Fast shape recognition via a bi-level restraint reduction of contour coding
Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision system. This paper investigates the restraint of fea...
Gespeichert in:
| Veröffentlicht in: | The Visual computer Jg. 40; H. 4; S. 2599 - 2614 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-2789, 1432-2315 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision system. This paper investigates the restraint of feature structure that intrinsically deteriorates recognition performance. Furthermore, we propose a fast shape recognition method based on a bi-level restraint reduction of contour coding (CC2RR), which provides more effective theoretical support for the practical application of the visual algorithm. CC2RR reduces restraint performed from contour feature extraction and expression, respectively. First, for shape contour, the restraint of contour feature extraction is reduced by transforming the direction of contour points to contour segments; second, for the encoded contour segment, the restraint of the contour feature expression is reduced; in other words, the current direction is reduced to the previous and the next direction. Guided by these insights, Hamming code distance is used to match the coding features after the twofold restraint reduction, and the results are obtained. Experimental results verify that the method significantly improves the performance, which runs up to 500 times faster than the existing description methods based on shape contours while increasing robustness. This makes the method useful in practical software system. |
|---|---|
| AbstractList | Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision system. This paper investigates the restraint of feature structure that intrinsically deteriorates recognition performance. Furthermore, we propose a fast shape recognition method based on a bi-level restraint reduction of contour coding (CC2RR), which provides more effective theoretical support for the practical application of the visual algorithm. CC2RR reduces restraint performed from contour feature extraction and expression, respectively. First, for shape contour, the restraint of contour feature extraction is reduced by transforming the direction of contour points to contour segments; second, for the encoded contour segment, the restraint of the contour feature expression is reduced; in other words, the current direction is reduced to the previous and the next direction. Guided by these insights, Hamming code distance is used to match the coding features after the twofold restraint reduction, and the results are obtained. Experimental results verify that the method significantly improves the performance, which runs up to 500 times faster than the existing description methods based on shape contours while increasing robustness. This makes the method useful in practical software system. |
| Author | Meng, Fanjie Guo, Baolong Li, Zekun Jiang, Bingting |
| Author_xml | – sequence: 1 givenname: Zekun surname: Li fullname: Li, Zekun organization: Institute of Intelligent Control and Image Engineering, Xidian University – sequence: 2 givenname: Baolong orcidid: 0000-0002-8406-0689 surname: Guo fullname: Guo, Baolong email: blguo@xidian.edu.cn organization: Institute of Intelligent Control and Image Engineering, Xidian University – sequence: 3 givenname: Fanjie surname: Meng fullname: Meng, Fanjie organization: Institute of Intelligent Control and Image Engineering, Xidian University – sequence: 4 givenname: Bingting surname: Jiang fullname: Jiang, Bingting organization: College of Computer Science and Electronic Engineering, Hunan University |
| BookMark | eNqFkMFOwzAMhiM0JLbBC3CqxDkQx22THtHEADGJC5yjNElHp5GMpJvE2xNWJG5wsGzL329b_4xMfPCOkEtg18CYuEmMoQDKOOZoSkabEzKFEjnlCNWETBkISbmQzRmZpbRhuRdlMyVPS52GIr3pnSuiM2Ht-6EPvjj0utBF29OtO7htHqUh6t4PubJ7c0RCV5jgh7CPOdver8_Jaae3yV385Dl5Xd69LB7o6vn-cXG7ooY3cqBQNmihdcCwskJ0aCsjSia0KVuoQfK21hVaV2uJFsFKDpXjVoOtueOtwTm5GvfuYvjY58_UJj_h80mFDFFKJqvyP0pwaCRmio-UiSGl6Dq1i_27jp8KmPq2Vo3WqmytOlqrmizCUZQy7Ncu_q7-Q_UF4yF8Zg |
| Cites_doi | 10.1016/j.patcog.2007.10.020 10.1109/34.149591 10.1109/CVPR.2009.5206844 10.1109/TIP.2019.2921526 10.1109/TCSVT.2008.918784 10.1109/ICDAR.2009.175 10.1109/CVPR.2007.383227 10.1109/TIP.2016.2514498 10.1016/S0042-6989(02)00017-2 10.1007/s00371-019-01778-4 10.1109/TPAMI.2014.2346201 10.1016/j.patrec.2016.03.029 10.1016/0010-0285(89)90009-1 10.1109/TCSVT.2004.842596 10.1109/ICIME.2009.32 10.1109/CVPR.2017.221 10.1109/83.869178 10.1109/5.687833 10.1016/j.imavis.2010.11.001 10.1109/ISPACS.2009.5383832 10.3390/s19030486 10.1109/PROC.1967.5490 10.1016/j.neucom.2017.09.067 10.1109/ICCVW.2009.5457679 10.1007/s00371-021-02337-6 10.3390/rs14225845 10.1007/978-3-642-15558-1_30 10.1109/TIP.2012.2207391 10.1109/34.993558 10.1109/TIP.2003.816010 10.1109/83.650847 10.1109/TPAMI.2007.41 10.1109/TIP.2016.2627813 10.1111/j.2044-8295.1955.tb00521.x 10.1109/TIP.2006.875168 10.1007/s00371-022-02445-x 10.1016/0165-1684(85)90001-5 10.1016/0031-3203(91)90121-K 10.1007/s00371-022-02497-z 10.1016/S0923-5965(99)00041-7 10.1016/0167-8655(90)90119-M 10.1109/JSEN.2015.2432127 10.1109/TCSVT.2006.882388 10.1109/CVPR.2007.383018 10.1016/S0167-8655(97)00050-0 10.1016/j.cviu.2015.11.011 10.1109/ICIP.2011.6116088 10.1002/erv.531 10.1117/1.JEI.23.4.043009 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00371-023-02940-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1432-2315 |
| EndPage | 2614 |
| ExternalDocumentID | 10_1007_s00371_023_02940_9 |
| GrantInformation_xml | – fundername: Natural Science Basic Research Program of Shaanxi Province grantid: 2020JM-196 funderid: http://dx.doi.org/10.13039/501100017596 – fundername: National Natural Science Foundation of China grantid: 62171341 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c298t-1493d1be1035d77f3d5c7407ac4b16182b6a53de6a83d31d8215e2da1d62e2bc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001060100700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-2789 |
| IngestDate | Wed Nov 05 04:16:10 EST 2025 Thu Nov 20 10:41:53 EST 2025 Sat Nov 29 02:23:32 EST 2025 Fri Feb 21 02:41:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Contour coding Restraint Shape recognition Reduce restraint |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-1493d1be1035d77f3d5c7407ac4b16182b6a53de6a83d31d8215e2da1d62e2bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8406-0689 |
| PQID | 3033721983 |
| PQPubID | 2043737 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3033880854 proquest_journals_3033721983 crossref_primary_10_1007_s00371_023_02940_9 springer_journals_10_1007_s00371_023_02940_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Lai, H., Zuo, Z., Wang, Z., Yao, Z., Liu, W.: Accurate distortion measurement for b-spline-based shape coding. In: 2011 18th IEEE International Conference on Image Processing, pp. 225–228. IEEE (2011) Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: European Conference on Computer Vision, pp. 411–424. Springer (2010) ITUT Recommendation. Information technology–coded representation of picture and audio information–progressive bi-level image compression. T82 (JBIG) LiuZXiangQTangJWangYZhaoPRobust salient object detection for RGB imagesVis. Comput.20203618231835 Wulandhari, L.A., Haron, H.: Characteristic of rectangular vertex chain code for shapes with hole. In: 2009 International Conference on Information Management and Engineering, pp. 648–650. IEEE (2009) Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 360–367. IEEE (2009) Zhang, J., Wenyin, L.: A pixel-level statistical structural descriptor for shape measure and recognition. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 386–390. IEEE (2009) RongxiangHJiaWLingHHuangDMultiscale distance matrix for fast plant leaf recognitionIEEE Trans. Image Process.20122111466746722991645 Kera, S.B., Tadepalli, A., Ranjani, J.J.: A paced multi-stage block-wise approach for object detection in thermal images. Vis. Comput. 1–17 (2022) SchusterGMKatsaggelosAKAn optimal polygonal boundary encoding scheme in the rate distortion senseIEEE Trans. Image Process.19987113261676776 WangBGaoYSunCBlumensteinMLa SalleJChord bunch walks for recognizing naturally self-overlapped and compound leavesIEEE Trans. Image Process.20192812596359764013084 BandyopadhyaySKKondiLPOptimal bit allocation for joint texture-aware contour-based shape coding and shape-adaptive texture codingIEEE Trans. Circuits Syst. Video Technol.2008186840844 HoyerPOHyvärinenAA multi-layer sparse coding network learns contour coding from natural imagesVis. Res.2002421215931605 ZhengYGuoBChenZLiCA Fourier descriptor of 2d shapes based on multiscale centroid contour distances used in object recognition in remote sensing imagesSensors2019193486 YangCWeiHQianYuA novel method for 2d nonrigid partial shape matchingNeurocomputing201827511601176 MokhtarianFMackworthAKA theory of multiscale, curvature-based shape representation for planar curvesIEEE Trans. Pattern Anal. Mach. Intell.1992148789805 Wang, B., Gao, Y., Sun, C., Blumenstein, M., La Salle, J.:. Can walking and measuring along chord bunches better describe leaf shapes? In: CVPR, pp. 2047–2056. IEEE Computer Society (2017) DaliriMRTorreVRobust symbolic representation for shape recognition and retrievalPattern Recognit.200841517821798 GrahamDNImage transmission by two-dimensional contour codingProc. IEEE1967553336346 GrattoniPGuiducciAContour coding for image descriptionPattern Recognit. Lett.199011295105 LuoSMouWAlthoeferKLiuHNovel tactile-sift descriptor for object shape recognitionIEEE Sens. J.201515950015009 TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCogn. Psychol.1989212233282 BelongieSMalikJPuzichaJShape matching and object recognition using shape contextsIEEE Trans. Pattern Anal. Mach. Intell.2002244509522 BicegoMLovatoPA bioinformatics approach to 2d shape classificationComput. Vis. Image Underst.20161455969 LiZGuoBMengFFast shape recognition method using feature richness based on the walking minimum bounding rectangle over an occluded remote sensing targetRemote Sens.202214225845 NunesPMarquésFPereiraFGasullAA contour-based approach to binary shape coding using a multiple grid chain codeSignal Process. Image Commun.2000157–8585599 KatsaggelosAKKondiLPMeierFWOstermannJSchusterGMMpeg-4 and rate-distortion-based shape-coding techniquesProc. IEEE199886611261154 ShuXXiao-JunWA novel contour descriptor for 2d shape matching and its application to image retrievalImage Vis. Comput.2011294286294 KaothanthongNChunJTokuyamaTDistance interior ratio: a new shape signature for 2d shape retrievalPattern Recognit. Lett.2016781421 LuoHImage-dependent shape coding and representationIEEE Trans. Circuits Syst. Video Technol.20051533453541190259 ZhengACheungGFlorencioDContext tree-based image contour coding using a geometric priorIEEE Trans. Image Process.20162625745893584083 DeutschJAA theory of shape recognitionBr. J. Psychol.19554613037 GrigorescuCPetkovNDistance sets for shape filters and shape recognitionIEEE Trans. Image Process.20031210127412862007537 BaiXWangBYaoCLiuWZhuowenTCo-transduction for shape retrievalIEEE Trans. Image Process.2011215274727572952136 LingHJacobsDWShape classification using the inner-distanceIEEE Trans. Pattern Anal. Mach. Intell.2007292286299 ChangC-CHwangSMBuehrerDJA shape recognition scheme based on relative distances of feature points from the centroidPattern Recognit.1991241110531063 PengH-LChenS-YTrademark shape recognition using closed contoursPattern Recognit. Lett.1997188791803 Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007) Organisation Internationale de Normalisation. Information technology–generic coding of audio-visual objects–part 2: visual (1999) MartinKLukacRPlataniotisKNSpiht-based coding of the shape and texture of arbitrarily shaped visual objectsIEEE Trans. Circuits Syst. Video Technol.2006161011961208 Liu, Q., Ngan, K.N.: Arbitrarily shaped object coding based on h. 264/avc. In: 2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 343–346. IEEE (2009) An, F.-P., Liu, J.-E., Bai, L.: Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network. Vis. Comput. 1–13 (2022) AghitoSMForchhammerSContext-based coding of bilevel images enhanced by digital straight line analysisIEEE Trans. Image Process.200615821202130 BaiXYangXLateckiLJLiuWZhuowenTLearning context-sensitive shape similarity by graph transductionIEEE Trans. Pattern Anal. Mach. Intell.2009325861874 KimKJSuhJ-YKangMGGeneralized interframe vertex-based shape encoding scheme for video sequencesIEEE Trans. Image Process.200091016671676 RossMWadeTDShape and weight concern and self-esteem as mediators of externalized self-perception, dietary restraint and uncontrolled eatingEur. Eat.Disorders Rev. Prof. J. Eat. Disord. Assoc.2004122129136 Kumar, A.K., Ngoc Mai, N., Guo, S., Han, L.: Entanglement inspired approach for determining the preeminent arrangement of static cameras in a multi-view computer vision system. Vis. Comput. 1–17 (2022) BaiSBaiXSparse contextual activation for efficient visual re-rankingIEEE Trans. Image Process.2016253105610693455476 Biswas, S., Aggarwal, G., Chellappa, R.: Efficient indexing for articulation invariant shape matching and retrieval. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007) LaiZZhuJLuoJOperationally optimal vertex-based shape coding with arbitrary direction edge encoding structuresJ. Electron. Imaging2014234043009043009 YanWYangJMulti-part shape matching by simultaneous partial functional correspondenceVis. Comput.2023391393412 Matousek, J: Lectures on Discrete Geometry, vol. 212. Springer (2013) EdenMKocherMEurasipMOn the performance of a contour coding algorithm in the context of image coding part I: contour segment codingSignal Process.198584381386 ZhangSYangMCourTKaiYuMetaxasDNQuery specific rank fusion for image retrievalIEEE Trans. Pattern Anal. Mach. Intell.2014374803815 Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 357–364. IEEE (2009) T ITU-T. Information technology-coded representation of picture and audio information-progressive bi-level image compression. Recommendation (1993) H Ling (2940_CR29) 2007; 29 M Bicego (2940_CR38) 2016; 145 2940_CR11 A Zheng (2940_CR49) 2016; 26 2940_CR10 2940_CR52 H Rongxiang (2940_CR40) 2012; 21 C Grigorescu (2940_CR55) 2003; 12 2940_CR18 2940_CR17 Z Liu (2940_CR2) 2020; 36 2940_CR16 P Nunes (2940_CR15) 2000; 15 C-C Chang (2940_CR32) 1991; 24 2940_CR6 2940_CR3 2940_CR4 H Luo (2940_CR20) 2005; 15 X Shu (2940_CR33) 2011; 29 2940_CR9 K Martin (2940_CR12) 2006; 16 AK Katsaggelos (2940_CR8) 1998; 86 MR Daliri (2940_CR45) 2008; 41 2940_CR26 2940_CR24 2940_CR23 F Mokhtarian (2940_CR50) 1992; 14 2940_CR1 B Wang (2940_CR34) 2019; 28 W Yan (2940_CR5) 2023; 39 2940_CR35 PO Hoyer (2940_CR46) 2002; 42 M Ross (2940_CR56) 2004; 12 C Yang (2940_CR43) 2018; 275 2940_CR30 SK Bandyopadhyay (2940_CR7) 2008; 18 Y Zheng (2940_CR37) 2019; 19 GM Schuster (2940_CR13) 1998; 7 S Bai (2940_CR25) 2016; 25 X Bai (2940_CR21) 2011; 21 P Grattoni (2940_CR48) 1990; 11 M Eden (2940_CR27) 1985; 8 C Yang (2940_CR39) 2018; 275 Z Lai (2940_CR31) 2014; 23 S Luo (2940_CR53) 2015; 15 KJ Kim (2940_CR14) 2000; 9 S Belongie (2940_CR28) 2002; 24 Z Li (2940_CR41) 2022; 14 2940_CR44 H-L Peng (2940_CR54) 1997; 18 JA Deutsch (2940_CR58) 1955; 46 B Wang (2940_CR42) 2019; 28 DN Graham (2940_CR47) 1967; 55 S Zhang (2940_CR51) 2014; 37 N Kaothanthong (2940_CR36) 2016; 78 X Bai (2940_CR22) 2009; 32 MJ Tarr (2940_CR57) 1989; 21 SM Aghito (2940_CR19) 2006; 15 |
| References_xml | – reference: Kumar, A.K., Ngoc Mai, N., Guo, S., Han, L.: Entanglement inspired approach for determining the preeminent arrangement of static cameras in a multi-view computer vision system. Vis. Comput. 1–17 (2022) – reference: ShuXXiao-JunWA novel contour descriptor for 2d shape matching and its application to image retrievalImage Vis. Comput.2011294286294 – reference: MartinKLukacRPlataniotisKNSpiht-based coding of the shape and texture of arbitrarily shaped visual objectsIEEE Trans. Circuits Syst. Video Technol.2006161011961208 – reference: DaliriMRTorreVRobust symbolic representation for shape recognition and retrievalPattern Recognit.200841517821798 – reference: Kera, S.B., Tadepalli, A., Ranjani, J.J.: A paced multi-stage block-wise approach for object detection in thermal images. Vis. Comput. 1–17 (2022) – reference: LuoHImage-dependent shape coding and representationIEEE Trans. Circuits Syst. Video Technol.20051533453541190259 – reference: Wang, B., Gao, Y., Sun, C., Blumenstein, M., La Salle, J.:. Can walking and measuring along chord bunches better describe leaf shapes? In: CVPR, pp. 2047–2056. IEEE Computer Society (2017) – reference: MokhtarianFMackworthAKA theory of multiscale, curvature-based shape representation for planar curvesIEEE Trans. Pattern Anal. Mach. Intell.1992148789805 – reference: ZhangSYangMCourTKaiYuMetaxasDNQuery specific rank fusion for image retrievalIEEE Trans. Pattern Anal. Mach. Intell.2014374803815 – reference: Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 360–367. IEEE (2009) – reference: BicegoMLovatoPA bioinformatics approach to 2d shape classificationComput. Vis. Image Underst.20161455969 – reference: ITUT Recommendation. Information technology–coded representation of picture and audio information–progressive bi-level image compression. T82 (JBIG) – reference: KatsaggelosAKKondiLPMeierFWOstermannJSchusterGMMpeg-4 and rate-distortion-based shape-coding techniquesProc. IEEE199886611261154 – reference: KaothanthongNChunJTokuyamaTDistance interior ratio: a new shape signature for 2d shape retrievalPattern Recognit. Lett.2016781421 – reference: ChangC-CHwangSMBuehrerDJA shape recognition scheme based on relative distances of feature points from the centroidPattern Recognit.1991241110531063 – reference: BaiXWangBYaoCLiuWZhuowenTCo-transduction for shape retrievalIEEE Trans. Image Process.2011215274727572952136 – reference: Zhang, J., Wenyin, L.: A pixel-level statistical structural descriptor for shape measure and recognition. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 386–390. IEEE (2009) – reference: RongxiangHJiaWLingHHuangDMultiscale distance matrix for fast plant leaf recognitionIEEE Trans. Image Process.20122111466746722991645 – reference: BaiXYangXLateckiLJLiuWZhuowenTLearning context-sensitive shape similarity by graph transductionIEEE Trans. Pattern Anal. Mach. Intell.2009325861874 – reference: EdenMKocherMEurasipMOn the performance of a contour coding algorithm in the context of image coding part I: contour segment codingSignal Process.198584381386 – reference: T ITU-T. Information technology-coded representation of picture and audio information-progressive bi-level image compression. Recommendation (1993) – reference: Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: European Conference on Computer Vision, pp. 411–424. Springer (2010) – reference: GrigorescuCPetkovNDistance sets for shape filters and shape recognitionIEEE Trans. Image Process.20031210127412862007537 – reference: LaiZZhuJLuoJOperationally optimal vertex-based shape coding with arbitrary direction edge encoding structuresJ. Electron. Imaging2014234043009043009 – reference: YangCWeiHQianYuA novel method for 2d nonrigid partial shape matchingNeurocomputing201827511601176 – reference: Lai, H., Zuo, Z., Wang, Z., Yao, Z., Liu, W.: Accurate distortion measurement for b-spline-based shape coding. In: 2011 18th IEEE International Conference on Image Processing, pp. 225–228. IEEE (2011) – reference: RossMWadeTDShape and weight concern and self-esteem as mediators of externalized self-perception, dietary restraint and uncontrolled eatingEur. Eat.Disorders Rev. Prof. J. Eat. Disord. Assoc.2004122129136 – reference: BaiSBaiXSparse contextual activation for efficient visual re-rankingIEEE Trans. Image Process.2016253105610693455476 – reference: WangBGaoYSunCBlumensteinMLa SalleJChord bunch walks for recognizing naturally self-overlapped and compound leavesIEEE Trans. Image Process.20192812596359764013084 – reference: Organisation Internationale de Normalisation. Information technology–generic coding of audio-visual objects–part 2: visual (1999) – reference: ZhengYGuoBChenZLiCA Fourier descriptor of 2d shapes based on multiscale centroid contour distances used in object recognition in remote sensing imagesSensors2019193486 – reference: LiZGuoBMengFFast shape recognition method using feature richness based on the walking minimum bounding rectangle over an occluded remote sensing targetRemote Sens.202214225845 – reference: BelongieSMalikJPuzichaJShape matching and object recognition using shape contextsIEEE Trans. Pattern Anal. Mach. Intell.2002244509522 – reference: SchusterGMKatsaggelosAKAn optimal polygonal boundary encoding scheme in the rate distortion senseIEEE Trans. Image Process.19987113261676776 – reference: LingHJacobsDWShape classification using the inner-distanceIEEE Trans. Pattern Anal. Mach. Intell.2007292286299 – reference: DeutschJAA theory of shape recognitionBr. J. Psychol.19554613037 – reference: Wulandhari, L.A., Haron, H.: Characteristic of rectangular vertex chain code for shapes with hole. In: 2009 International Conference on Information Management and Engineering, pp. 648–650. IEEE (2009) – reference: GrattoniPGuiducciAContour coding for image descriptionPattern Recognit. Lett.199011295105 – reference: TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCogn. Psychol.1989212233282 – reference: BandyopadhyaySKKondiLPOptimal bit allocation for joint texture-aware contour-based shape coding and shape-adaptive texture codingIEEE Trans. Circuits Syst. Video Technol.2008186840844 – reference: Matousek, J: Lectures on Discrete Geometry, vol. 212. Springer (2013) – reference: NunesPMarquésFPereiraFGasullAA contour-based approach to binary shape coding using a multiple grid chain codeSignal Process. Image Commun.2000157–8585599 – reference: ZhengACheungGFlorencioDContext tree-based image contour coding using a geometric priorIEEE Trans. Image Process.20162625745893584083 – reference: Biswas, S., Aggarwal, G., Chellappa, R.: Efficient indexing for articulation invariant shape matching and retrieval. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007) – reference: Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007) – reference: YanWYangJMulti-part shape matching by simultaneous partial functional correspondenceVis. Comput.2023391393412 – reference: HoyerPOHyvärinenAA multi-layer sparse coding network learns contour coding from natural imagesVis. Res.2002421215931605 – reference: PengH-LChenS-YTrademark shape recognition using closed contoursPattern Recognit. Lett.1997188791803 – reference: An, F.-P., Liu, J.-E., Bai, L.: Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network. Vis. Comput. 1–13 (2022) – reference: LiuZXiangQTangJWangYZhaoPRobust salient object detection for RGB imagesVis. Comput.20203618231835 – reference: Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 357–364. IEEE (2009) – reference: LuoSMouWAlthoeferKLiuHNovel tactile-sift descriptor for object shape recognitionIEEE Sens. J.201515950015009 – reference: AghitoSMForchhammerSContext-based coding of bilevel images enhanced by digital straight line analysisIEEE Trans. Image Process.200615821202130 – reference: KimKJSuhJ-YKangMGGeneralized interframe vertex-based shape encoding scheme for video sequencesIEEE Trans. Image Process.200091016671676 – reference: GrahamDNImage transmission by two-dimensional contour codingProc. IEEE1967553336346 – reference: Liu, Q., Ngan, K.N.: Arbitrarily shaped object coding based on h. 264/avc. In: 2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 343–346. IEEE (2009) – volume: 41 start-page: 1782 issue: 5 year: 2008 ident: 2940_CR45 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.10.020 – ident: 2940_CR3 – volume: 14 start-page: 789 issue: 8 year: 1992 ident: 2940_CR50 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.149591 – volume: 32 start-page: 861 issue: 5 year: 2009 ident: 2940_CR22 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 2940_CR23 doi: 10.1109/CVPR.2009.5206844 – volume: 28 start-page: 5963 issue: 12 year: 2019 ident: 2940_CR42 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2921526 – volume: 18 start-page: 840 issue: 6 year: 2008 ident: 2940_CR7 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2008.918784 – ident: 2940_CR44 doi: 10.1109/ICDAR.2009.175 – ident: 2940_CR30 doi: 10.1109/CVPR.2007.383227 – volume: 28 start-page: 5963 issue: 12 year: 2019 ident: 2940_CR34 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2921526 – volume: 25 start-page: 1056 issue: 3 year: 2016 ident: 2940_CR25 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2514498 – volume: 42 start-page: 1593 issue: 12 year: 2002 ident: 2940_CR46 publication-title: Vis. Res. doi: 10.1016/S0042-6989(02)00017-2 – volume: 36 start-page: 1823 year: 2020 ident: 2940_CR2 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01778-4 – volume: 37 start-page: 803 issue: 4 year: 2014 ident: 2940_CR51 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2346201 – volume: 78 start-page: 14 year: 2016 ident: 2940_CR36 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.03.029 – ident: 2940_CR26 – volume: 21 start-page: 233 issue: 2 year: 1989 ident: 2940_CR57 publication-title: Cogn. Psychol. doi: 10.1016/0010-0285(89)90009-1 – volume: 15 start-page: 345 issue: 3 year: 2005 ident: 2940_CR20 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2004.842596 – ident: 2940_CR17 doi: 10.1109/ICIME.2009.32 – ident: 2940_CR35 doi: 10.1109/CVPR.2017.221 – volume: 9 start-page: 1667 issue: 10 year: 2000 ident: 2940_CR14 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.869178 – ident: 2940_CR9 – volume: 86 start-page: 1126 issue: 6 year: 1998 ident: 2940_CR8 publication-title: Proc. IEEE doi: 10.1109/5.687833 – volume: 29 start-page: 286 issue: 4 year: 2011 ident: 2940_CR33 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2010.11.001 – ident: 2940_CR16 doi: 10.1109/ISPACS.2009.5383832 – volume: 19 start-page: 486 issue: 3 year: 2019 ident: 2940_CR37 publication-title: Sensors doi: 10.3390/s19030486 – volume: 55 start-page: 336 issue: 3 year: 1967 ident: 2940_CR47 publication-title: Proc. IEEE doi: 10.1109/PROC.1967.5490 – volume: 275 start-page: 1160 year: 2018 ident: 2940_CR39 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.067 – ident: 2940_CR10 – ident: 2940_CR24 doi: 10.1109/ICCVW.2009.5457679 – volume: 39 start-page: 393 issue: 1 year: 2023 ident: 2940_CR5 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02337-6 – volume: 275 start-page: 1160 year: 2018 ident: 2940_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.067 – volume: 14 start-page: 5845 issue: 22 year: 2022 ident: 2940_CR41 publication-title: Remote Sens. doi: 10.3390/rs14225845 – ident: 2940_CR6 doi: 10.1007/978-3-642-15558-1_30 – volume: 21 start-page: 4667 issue: 11 year: 2012 ident: 2940_CR40 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2207391 – volume: 24 start-page: 509 issue: 4 year: 2002 ident: 2940_CR28 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.993558 – volume: 12 start-page: 1274 issue: 10 year: 2003 ident: 2940_CR55 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.816010 – volume: 7 start-page: 13 issue: 1 year: 1998 ident: 2940_CR13 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.650847 – volume: 29 start-page: 286 issue: 2 year: 2007 ident: 2940_CR29 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.41 – volume: 26 start-page: 574 issue: 2 year: 2016 ident: 2940_CR49 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2627813 – volume: 46 start-page: 30 issue: 1 year: 1955 ident: 2940_CR58 publication-title: Br. J. Psychol. doi: 10.1111/j.2044-8295.1955.tb00521.x – volume: 15 start-page: 2120 issue: 8 year: 2006 ident: 2940_CR19 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.875168 – volume: 21 start-page: 2747 issue: 5 year: 2011 ident: 2940_CR21 publication-title: IEEE Trans. Image Process. – ident: 2940_CR1 doi: 10.1007/s00371-022-02445-x – volume: 8 start-page: 381 issue: 4 year: 1985 ident: 2940_CR27 publication-title: Signal Process. doi: 10.1016/0165-1684(85)90001-5 – ident: 2940_CR11 – volume: 24 start-page: 1053 issue: 11 year: 1991 ident: 2940_CR32 publication-title: Pattern Recognit. doi: 10.1016/0031-3203(91)90121-K – ident: 2940_CR4 doi: 10.1007/s00371-022-02497-z – volume: 15 start-page: 585 issue: 7–8 year: 2000 ident: 2940_CR15 publication-title: Signal Process. Image Commun. doi: 10.1016/S0923-5965(99)00041-7 – volume: 11 start-page: 95 issue: 2 year: 1990 ident: 2940_CR48 publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(90)90119-M – volume: 15 start-page: 5001 issue: 9 year: 2015 ident: 2940_CR53 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2432127 – volume: 16 start-page: 1196 issue: 10 year: 2006 ident: 2940_CR12 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2006.882388 – ident: 2940_CR52 doi: 10.1109/CVPR.2007.383018 – volume: 18 start-page: 791 issue: 8 year: 1997 ident: 2940_CR54 publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(97)00050-0 – volume: 145 start-page: 59 year: 2016 ident: 2940_CR38 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.11.011 – ident: 2940_CR18 doi: 10.1109/ICIP.2011.6116088 – volume: 12 start-page: 129 issue: 2 year: 2004 ident: 2940_CR56 publication-title: Eur. Eat.Disorders Rev. Prof. J. Eat. Disord. Assoc. doi: 10.1002/erv.531 – volume: 23 start-page: 043009 issue: 4 year: 2014 ident: 2940_CR31 publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.23.4.043009 |
| SSID | ssj0017749 |
| Score | 2.3669538 |
| Snippet | Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2599 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Computer Graphics Computer Science Computer vision Constraints Contour coding Efficiency Feature extraction Hamming codes Image coding Image Processing and Computer Vision Methods Original Article Performance enhancement Reduction Segments Shape recognition Vision systems |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb7FaZQ_edDH7yGNPImIRlOJBpbewr2BB2trE_n5nt0mrQr14CAnZw4SZzTx2Zr5B6LygqRKFNMRKExPhhCQqTSyhseNawEsW-iteH9NeL-v35VN94FbWZZWNTgyK2o6MPyO_AlXLIVqRGb8efxA_NcpnV-sRGqtojTJQwj4pm5J5FgFcm-D-UoiUfMdn3TQTWucCVh0BiwWXFBGRPw3Twtv8lSANdqe7_d8v3kFbtceJb2ZbZBetuOEe2vyGQ7iPHrqqrHD5psYOzyuKRkM8HSissB6Qd19ahP0YDz9RooInO0OdxaMC-2p3IAJ3bwcP0Ev37vn2ntRTFohhMqsIhEjcUu1oxGObpgW3sUkhzFNGaI-mz3SiYm5dojJuObUZOAmOWUVtwhzThh-i1nA0dEcIp5GOhRJZkjgmtOCqEFxHic_2Umoy10YXDYvz8QxMI5_DJgeB5CCQPAgkl23Uafia1z9WmS-YunQZNFIWiza6bAS3WF5O7PhvYidog4E3MyvZ6aBWNfl0p2jdTKtBOTkLu-4L3yzbXg priority: 102 providerName: ProQuest |
| Title | Fast shape recognition via a bi-level restraint reduction of contour coding |
| URI | https://link.springer.com/article/10.1007/s00371-023-02940-9 https://www.proquest.com/docview/3033721983 https://www.proquest.com/docview/3033880854 |
| Volume | 40 |
| WOSCitedRecordID | wos001060100700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-2315 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-2315 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2315 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8etAHP6bidI48-KaBpUna5lHFIUzG8IvhS0maFAeyia3-_V66dlNxD_rQD5qSlEvS-x139zuAk4xFWmQqpValkgonFNVRaCmTjhuBD4Myv-LxJur34-FQDaqksLyOdq9dkuWfepbsVrLLUdQxeCjRoWoZVqVnm_E2-t3jzHeAgKYEvQztI5_nWaXK_N7Hd3U0x5g_3KKltulu_e87t2GzQpfkfLocdmDJjRuwVVduINVGbsDGFxrCXeh1dV6Q_Fm_OjILKJqMycdIE03MiL74yCLiq3j4ghIF3tkp6SyZZMQHu-O4ePVqcA8eulf3l9e0KrJA00DFBUULiVtmHOtwaaMo41amEVp5OhXGk-kHJtSSWxfqmFvObIwYwQVWMxsGLjAp34eV8WTsDoBEHSOFFnEYukAYwXUmuOmE3tnLWBq7JpzWsk5ep1wayYw1uZRaglJLSqklqgmtejqSal_lCSpcjr2pmC9sxh9SLEUTzurZmTcvHuzwb68fwXqA4GYawdOCleLt3R3DWvpRjPK3NqxeXPUHt21Y7kUUzwP51C6X6Ce_J9tb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9tAFH6ioVLbQxegIoW2c2hPMGpm8TIHVHUhAiWNUAWImzubRSSUpLEB9U_xG3njJWkr0RuHHixbHslP9vv8lnkbwLucJVrmylKnbESll4rqJHaURV4YiTd5VV9xOkxGo_TsTB2twE1bCxPSKluZWAlqN7Vhj_wDilqB3opKxcfZTxqmRoXoajtCo4bFwP-6Rpet2Dv8ivx9z3l___jLAW2mClDLVVpSdAmEY8aznohckuTCRTZBt0ZbaUL3eG5iHQnnY50KJ5hLUSl67jRzMffcWIHPfQCrUsg46sDq5_3R0fdF3AKNqcrgZuibhRrTpkynKtaruuNR1JF4KNmj6k9VuLRv_wrJVpqu_-x_-0bP4WljU5NP9U_wAlb8ZA2e_NZpcR0GfV2UpDjXM08WOVPTCbkaa6KJGdOLkDxFwqCSMDOjxCtX99Ul05yEfH4kgueg6Tfg5F7e5iV0JtOJ3wSS9EwktUzj2HNppNC5FKYXh3g2Yzb1XdhpWZrN6nYh2aIxdAWADAGQVQDIVBe2Wz5mjegosiUT71xGmZtGsgu7LVCWy3cTe_VvYm_h0cHxt2E2PBwNtuAxR9utTlDahk45v_Sv4aG9KsfF_E2DeQI_7htCt59ZOWY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujB-sT6zMGbBptN9pGjqEWplOILb0uyyWJBtsWu_n4n-2hV7EE8LLtsliRMkp1vmJlvAI5TFiqRyoQamfhUWCGpCgNDmW-5FvjSK_Irnm7DXi96fpb9L1n8RbR77ZIscxocS1OWn41MejZJfCuY5ijqG7ykaFM5DwsCLRkX1HV3_zTxIyC4KQAwQ1vJ5XxWaTO_9_FdNU3x5g8XaaF5Os3_z3kNVivUSc7LbbIOczbbgGZd0YFUB3wDVr7QE25Ct6PGORm_qJElk0CjYUY-Boooogf01UUcEVfdwxWayPHJlGS0ZJgSNzscF-9OPW7BY-fq4eKaVsUXaOLJKKdoOXHDtGVt7pswTLnxkxCtP5UI7Uj2PR0onxsbqIgbzkyE2MF6RjETeNbTCd-GRjbM7A6QsK19oUQUBNYTWnCVCq7bgXMCM5ZEtgUntdzjUcmxEU_YlAupxSi1uJBaLFuwXy9NXJ23cYyKmGNvMuIzm_FHFfmiBaf1Sk2bZw-2-7fPj2Cpf9mJb2963T1Y9hD_lEE--9DI397tASwmH_lg_HZY7NJP7dTjuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+shape+recognition+via+a+bi-level+restraint+reduction+of+contour+coding&rft.jtitle=The+Visual+computer&rft.au=Li%2C+Zekun&rft.au=Guo%2C+Baolong&rft.au=Meng%2C+Fanjie&rft.au=Jiang%2C+Bingting&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2599&rft.epage=2614&rft_id=info:doi/10.1007%2Fs00371-023-02940-9&rft.externalDocID=10_1007_s00371_023_02940_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |