
| CitedBy_id | crossref_primary_10_1155_2023_1294070 crossref_primary_10_1016_j_rinp_2023_107002 crossref_primary_10_3390_sym15061211 crossref_primary_10_1142_S0217984924502282 crossref_primary_10_2298_TSCI22S1019X crossref_primary_10_2298_TSCI23S1077X crossref_primary_10_3390_math10071043 |
| Cites_doi | 10.3390/sym13040730 10.1016/j.aml.2020.106365 10.1108/HFF-03-2020-0178 10.1155/2021/6669087 10.1016/j.cam.2014.01.002 10.1063/1.4960543 10.2298/TSCI190408138A 10.1371/journal.pone.0059483 10.1142/S0217984921502080 10.1016/j.ijleo.2020.164574 10.1016/j.geomphys.2018.05.024 10.1007/978-981-13-6581-2 10.1016/j.physleta.2009.12.051 10.1016/j.jelechem.2021.115388 10.1137/1.9780898719680 10.2298/TSCI1904131H 10.1142/S0217984921501943 10.1016/j.jde.2016.09.033 10.2307/2946540 10.1155/2021/6664039 10.1002/mma.7060 10.1103/PhysRevLett.19.1095 10.1142/S0218348X17400023 10.1155/2019/7952871 10.1007/s11071-021-06286-6 10.1016/j.rinp.2018.06.011 10.1142/S0218348X20501418 10.1186/s13662-021-03374-0 10.1142/S0218348X21501929 10.1108/HFF-03-2013-0092 10.1016/j.jde.2018.10.053 10.1007/BF01077483 10.1007/s11071-020-06166-5 10.1615/HeatTransRes.2013005856 10.1063/1.166197 10.2298/TSCI191123102X 10.1007/s10773-014-2123-8 10.3390/fractalfract5030093 10.1007/s11040-021-09388-0 10.1016/B978-0-12-804002-7.00004-8 10.1016/j.physleta.2011.01.029 10.1007/BF01736697 10.2298/TSCI2102217H 10.1177/14613484211026407 10.1007/s11040-013-9132-3 10.2298/TSCI11S1145H 10.1017/CBO9780511623998 10.1142/S0218348X21400120 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.3390/sym13091593 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym13091593 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c298t-2abf9cc3795b3b94809096eef9b3498b4d4af21cde56eca1b6e0193cdeaa0cc93 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700184000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 12:06:32 EDT 2025 Sat Nov 29 07:15:48 EST 2025 Tue Nov 18 22:10:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-2abf9cc3795b3b94809096eef9b3498b4d4af21cde56eca1b6e0193cdeaa0cc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7956-4882 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2576503073?pq-origsite=%requestingapplication% |
| PQID | 2576503073 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2576503073 crossref_citationtrail_10_3390_sym13091593 crossref_primary_10_3390_sym13091593 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | He (ref_1) 2018; 10 Ain (ref_47) 2020; 28 Zhang (ref_8) 2011; 375 Tian (ref_36) 2016; 262 ref_12 ref_11 Plemelj (ref_49) 1908; 19 Guo (ref_42) 2021; 103 ref_51 Xu (ref_35) 2013; 16 ref_17 Yang (ref_28) 2017; 25 Ghanbari (ref_29) 2021; 44 Hu (ref_38) 2018; 332 Hu (ref_40) 2020; 381 ref_24 Zakharov (ref_50) 1979; 13 ref_21 Wu (ref_25) 2020; 106 He (ref_19) 2019; 23 Li (ref_43) 2021; 35 Fujioka (ref_10) 2010; 374 Zhang (ref_44) 2021; 35 Gardner (ref_31) 1967; 19 Wang (ref_39) 2019; 266 He (ref_4) 2014; 53 Ain (ref_16) 2019; 23 Chen (ref_41) 2021; 24 ref_33 ref_32 Xu (ref_23) 2021; 25 Yang (ref_27) 2016; 26 Xu (ref_13) 2021; 2021 Wei (ref_45) 2021; 104 He (ref_52) 2021; 895 Ma (ref_37) 2018; 132 Xu (ref_15) 2021; 2021 Xu (ref_14) 2021; 2021 ref_46 Jafari (ref_30) 2021; 29 Fang (ref_26) 2020; 209 ref_3 He (ref_18) 2021; 25 Fan (ref_6) 2013; 44 Zhang (ref_48) 2019; 2019 Khalil (ref_22) 2014; 264 He (ref_2) 2011; 15 ref_5 ref_7 Kolwankar (ref_20) 1996; 6 Deift (ref_34) 1993; 137 Zhang (ref_9) 2015; 25 |
| References_xml | – ident: ref_7 doi: 10.3390/sym13040730 – volume: 106 start-page: 106365 year: 2020 ident: ref_25 article-title: Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106365 – ident: ref_17 doi: 10.1108/HFF-03-2020-0178 – volume: 2021 start-page: 6669087 year: 2021 ident: ref_14 article-title: Fractional rogue waves with translational coordination, steep crest and modified asymmetry publication-title: Complexity doi: 10.1155/2021/6669087 – volume: 264 start-page: 65 year: 2014 ident: ref_22 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.002 – volume: 26 start-page: 110 year: 2016 ident: ref_27 article-title: On exact traveling-wave solutions for local fractional Korteweg-de Vries equation publication-title: Chaos doi: 10.1063/1.4960543 – volume: 23 start-page: 1707 year: 2019 ident: ref_16 article-title: On two-scale dimension and its applications publication-title: Therm. Sci. doi: 10.2298/TSCI190408138A – ident: ref_11 doi: 10.1371/journal.pone.0059483 – volume: 35 start-page: 2150208 year: 2021 ident: ref_44 article-title: Riemann-Hilbert approach for a Schrödinger-type equation with nonzero boundary conditions publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984921502080 – volume: 209 start-page: 164574 year: 2020 ident: ref_26 article-title: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation publication-title: Optik doi: 10.1016/j.ijleo.2020.164574 – volume: 132 start-page: 45 year: 2018 ident: ref_37 article-title: Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system publication-title: J. Geo. Phys. doi: 10.1016/j.geomphys.2018.05.024 – ident: ref_46 doi: 10.1007/978-981-13-6581-2 – volume: 374 start-page: 1126 year: 2010 ident: ref_10 article-title: Fractional optical solitons publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2009.12.051 – volume: 895 start-page: 115388 year: 2021 ident: ref_52 article-title: Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin fluids by He-Laplace method publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115388 – ident: ref_33 doi: 10.1137/1.9780898719680 – volume: 23 start-page: 2131 year: 2019 ident: ref_19 article-title: Two-scale mathematics and fractional calculus for thermodynamics publication-title: Therm. Sci. doi: 10.2298/TSCI1904131H – volume: 35 start-page: 2150194 year: 2021 ident: ref_43 article-title: Riemann-Hilbert approach and multi-soliton solutions of a variable-coefficient fifth-order nonlinear Schrödinger equation with N distinct arbitrary-order poles publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984921501943 – volume: 262 start-page: 506 year: 2016 ident: ref_36 article-title: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method publication-title: J. Diff. Equ. doi: 10.1016/j.jde.2016.09.033 – volume: 137 start-page: 295 year: 1993 ident: ref_34 article-title: A steepest descent method for oscillatory Riemann-Hilbert problems publication-title: Ann. Math. doi: 10.2307/2946540 – volume: 2021 start-page: 6664039 year: 2021 ident: ref_13 article-title: Line soliton interactions for shallow ocean-waves and novel solutions with peakon, ring, conical, columnar and lump structures based on fractional KP equation publication-title: Adv. Math. Phys. doi: 10.1155/2021/6664039 – volume: 44 start-page: 4673 year: 2021 ident: ref_29 article-title: On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique publication-title: Math. Method. Appl. Sci. doi: 10.1002/mma.7060 – volume: 19 start-page: 1095 year: 1967 ident: ref_31 article-title: Method for solving the Korteweg-deVries equation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.1095 – volume: 25 start-page: 1740002 year: 2017 ident: ref_28 article-title: Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets publication-title: Fractal doi: 10.1142/S0218348X17400023 – volume: 2019 start-page: 7952871 year: 2019 ident: ref_48 article-title: Fractional soliton dynamics and spectral transform of time-fractional nonlinear systems: An concrete example publication-title: Complexity doi: 10.1155/2019/7952871 – volume: 104 start-page: 649 year: 2021 ident: ref_45 article-title: Riemann-Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrödinger equation in the birefringent or two-mode fiber publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06286-6 – volume: 10 start-page: 272 year: 2018 ident: ref_1 article-title: Fractal calculus and its geometrical explanation publication-title: Results Phys. doi: 10.1016/j.rinp.2018.06.011 – ident: ref_3 – volume: 28 start-page: 2050141 year: 2020 ident: ref_47 article-title: The fractional complex transform: A novel approach to the time-fractional Schrödinger equation publication-title: Fractals doi: 10.1142/S0218348X20501418 – volume: 2021 start-page: 223 year: 2021 ident: ref_15 article-title: Fractional isospectral and non-isospectral AKNS hierarchies and their analytic methods for N-fractal solutions with Mittag-Leffler functions publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-021-03374-0 – ident: ref_24 doi: 10.1142/S0218348X21501929 – volume: 25 start-page: 1531 year: 2015 ident: ref_9 article-title: Variable separation method for nonlinear time fractional biological population model publication-title: Int. J. Numer. Method. H. doi: 10.1108/HFF-03-2013-0092 – volume: 266 start-page: 5209 year: 2019 ident: ref_39 article-title: Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2018.10.053 – ident: ref_21 – volume: 13 start-page: 166 year: 1979 ident: ref_50 article-title: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II publication-title: Func. Anal. Appl. doi: 10.1007/BF01077483 – volume: 103 start-page: 1805 year: 2021 ident: ref_42 article-title: Multi-soliton solutions for a higher-order coupled nonlinear Schrödinger system in an optical fiber via Riemann–Hilbert approach publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06166-5 – volume: 44 start-page: 399 year: 2013 ident: ref_6 article-title: Fractal heat transfer in wool fiber hierarchy publication-title: Heat Transf. Res. doi: 10.1615/HeatTransRes.2013005856 – volume: 6 start-page: 505 year: 1996 ident: ref_20 article-title: Fractional differentiability of nowhere differentiable functions and dimensions publication-title: Chaos doi: 10.1063/1.166197 – volume: 25 start-page: 2159 year: 2021 ident: ref_23 article-title: Analytical methods for non-linear fractional Kolmogorov-Petrovskii-Piskunov equation: Soliton solution and operator solution publication-title: Therm. Sci. doi: 10.2298/TSCI191123102X – volume: 53 start-page: 3698 year: 2014 ident: ref_4 article-title: A tutorial review on fractal spacetime and fractional calculus publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-014-2123-8 – ident: ref_12 doi: 10.3390/fractalfract5030093 – volume: 24 start-page: 17 year: 2021 ident: ref_41 article-title: Long-time asymptotics for the focusing Hirota equation with non-zero boundary conditions at infinity via the Deift-Zhou approach. Math publication-title: Phys. Anal. Geom. doi: 10.1007/s11040-021-09388-0 – ident: ref_5 doi: 10.1016/B978-0-12-804002-7.00004-8 – volume: 375 start-page: 1069 year: 2011 ident: ref_8 article-title: Fractional sub-equation method and its applications to nonlinear fractional PDEs publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.01.029 – volume: 19 start-page: 211 year: 1908 ident: ref_49 article-title: Riemannsche Funktionenscharen mit gegebener Monodromiegruppe publication-title: Monatsch. Math. Phys. doi: 10.1007/BF01736697 – volume: 25 start-page: 1217 year: 2021 ident: ref_18 article-title: Seeing with a single scale is always unbelieving from magic to two-scale fractal publication-title: Therm. Sci. doi: 10.2298/TSCI2102217H – ident: ref_51 doi: 10.1177/14613484211026407 – volume: 381 start-page: 125262 year: 2020 ident: ref_40 article-title: On the Riemann-Hilbert problem of the Kundu equation publication-title: Appl. Math. Comput. – volume: 16 start-page: 253 year: 2013 ident: ref_35 article-title: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value publication-title: Math. Phys. Anal. Geo. doi: 10.1007/s11040-013-9132-3 – volume: 15 start-page: S145 year: 2011 ident: ref_2 article-title: A new fractal derivation publication-title: Therm. Sci. doi: 10.2298/TSCI11S1145H – ident: ref_32 doi: 10.1017/CBO9780511623998 – volume: 332 start-page: 148 year: 2018 ident: ref_38 article-title: Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line publication-title: Appl. Math. Comput. – volume: 29 start-page: 2140012 year: 2021 ident: ref_30 article-title: On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative publication-title: Fractals doi: 10.1142/S0218348X21400120 |
| SSID | ssj0000505460 |
| Score | 2.2636328 |
| Snippet | Fractal and fractional calculus have important theoretical and practical value. In this paper, analytical solutions, including the N-fractal-soliton solution... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1593 |
| SubjectTerms | Asymptotic methods Conservation laws Derivatives Exact solutions Fractal analysis Fractals Fractional calculus Integrals Ordinary differential equations Partial differential equations Securities prices Solitary waves Symmetry |
| Title | Riemann–Hilbert Approach for Constructing Analytical Solutions and Conservation Laws of a Local Time-Fractional Nonlinear Schrödinger Type Equation |
| URI | https://www.proquest.com/docview/2576503073 |
| Volume | 13 |
| WOSCitedRecordID | wos000700184000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC5014MXNT4wGpc65KBCs_PoefRJouwSYV2WRCGehn5NXDCzyc6ieAn5D0J-Sv6A_8RfYldP72pAPHkZaKYOA1Vdr6n6PoBd6wwlia1gdZkIxlWRM1mWnBGzdWx0rXjsF4UnxXRaHh2JWViPbsNY5donekfdoT3T3LZzwkOz0NQxH1KanHn7fHV6xohDiv61BkKNm9An4K2oB_3Z23ezj5ueC7G28Tzq1vRSV-0P228nzokLF9PT64Hpul_2wWZ89_9-5j24E5JO3OusZAtu2OY-bIVr3eLzgD394gFcHsztiWyanxff9-cEf7XCvYA6ji69ReL37BBnm2P0gCa-F46b7hrKxnipdbMXJ_Jri4saJU4obiItnbDxsluocOdpB9Yhl3ioPy1_XBnfaEQqkHF01iGRP4QP49H7N_ssUDcwnYhyxRKpaqF1WohMpUrwMhKuVrK2FirlolTccFknsTY2y62WscqtyzVTd5Yy0lqkj6DXLBr7GLBQplZGFeQ9eGbIhrRJiixxiW1uRbQNL9d6q3TANSd6jc-Vq29IydUfSt6G3Y3waQfn8XexnbV2q3Cn2-q3Mp_8-_VTuJ3Q5IufRNuBnlOLfQa39JfVvF0OoP96NJ0dDGjK9JCe56NBMNRf4A78lw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKRJsCuUhWgrcRZEAyWriOA8vEKqgoxk1HY2gSGUV_Aodqc20k1Gr7voPSHwGS36AP-FL8HWSgUqIXRcsrXhlH597feN7DiGb1gGFhVbQMmOCcpUmVGYZp-hsHRpdKh76RuE8HY2ygwMxXiLful4YfFbZcaInajPVWCPfwsQ49oh8fXJK0TUK_652FhoNLHbtxbm7stWvhm_d_j5jrL-z_2ZAW1cBqpnI5pRJVQqto1TEKlKCZ4Fwaby1pVARF5nihsuShdrYOLFahiqxLg2K3FjKQGsUX3KUv8wd2IMeWR4P98YfF1Ud9IXjSdA0AkaRCLbqi2MXJoTLGqKroe8q8_tw1r_9vy3EHbLSJs6w3SB9lSzZ6i5ZbamphuetfvaLe-Tru4k9llX18_LLYIISXnPYbpXTwaXogB6ljWpu9Rm8KIuv58OiQgiyMn5WV7CGXJ7XMC1BQo6xH7BxhvZnTVOIG48awRE5g_f6cPbju_HFUsBLPuycNmrq98mHa1mfB6RXTSv7kECqTKmMSpEBeWzwHGjD0pi55DyxIlgjLztkFLrVZkeLkKPC3dEQRsUfMFojm4vJJ40kyd-nbXT4KVpeqovf4Fn_9-en5OZgfy8v8uFo9xG5xfAlj39Zt0F6bovsY3JDn80n9exJewSAfLpusP0C-E9Njw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpgixoZSH-gK8KBIgWZM4zsMLhAqdUauOolEBqbvgV2Akmmkno1bd8Q9IfAoLtvxJv6S-iTNQCbHrgqUVr-zje49vfM8B2LYOKCy0gpYZE5SrNKEyyzhFZ-vQ6FLxsGkUHqV5nh0difES_Ox6YfBZZRcTm0Btphpr5H0kxnGDyH7pn0WMd4evT04pOkjhn9bOTqOFyIG9OHfXt_rV_q7b62eMDQfv3-5R7zBANRPZnDKpSqF1lIpYRUrwLBCO0ltbChVxkSluuCxZqI2NE6tlqBLrKFHkxlIGWqMQkwv_y2nkLj09WH4zyMeHiwoPesTxJGibAqNIBP364tilDOEYRHQ9DV7PAk1qG678z4tyD-56Qk122hOwCku2ug-rPmTV5LnX1X7xAL4fTuyxrKrLr9_2JijtNSc7XlGdOOpO0Lu0VdOtPpFGrKWp85NF5ZDIyjSzukI2GcnzmkxLIskIOQHBhho6nLXNIm6ct0Ikckbe6c-zXz9MU0QlePkng9NWZf0hfLiR9XkEvWpa2TUgqTKlMirFyMhjg-dDG5bGzJH2xIpgHV52KCm012xH65Avhbu7IaSKPyC1DtuLySetVMnfp211WCp8vKqL30Da-Pfnp3DbIawY7ecHm3CH4QMf9NPItqDndsg-hlv6bD6pZ0_8aSDw8aaxdgVeA1Yx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riemann%E2%80%93Hilbert+Approach+for+Constructing+Analytical+Solutions+and+Conservation+Laws+of+a+Local+Time-Fractional+Nonlinear+Schr%C3%B6dinger+Type+Equation&rft.jtitle=Symmetry+%28Basel%29&rft.au=Xu%2C+Bo&rft.au=Zhang%2C+Sheng&rft.date=2021-09-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=13&rft.issue=9&rft.spage=1593&rft_id=info:doi/10.3390%2Fsym13091593&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym13091593 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |