Fast shape recognition via a bi-level restraint reduction of contour coding

Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision system. This paper investigates the restraint of fea...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer Vol. 40; no. 4; pp. 2599 - 2614
Main Authors: Li, Zekun, Guo, Baolong, Meng, Fanjie, Jiang, Bingting
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects:
ISSN:0178-2789, 1432-2315
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision system. This paper investigates the restraint of feature structure that intrinsically deteriorates recognition performance. Furthermore, we propose a fast shape recognition method based on a bi-level restraint reduction of contour coding (CC2RR), which provides more effective theoretical support for the practical application of the visual algorithm. CC2RR reduces restraint performed from contour feature extraction and expression, respectively. First, for shape contour, the restraint of contour feature extraction is reduced by transforming the direction of contour points to contour segments; second, for the encoded contour segment, the restraint of the contour feature expression is reduced; in other words, the current direction is reduced to the previous and the next direction. Guided by these insights, Hamming code distance is used to match the coding features after the twofold restraint reduction, and the results are obtained. Experimental results verify that the method significantly improves the performance, which runs up to 500 times faster than the existing description methods based on shape contours while increasing robustness. This makes the method useful in practical software system.
AbstractList Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy and efficiency in some extent, which greatly limits their application in computer vision system. This paper investigates the restraint of feature structure that intrinsically deteriorates recognition performance. Furthermore, we propose a fast shape recognition method based on a bi-level restraint reduction of contour coding (CC2RR), which provides more effective theoretical support for the practical application of the visual algorithm. CC2RR reduces restraint performed from contour feature extraction and expression, respectively. First, for shape contour, the restraint of contour feature extraction is reduced by transforming the direction of contour points to contour segments; second, for the encoded contour segment, the restraint of the contour feature expression is reduced; in other words, the current direction is reduced to the previous and the next direction. Guided by these insights, Hamming code distance is used to match the coding features after the twofold restraint reduction, and the results are obtained. Experimental results verify that the method significantly improves the performance, which runs up to 500 times faster than the existing description methods based on shape contours while increasing robustness. This makes the method useful in practical software system.
Author Meng, Fanjie
Guo, Baolong
Li, Zekun
Jiang, Bingting
Author_xml – sequence: 1
  givenname: Zekun
  surname: Li
  fullname: Li, Zekun
  organization: Institute of Intelligent Control and Image Engineering, Xidian University
– sequence: 2
  givenname: Baolong
  orcidid: 0000-0002-8406-0689
  surname: Guo
  fullname: Guo, Baolong
  email: blguo@xidian.edu.cn
  organization: Institute of Intelligent Control and Image Engineering, Xidian University
– sequence: 3
  givenname: Fanjie
  surname: Meng
  fullname: Meng, Fanjie
  organization: Institute of Intelligent Control and Image Engineering, Xidian University
– sequence: 4
  givenname: Bingting
  surname: Jiang
  fullname: Jiang, Bingting
  organization: College of Computer Science and Electronic Engineering, Hunan University
BookMark eNqFkMFOwzAMhiM0JLbBC3CqxDkQx22THtHEADGJC5yjNElHp5GMpJvE2xNWJG5wsGzL329b_4xMfPCOkEtg18CYuEmMoQDKOOZoSkabEzKFEjnlCNWETBkISbmQzRmZpbRhuRdlMyVPS52GIr3pnSuiM2Ht-6EPvjj0utBF29OtO7htHqUh6t4PubJ7c0RCV5jgh7CPOdver8_Jaae3yV385Dl5Xd69LB7o6vn-cXG7ooY3cqBQNmihdcCwskJ0aCsjSia0KVuoQfK21hVaV2uJFsFKDpXjVoOtueOtwTm5GvfuYvjY58_UJj_h80mFDFFKJqvyP0pwaCRmio-UiSGl6Dq1i_27jp8KmPq2Vo3WqmytOlqrmizCUZQy7Ncu_q7-Q_UF4yF8Zg
Cites_doi 10.1016/j.patcog.2007.10.020
10.1109/34.149591
10.1109/CVPR.2009.5206844
10.1109/TIP.2019.2921526
10.1109/TCSVT.2008.918784
10.1109/ICDAR.2009.175
10.1109/CVPR.2007.383227
10.1109/TIP.2016.2514498
10.1016/S0042-6989(02)00017-2
10.1007/s00371-019-01778-4
10.1109/TPAMI.2014.2346201
10.1016/j.patrec.2016.03.029
10.1016/0010-0285(89)90009-1
10.1109/TCSVT.2004.842596
10.1109/ICIME.2009.32
10.1109/CVPR.2017.221
10.1109/83.869178
10.1109/5.687833
10.1016/j.imavis.2010.11.001
10.1109/ISPACS.2009.5383832
10.3390/s19030486
10.1109/PROC.1967.5490
10.1016/j.neucom.2017.09.067
10.1109/ICCVW.2009.5457679
10.1007/s00371-021-02337-6
10.3390/rs14225845
10.1007/978-3-642-15558-1_30
10.1109/TIP.2012.2207391
10.1109/34.993558
10.1109/TIP.2003.816010
10.1109/83.650847
10.1109/TPAMI.2007.41
10.1109/TIP.2016.2627813
10.1111/j.2044-8295.1955.tb00521.x
10.1109/TIP.2006.875168
10.1007/s00371-022-02445-x
10.1016/0165-1684(85)90001-5
10.1016/0031-3203(91)90121-K
10.1007/s00371-022-02497-z
10.1016/S0923-5965(99)00041-7
10.1016/0167-8655(90)90119-M
10.1109/JSEN.2015.2432127
10.1109/TCSVT.2006.882388
10.1109/CVPR.2007.383018
10.1016/S0167-8655(97)00050-0
10.1016/j.cviu.2015.11.011
10.1109/ICIP.2011.6116088
10.1002/erv.531
10.1117/1.JEI.23.4.043009
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-023-02940-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 2614
ExternalDocumentID 10_1007_s00371_023_02940_9
GrantInformation_xml – fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: 2020JM-196
  funderid: http://dx.doi.org/10.13039/501100017596
– fundername: National Natural Science Foundation of China
  grantid: 62171341
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c298t-1493d1be1035d77f3d5c7407ac4b16182b6a53de6a83d31d8215e2da1d62e2bc3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001060100700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2789
IngestDate Wed Nov 05 04:16:10 EST 2025
Thu Nov 20 10:41:53 EST 2025
Sat Nov 29 02:23:32 EST 2025
Fri Feb 21 02:41:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Contour coding
Restraint
Shape recognition
Reduce restraint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-1493d1be1035d77f3d5c7407ac4b16182b6a53de6a83d31d8215e2da1d62e2bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8406-0689
PQID 3033721983
PQPubID 2043737
PageCount 16
ParticipantIDs proquest_journals_3033880854
proquest_journals_3033721983
crossref_primary_10_1007_s00371_023_02940_9
springer_journals_10_1007_s00371_023_02940_9
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lai, H., Zuo, Z., Wang, Z., Yao, Z., Liu, W.: Accurate distortion measurement for b-spline-based shape coding. In: 2011 18th IEEE International Conference on Image Processing, pp. 225–228. IEEE (2011)
Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: European Conference on Computer Vision, pp. 411–424. Springer (2010)
ITUT Recommendation. Information technology–coded representation of picture and audio information–progressive bi-level image compression. T82 (JBIG)
LiuZXiangQTangJWangYZhaoPRobust salient object detection for RGB imagesVis. Comput.20203618231835
Wulandhari, L.A., Haron, H.: Characteristic of rectangular vertex chain code for shapes with hole. In: 2009 International Conference on Information Management and Engineering, pp. 648–650. IEEE (2009)
Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 360–367. IEEE (2009)
Zhang, J., Wenyin, L.: A pixel-level statistical structural descriptor for shape measure and recognition. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 386–390. IEEE (2009)
RongxiangHJiaWLingHHuangDMultiscale distance matrix for fast plant leaf recognitionIEEE Trans. Image Process.20122111466746722991645
Kera, S.B., Tadepalli, A., Ranjani, J.J.: A paced multi-stage block-wise approach for object detection in thermal images. Vis. Comput. 1–17 (2022)
SchusterGMKatsaggelosAKAn optimal polygonal boundary encoding scheme in the rate distortion senseIEEE Trans. Image Process.19987113261676776
WangBGaoYSunCBlumensteinMLa SalleJChord bunch walks for recognizing naturally self-overlapped and compound leavesIEEE Trans. Image Process.20192812596359764013084
BandyopadhyaySKKondiLPOptimal bit allocation for joint texture-aware contour-based shape coding and shape-adaptive texture codingIEEE Trans. Circuits Syst. Video Technol.2008186840844
HoyerPOHyvärinenAA multi-layer sparse coding network learns contour coding from natural imagesVis. Res.2002421215931605
ZhengYGuoBChenZLiCA Fourier descriptor of 2d shapes based on multiscale centroid contour distances used in object recognition in remote sensing imagesSensors2019193486
YangCWeiHQianYuA novel method for 2d nonrigid partial shape matchingNeurocomputing201827511601176
MokhtarianFMackworthAKA theory of multiscale, curvature-based shape representation for planar curvesIEEE Trans. Pattern Anal. Mach. Intell.1992148789805
Wang, B., Gao, Y., Sun, C., Blumenstein, M., La Salle, J.:. Can walking and measuring along chord bunches better describe leaf shapes? In: CVPR, pp. 2047–2056. IEEE Computer Society (2017)
DaliriMRTorreVRobust symbolic representation for shape recognition and retrievalPattern Recognit.200841517821798
GrahamDNImage transmission by two-dimensional contour codingProc. IEEE1967553336346
GrattoniPGuiducciAContour coding for image descriptionPattern Recognit. Lett.199011295105
LuoSMouWAlthoeferKLiuHNovel tactile-sift descriptor for object shape recognitionIEEE Sens. J.201515950015009
TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCogn. Psychol.1989212233282
BelongieSMalikJPuzichaJShape matching and object recognition using shape contextsIEEE Trans. Pattern Anal. Mach. Intell.2002244509522
BicegoMLovatoPA bioinformatics approach to 2d shape classificationComput. Vis. Image Underst.20161455969
LiZGuoBMengFFast shape recognition method using feature richness based on the walking minimum bounding rectangle over an occluded remote sensing targetRemote Sens.202214225845
NunesPMarquésFPereiraFGasullAA contour-based approach to binary shape coding using a multiple grid chain codeSignal Process. Image Commun.2000157–8585599
KatsaggelosAKKondiLPMeierFWOstermannJSchusterGMMpeg-4 and rate-distortion-based shape-coding techniquesProc. IEEE199886611261154
ShuXXiao-JunWA novel contour descriptor for 2d shape matching and its application to image retrievalImage Vis. Comput.2011294286294
KaothanthongNChunJTokuyamaTDistance interior ratio: a new shape signature for 2d shape retrievalPattern Recognit. Lett.2016781421
LuoHImage-dependent shape coding and representationIEEE Trans. Circuits Syst. Video Technol.20051533453541190259
ZhengACheungGFlorencioDContext tree-based image contour coding using a geometric priorIEEE Trans. Image Process.20162625745893584083
DeutschJAA theory of shape recognitionBr. J. Psychol.19554613037
GrigorescuCPetkovNDistance sets for shape filters and shape recognitionIEEE Trans. Image Process.20031210127412862007537
BaiXWangBYaoCLiuWZhuowenTCo-transduction for shape retrievalIEEE Trans. Image Process.2011215274727572952136
LingHJacobsDWShape classification using the inner-distanceIEEE Trans. Pattern Anal. Mach. Intell.2007292286299
ChangC-CHwangSMBuehrerDJA shape recognition scheme based on relative distances of feature points from the centroidPattern Recognit.1991241110531063
PengH-LChenS-YTrademark shape recognition using closed contoursPattern Recognit. Lett.1997188791803
Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Organisation Internationale de Normalisation. Information technology–generic coding of audio-visual objects–part 2: visual (1999)
MartinKLukacRPlataniotisKNSpiht-based coding of the shape and texture of arbitrarily shaped visual objectsIEEE Trans. Circuits Syst. Video Technol.2006161011961208
Liu, Q., Ngan, K.N.: Arbitrarily shaped object coding based on h. 264/avc. In: 2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 343–346. IEEE (2009)
An, F.-P., Liu, J.-E., Bai, L.: Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network. Vis. Comput. 1–13 (2022)
AghitoSMForchhammerSContext-based coding of bilevel images enhanced by digital straight line analysisIEEE Trans. Image Process.200615821202130
BaiXYangXLateckiLJLiuWZhuowenTLearning context-sensitive shape similarity by graph transductionIEEE Trans. Pattern Anal. Mach. Intell.2009325861874
KimKJSuhJ-YKangMGGeneralized interframe vertex-based shape encoding scheme for video sequencesIEEE Trans. Image Process.200091016671676
RossMWadeTDShape and weight concern and self-esteem as mediators of externalized self-perception, dietary restraint and uncontrolled eatingEur. Eat.Disorders Rev. Prof. J. Eat. Disord. Assoc.2004122129136
Kumar, A.K., Ngoc Mai, N., Guo, S., Han, L.: Entanglement inspired approach for determining the preeminent arrangement of static cameras in a multi-view computer vision system. Vis. Comput. 1–17 (2022)
BaiSBaiXSparse contextual activation for efficient visual re-rankingIEEE Trans. Image Process.2016253105610693455476
Biswas, S., Aggarwal, G., Chellappa, R.: Efficient indexing for articulation invariant shape matching and retrieval. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
LaiZZhuJLuoJOperationally optimal vertex-based shape coding with arbitrary direction edge encoding structuresJ. Electron. Imaging2014234043009043009
YanWYangJMulti-part shape matching by simultaneous partial functional correspondenceVis. Comput.2023391393412
Matousek, J: Lectures on Discrete Geometry, vol. 212. Springer (2013)
EdenMKocherMEurasipMOn the performance of a contour coding algorithm in the context of image coding part I: contour segment codingSignal Process.198584381386
ZhangSYangMCourTKaiYuMetaxasDNQuery specific rank fusion for image retrievalIEEE Trans. Pattern Anal. Mach. Intell.2014374803815
Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 357–364. IEEE (2009)
T ITU-T. Information technology-coded representation of picture and audio information-progressive bi-level image compression. Recommendation (1993)
H Ling (2940_CR29) 2007; 29
M Bicego (2940_CR38) 2016; 145
2940_CR11
A Zheng (2940_CR49) 2016; 26
2940_CR10
2940_CR52
H Rongxiang (2940_CR40) 2012; 21
C Grigorescu (2940_CR55) 2003; 12
2940_CR18
2940_CR17
Z Liu (2940_CR2) 2020; 36
2940_CR16
P Nunes (2940_CR15) 2000; 15
C-C Chang (2940_CR32) 1991; 24
2940_CR6
2940_CR3
2940_CR4
H Luo (2940_CR20) 2005; 15
X Shu (2940_CR33) 2011; 29
2940_CR9
K Martin (2940_CR12) 2006; 16
AK Katsaggelos (2940_CR8) 1998; 86
MR Daliri (2940_CR45) 2008; 41
2940_CR26
2940_CR24
2940_CR23
F Mokhtarian (2940_CR50) 1992; 14
2940_CR1
B Wang (2940_CR34) 2019; 28
W Yan (2940_CR5) 2023; 39
2940_CR35
PO Hoyer (2940_CR46) 2002; 42
M Ross (2940_CR56) 2004; 12
C Yang (2940_CR43) 2018; 275
2940_CR30
SK Bandyopadhyay (2940_CR7) 2008; 18
Y Zheng (2940_CR37) 2019; 19
GM Schuster (2940_CR13) 1998; 7
S Bai (2940_CR25) 2016; 25
X Bai (2940_CR21) 2011; 21
P Grattoni (2940_CR48) 1990; 11
M Eden (2940_CR27) 1985; 8
C Yang (2940_CR39) 2018; 275
Z Lai (2940_CR31) 2014; 23
S Luo (2940_CR53) 2015; 15
KJ Kim (2940_CR14) 2000; 9
S Belongie (2940_CR28) 2002; 24
Z Li (2940_CR41) 2022; 14
2940_CR44
H-L Peng (2940_CR54) 1997; 18
JA Deutsch (2940_CR58) 1955; 46
B Wang (2940_CR42) 2019; 28
DN Graham (2940_CR47) 1967; 55
S Zhang (2940_CR51) 2014; 37
N Kaothanthong (2940_CR36) 2016; 78
X Bai (2940_CR22) 2009; 32
MJ Tarr (2940_CR57) 1989; 21
SM Aghito (2940_CR19) 2006; 15
References_xml – reference: Kumar, A.K., Ngoc Mai, N., Guo, S., Han, L.: Entanglement inspired approach for determining the preeminent arrangement of static cameras in a multi-view computer vision system. Vis. Comput. 1–17 (2022)
– reference: ShuXXiao-JunWA novel contour descriptor for 2d shape matching and its application to image retrievalImage Vis. Comput.2011294286294
– reference: MartinKLukacRPlataniotisKNSpiht-based coding of the shape and texture of arbitrarily shaped visual objectsIEEE Trans. Circuits Syst. Video Technol.2006161011961208
– reference: DaliriMRTorreVRobust symbolic representation for shape recognition and retrievalPattern Recognit.200841517821798
– reference: Kera, S.B., Tadepalli, A., Ranjani, J.J.: A paced multi-stage block-wise approach for object detection in thermal images. Vis. Comput. 1–17 (2022)
– reference: LuoHImage-dependent shape coding and representationIEEE Trans. Circuits Syst. Video Technol.20051533453541190259
– reference: Wang, B., Gao, Y., Sun, C., Blumenstein, M., La Salle, J.:. Can walking and measuring along chord bunches better describe leaf shapes? In: CVPR, pp. 2047–2056. IEEE Computer Society (2017)
– reference: MokhtarianFMackworthAKA theory of multiscale, curvature-based shape representation for planar curvesIEEE Trans. Pattern Anal. Mach. Intell.1992148789805
– reference: ZhangSYangMCourTKaiYuMetaxasDNQuery specific rank fusion for image retrievalIEEE Trans. Pattern Anal. Mach. Intell.2014374803815
– reference: Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 360–367. IEEE (2009)
– reference: BicegoMLovatoPA bioinformatics approach to 2d shape classificationComput. Vis. Image Underst.20161455969
– reference: ITUT Recommendation. Information technology–coded representation of picture and audio information–progressive bi-level image compression. T82 (JBIG)
– reference: KatsaggelosAKKondiLPMeierFWOstermannJSchusterGMMpeg-4 and rate-distortion-based shape-coding techniquesProc. IEEE199886611261154
– reference: KaothanthongNChunJTokuyamaTDistance interior ratio: a new shape signature for 2d shape retrievalPattern Recognit. Lett.2016781421
– reference: ChangC-CHwangSMBuehrerDJA shape recognition scheme based on relative distances of feature points from the centroidPattern Recognit.1991241110531063
– reference: BaiXWangBYaoCLiuWZhuowenTCo-transduction for shape retrievalIEEE Trans. Image Process.2011215274727572952136
– reference: Zhang, J., Wenyin, L.: A pixel-level statistical structural descriptor for shape measure and recognition. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 386–390. IEEE (2009)
– reference: RongxiangHJiaWLingHHuangDMultiscale distance matrix for fast plant leaf recognitionIEEE Trans. Image Process.20122111466746722991645
– reference: BaiXYangXLateckiLJLiuWZhuowenTLearning context-sensitive shape similarity by graph transductionIEEE Trans. Pattern Anal. Mach. Intell.2009325861874
– reference: EdenMKocherMEurasipMOn the performance of a contour coding algorithm in the context of image coding part I: contour segment codingSignal Process.198584381386
– reference: T ITU-T. Information technology-coded representation of picture and audio information-progressive bi-level image compression. Recommendation (1993)
– reference: Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: European Conference on Computer Vision, pp. 411–424. Springer (2010)
– reference: GrigorescuCPetkovNDistance sets for shape filters and shape recognitionIEEE Trans. Image Process.20031210127412862007537
– reference: LaiZZhuJLuoJOperationally optimal vertex-based shape coding with arbitrary direction edge encoding structuresJ. Electron. Imaging2014234043009043009
– reference: YangCWeiHQianYuA novel method for 2d nonrigid partial shape matchingNeurocomputing201827511601176
– reference: Lai, H., Zuo, Z., Wang, Z., Yao, Z., Liu, W.: Accurate distortion measurement for b-spline-based shape coding. In: 2011 18th IEEE International Conference on Image Processing, pp. 225–228. IEEE (2011)
– reference: RossMWadeTDShape and weight concern and self-esteem as mediators of externalized self-perception, dietary restraint and uncontrolled eatingEur. Eat.Disorders Rev. Prof. J. Eat. Disord. Assoc.2004122129136
– reference: BaiSBaiXSparse contextual activation for efficient visual re-rankingIEEE Trans. Image Process.2016253105610693455476
– reference: WangBGaoYSunCBlumensteinMLa SalleJChord bunch walks for recognizing naturally self-overlapped and compound leavesIEEE Trans. Image Process.20192812596359764013084
– reference: Organisation Internationale de Normalisation. Information technology–generic coding of audio-visual objects–part 2: visual (1999)
– reference: ZhengYGuoBChenZLiCA Fourier descriptor of 2d shapes based on multiscale centroid contour distances used in object recognition in remote sensing imagesSensors2019193486
– reference: LiZGuoBMengFFast shape recognition method using feature richness based on the walking minimum bounding rectangle over an occluded remote sensing targetRemote Sens.202214225845
– reference: BelongieSMalikJPuzichaJShape matching and object recognition using shape contextsIEEE Trans. Pattern Anal. Mach. Intell.2002244509522
– reference: SchusterGMKatsaggelosAKAn optimal polygonal boundary encoding scheme in the rate distortion senseIEEE Trans. Image Process.19987113261676776
– reference: LingHJacobsDWShape classification using the inner-distanceIEEE Trans. Pattern Anal. Mach. Intell.2007292286299
– reference: DeutschJAA theory of shape recognitionBr. J. Psychol.19554613037
– reference: Wulandhari, L.A., Haron, H.: Characteristic of rectangular vertex chain code for shapes with hole. In: 2009 International Conference on Information Management and Engineering, pp. 648–650. IEEE (2009)
– reference: GrattoniPGuiducciAContour coding for image descriptionPattern Recognit. Lett.199011295105
– reference: TarrMJPinkerSMental rotation and orientation-dependence in shape recognitionCogn. Psychol.1989212233282
– reference: BandyopadhyaySKKondiLPOptimal bit allocation for joint texture-aware contour-based shape coding and shape-adaptive texture codingIEEE Trans. Circuits Syst. Video Technol.2008186840844
– reference: Matousek, J: Lectures on Discrete Geometry, vol. 212. Springer (2013)
– reference: NunesPMarquésFPereiraFGasullAA contour-based approach to binary shape coding using a multiple grid chain codeSignal Process. Image Commun.2000157–8585599
– reference: ZhengACheungGFlorencioDContext tree-based image contour coding using a geometric priorIEEE Trans. Image Process.20162625745893584083
– reference: Biswas, S., Aggarwal, G., Chellappa, R.: Efficient indexing for articulation invariant shape matching and retrieval. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
– reference: Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
– reference: YanWYangJMulti-part shape matching by simultaneous partial functional correspondenceVis. Comput.2023391393412
– reference: HoyerPOHyvärinenAA multi-layer sparse coding network learns contour coding from natural imagesVis. Res.2002421215931605
– reference: PengH-LChenS-YTrademark shape recognition using closed contoursPattern Recognit. Lett.1997188791803
– reference: An, F.-P., Liu, J.-E., Bai, L.: Object recognition algorithm based on optimized nonlinear activation function-global convolutional neural network. Vis. Comput. 1–13 (2022)
– reference: LiuZXiangQTangJWangYZhaoPRobust salient object detection for RGB imagesVis. Comput.20203618231835
– reference: Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 357–364. IEEE (2009)
– reference: LuoSMouWAlthoeferKLiuHNovel tactile-sift descriptor for object shape recognitionIEEE Sens. J.201515950015009
– reference: AghitoSMForchhammerSContext-based coding of bilevel images enhanced by digital straight line analysisIEEE Trans. Image Process.200615821202130
– reference: KimKJSuhJ-YKangMGGeneralized interframe vertex-based shape encoding scheme for video sequencesIEEE Trans. Image Process.200091016671676
– reference: GrahamDNImage transmission by two-dimensional contour codingProc. IEEE1967553336346
– reference: Liu, Q., Ngan, K.N.: Arbitrarily shaped object coding based on h. 264/avc. In: 2009 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 343–346. IEEE (2009)
– volume: 41
  start-page: 1782
  issue: 5
  year: 2008
  ident: 2940_CR45
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.10.020
– ident: 2940_CR3
– volume: 14
  start-page: 789
  issue: 8
  year: 1992
  ident: 2940_CR50
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.149591
– volume: 32
  start-page: 861
  issue: 5
  year: 2009
  ident: 2940_CR22
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 2940_CR23
  doi: 10.1109/CVPR.2009.5206844
– volume: 28
  start-page: 5963
  issue: 12
  year: 2019
  ident: 2940_CR42
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2921526
– volume: 18
  start-page: 840
  issue: 6
  year: 2008
  ident: 2940_CR7
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2008.918784
– ident: 2940_CR44
  doi: 10.1109/ICDAR.2009.175
– ident: 2940_CR30
  doi: 10.1109/CVPR.2007.383227
– volume: 28
  start-page: 5963
  issue: 12
  year: 2019
  ident: 2940_CR34
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2921526
– volume: 25
  start-page: 1056
  issue: 3
  year: 2016
  ident: 2940_CR25
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2514498
– volume: 42
  start-page: 1593
  issue: 12
  year: 2002
  ident: 2940_CR46
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(02)00017-2
– volume: 36
  start-page: 1823
  year: 2020
  ident: 2940_CR2
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01778-4
– volume: 37
  start-page: 803
  issue: 4
  year: 2014
  ident: 2940_CR51
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2346201
– volume: 78
  start-page: 14
  year: 2016
  ident: 2940_CR36
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.03.029
– ident: 2940_CR26
– volume: 21
  start-page: 233
  issue: 2
  year: 1989
  ident: 2940_CR57
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(89)90009-1
– volume: 15
  start-page: 345
  issue: 3
  year: 2005
  ident: 2940_CR20
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2004.842596
– ident: 2940_CR17
  doi: 10.1109/ICIME.2009.32
– ident: 2940_CR35
  doi: 10.1109/CVPR.2017.221
– volume: 9
  start-page: 1667
  issue: 10
  year: 2000
  ident: 2940_CR14
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.869178
– ident: 2940_CR9
– volume: 86
  start-page: 1126
  issue: 6
  year: 1998
  ident: 2940_CR8
  publication-title: Proc. IEEE
  doi: 10.1109/5.687833
– volume: 29
  start-page: 286
  issue: 4
  year: 2011
  ident: 2940_CR33
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2010.11.001
– ident: 2940_CR16
  doi: 10.1109/ISPACS.2009.5383832
– volume: 19
  start-page: 486
  issue: 3
  year: 2019
  ident: 2940_CR37
  publication-title: Sensors
  doi: 10.3390/s19030486
– volume: 55
  start-page: 336
  issue: 3
  year: 1967
  ident: 2940_CR47
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1967.5490
– volume: 275
  start-page: 1160
  year: 2018
  ident: 2940_CR39
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.067
– ident: 2940_CR10
– ident: 2940_CR24
  doi: 10.1109/ICCVW.2009.5457679
– volume: 39
  start-page: 393
  issue: 1
  year: 2023
  ident: 2940_CR5
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02337-6
– volume: 275
  start-page: 1160
  year: 2018
  ident: 2940_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.067
– volume: 14
  start-page: 5845
  issue: 22
  year: 2022
  ident: 2940_CR41
  publication-title: Remote Sens.
  doi: 10.3390/rs14225845
– ident: 2940_CR6
  doi: 10.1007/978-3-642-15558-1_30
– volume: 21
  start-page: 4667
  issue: 11
  year: 2012
  ident: 2940_CR40
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2207391
– volume: 24
  start-page: 509
  issue: 4
  year: 2002
  ident: 2940_CR28
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.993558
– volume: 12
  start-page: 1274
  issue: 10
  year: 2003
  ident: 2940_CR55
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.816010
– volume: 7
  start-page: 13
  issue: 1
  year: 1998
  ident: 2940_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.650847
– volume: 29
  start-page: 286
  issue: 2
  year: 2007
  ident: 2940_CR29
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.41
– volume: 26
  start-page: 574
  issue: 2
  year: 2016
  ident: 2940_CR49
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2627813
– volume: 46
  start-page: 30
  issue: 1
  year: 1955
  ident: 2940_CR58
  publication-title: Br. J. Psychol.
  doi: 10.1111/j.2044-8295.1955.tb00521.x
– volume: 15
  start-page: 2120
  issue: 8
  year: 2006
  ident: 2940_CR19
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.875168
– volume: 21
  start-page: 2747
  issue: 5
  year: 2011
  ident: 2940_CR21
  publication-title: IEEE Trans. Image Process.
– ident: 2940_CR1
  doi: 10.1007/s00371-022-02445-x
– volume: 8
  start-page: 381
  issue: 4
  year: 1985
  ident: 2940_CR27
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(85)90001-5
– ident: 2940_CR11
– volume: 24
  start-page: 1053
  issue: 11
  year: 1991
  ident: 2940_CR32
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(91)90121-K
– ident: 2940_CR4
  doi: 10.1007/s00371-022-02497-z
– volume: 15
  start-page: 585
  issue: 7–8
  year: 2000
  ident: 2940_CR15
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/S0923-5965(99)00041-7
– volume: 11
  start-page: 95
  issue: 2
  year: 1990
  ident: 2940_CR48
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(90)90119-M
– volume: 15
  start-page: 5001
  issue: 9
  year: 2015
  ident: 2940_CR53
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2432127
– volume: 16
  start-page: 1196
  issue: 10
  year: 2006
  ident: 2940_CR12
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2006.882388
– ident: 2940_CR52
  doi: 10.1109/CVPR.2007.383018
– volume: 18
  start-page: 791
  issue: 8
  year: 1997
  ident: 2940_CR54
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(97)00050-0
– volume: 145
  start-page: 59
  year: 2016
  ident: 2940_CR38
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.11.011
– ident: 2940_CR18
  doi: 10.1109/ICIP.2011.6116088
– volume: 12
  start-page: 129
  issue: 2
  year: 2004
  ident: 2940_CR56
  publication-title: Eur. Eat.Disorders Rev. Prof. J. Eat. Disord. Assoc.
  doi: 10.1002/erv.531
– volume: 23
  start-page: 043009
  issue: 4
  year: 2014
  ident: 2940_CR31
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.23.4.043009
SSID ssj0017749
Score 2.3669538
Snippet Shape recognition is an active research topic in the field of computer vision and graphic computing. Nevertheless, existing methods are still poor in accuracy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2599
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Computer Graphics
Computer Science
Computer vision
Constraints
Contour coding
Efficiency
Feature extraction
Hamming codes
Image coding
Image Processing and Computer Vision
Methods
Original Article
Performance enhancement
Reduction
Segments
Shape recognition
Vision systems
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o9EEfnE7FeSMPvmmgTdo1fRRxCMoQL2NvJWlSHMg21rrf70l6mYp70IfSQkITTi7fdzg3gAuhUymYkjTjnqFBwCTFnqi4IhtGOEZAcuV8hg_RYCBGo_ixCgrLa2_32iTpbuom2M1ll6OIMfjEgUfjddhAuBO2YMPT87CxHSChcaTXR_3IxnlWoTK__-M7HC055g-zqEObfvt_89yFnYpdkutyO-zBmpl0oF1XbiDVQe7A9pc0hPtw35d5QfI3OTOkcSiaTshiLIkkakzfrWcRsVU8bEGJAr90mXSWTDNind1xXHxbGDyA1_7ty80drYos0JTFoqCoIXHtK-N7PNRRlHEdphFqeTINlE2mz1RPhlybnhRcc18L5AiGaenrHjNMpfwQWpPpxBwB8fwM9Z_AiEjJwOhIxlp4ijN7yn2uwi5c1rJOZmUujaTJmuyklqDUEie1JO7Cab0cSXWu8gQBl6POGgu-shkvJBEGXbiqV2fZvHqw4791P4EthuSm9OA5hVYx_zBnsJkuinE-P3fb8ROC0tep
  priority: 102
  providerName: Springer Nature
Title Fast shape recognition via a bi-level restraint reduction of contour coding
URI https://link.springer.com/article/10.1007/s00371-023-02940-9
https://www.proquest.com/docview/3033721983
https://www.proquest.com/docview/3033880854
Volume 40
WOSCitedRecordID wos001060100700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD4454M-eBfnZeTBNw22SbumT6LiEJQx5oXhS0maDAfSzbXu93uStZsK-uJDL5BCyjnJuSQn3wdwInQqBVOSDrhnaBAwSfFLTFwxGkZ3jA7J0fk830edjuj342654JaXZZWVTXSGWo9Su0Z-jqaWY7YSC34xfqeWNcrurpYUGjWoW5QES93QDV_muwgY2rjw18dMyZ74LA_NuKNzDquOosfCKw48Gn93TIto88cGqfM77Y3__vEmrJcRJ7mcDZEtWDLZNqx9wSHcgbu2zAuSv8qxIfOKolFGpkNJJFFD-mZLi4il8bCMEgW-6RnqLBkNiK12x07waf3gLjy1bx6vb2nJskBTFouCYorEta-M7_FQR9GA6zCNMM2TaaAsmj5TLRlybVpScM19LVDQhmnp6xYzTKV8D5azUWb2gXj-ABOgwIhIycDoSMZaeIozO819rsIGnFYiTsYzMI1kDpvsFJKgQhKnkCRuwFEl16ScWHmyEOqvzWiRRBg04KxS3KL5984O_u7sEFYZRjOzkp0jWC4mH-YYVtJpMcwnTahf3XS6vSbU7iLadGMQ772H509uat7_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa7PHPSkwTZpt-lBRNRF2XXxoOKtJk0WF2R3tVXxT_kbnaTbXRX05sFDaSGloZ3JfPM18wDYFjqVgilJW9wzNAiYpHgnElf0hhGOEZBcO5-bRtRsitvb-HIE3stcGBtWWdpEZ6h1N7X_yPfR1HJkK7Hgh71HartG2d3VsoVGoRZ18_aKlC07OD9B-e4wVju9Oj6j_a4CNGWxyClSAq59ZXyPhzqKWlyHaYS0RqaBstXjmarKkGtTlYJr7muBoGiYlr6uMsNUyvG5ozAecBHZdVWP6GDXAl0p5277yMxshmk_Scel6rnaeBQREo848Gj8FQiH3u23DVmHc7XZ__aF5mCm71GTo2IJzMOI6SzA9Kc6i4tQr8ksJ9m97BkyiJjqdshLWxJJVJs-2NApYtuU2I4ZOV7poqou6baIjebHSfBscX4Jrv_kbZZhrNPtmBUgnt9CghcYESkZGB3JWAtPcWbNmM9VWIHdUqRJrygWkgzKQjsFSFABEqcASVyB9VKOSd9wZMlQiD8Oo8UVYVCBvVJRhsM_T7b6-2RbMHl2ddFIGufN-hpMMfTcivCkdRjLn57NBkykL3k7e9p0Gk_g7q8V6AMshzeP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxXvPgm4a1Sbumj6IOZWMI6vCtJE2KA-nGVvf7PellU3EP4kNpIaENJ0m_7yPnAnAhdCwFU5Im3DHU85ik2BOFK7JhhGMEpLycz6AX9Pvi9TV8_BLFn3u7V0eSRUyDzdKUZq2xTlrzwLc80xxFvMEr9BwarsKaZx3prV5_GszPEZDc5ATYRa1kYz7LsJnf3_EdmhZ888cRaY48nfr_x7wD2yXrJNfFMtmFFZM2oF5VdCDlBm_A1pf0hHvQ7chpRqZvcmzI3NFolJLZUBJJ1JC-W48jYqt72EITGT7pIhktGSXEjg6_i3cLj_vw0rl7vrmnZfEFGrNQZBSVE9euMq7DfR0ECdd-HKD6k7GnbJJ9ptrS59q0peCau1ogdzBMS1e3mWEq5gdQS0epOQTiuAnqIs-IQEnP6ECGWjiKM7v7Xa78JlxWdo_GRY6NaJ5NObdahFaLcqtFYRNOqqmJyv02jRCIOWrZUPClzfijEr7XhKtqphbNyz929Lfu57DxeNuJeg_97jFsMuQ_hZPPCdSyyYc5hfV4lg2nk7N8lX4Cok7jcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+shape+recognition+via+a+bi-level+restraint+reduction+of+contour+coding&rft.jtitle=The+Visual+computer&rft.au=Li%2C+Zekun&rft.au=Guo+Baolong&rft.au=Meng+Fanjie&rft.au=Jiang+Bingting&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=4&rft.spage=2599&rft.epage=2614&rft_id=info:doi/10.1007%2Fs00371-023-02940-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon