Parameter Estimation of Soil Water Retention and Thermal Conductivity Curves Using HYDRUS‐1D and Inverse Solution
ABSTRACT Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were...
Uložené v:
| Vydané v: | European journal of soil science Ročník 76; číslo 3 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford, UK
Blackwell Publishing Ltd
01.05.2025
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1351-0754, 1365-2389 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n) and three TCC parameters (empirical parameters in soil thermal conductivity function, b1, b2 and b3) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [θs] and residual [θr] water content, saturated hydraulic conductivity Ks, α and n) and three TCC parameters (b1, b2 and b3) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters. |
|---|---|
| AbstractList | ABSTRACT
Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n) and three TCC parameters (empirical parameters in soil thermal conductivity function, b1, b2 and b3) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [θs] and residual [θr] water content, saturated hydraulic conductivity Ks, α and n) and three TCC parameters (b1, b2 and b3) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters. Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n ) and three TCC parameters (empirical parameters in soil thermal conductivity function, b 1 , b 2 and b 3 ) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [ θ s ] and residual [ θ r ] water content, saturated hydraulic conductivity K s , α and n ) and three TCC parameters ( b 1 , b 2 and b 3 ) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters. Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n) and three TCC parameters (empirical parameters in soil thermal conductivity function, b1, b2 and b3) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [θs] and residual [θr] water content, saturated hydraulic conductivity Ks, α and n) and three TCC parameters (b1, b2 and b3) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters. |
| Author | Liaghat, Abdolmajid Tehrani, Ashkan Delbaz, Reza |
| Author_xml | – sequence: 1 givenname: Ashkan orcidid: 0000-0002-7602-6093 surname: Tehrani fullname: Tehrani, Ashkan email: tehrani5@msu.edu organization: Michigan State University – sequence: 2 givenname: Abdolmajid orcidid: 0000-0002-3224-6529 surname: Liaghat fullname: Liaghat, Abdolmajid email: aliaghat@ut.ac.ir organization: College of Agriculture and Natural Resources, University of Tehran – sequence: 3 givenname: Reza orcidid: 0000-0001-9898-3866 surname: Delbaz fullname: Delbaz, Reza organization: College of Agriculture and Natural Resources, University of Tehran |
| BookMark | eNp9kE1OwzAQhS1UJEphwwkssUNK8U-c2EuUFlpUCdS0QqwsN3EgVWoXOynqjiNwRk5C0rJmNjOa980b6Z2DnrFGA3CF0RC3davX3g9jhAQ7AX1MIxYQykWvmxkOUMzCM3Du_RohTLEQfeCflVMbXWsHx74uN6ourYG2gKktK_iiOmHeyuawVyaHi3ftNqqCiTV5k9Xlrqz3MGncTnu49KV5g5PX0XyZ_nx949HhYmp22nndWlZNZ3MBTgtVeX351wdgeT9eJJNg9vQwTe5mQUYEZwENcahQlNMi4hgTRLI4i2JOCoI4CoUmBLEVZqtc5CuOSSsJXmS6YFyHPOchHYDro-_W2Y9G-1qubeNM-1JSwnDEOeVRS90cqcxZ750u5Na1Obi9xEh2ocouVHkItYXxEf4sK73_h5TjxzQ93vwCGEF71Q |
| Cites_doi | 10.1016/0017‐9310(94)00283‐2 10.5194/acp‐11‐7269‐2011 10.1016/S0022‐1694(01)00466‐8 10.2136/vzj2012.0033 10.1016/j.jconhyd.2008.10.002 10.3390/app9224799 10.1016/j.jhydrol.2008.08.014 10.1029/WR023i012p02175 10.2136/vzj2003.5890 10.1061/(ASCE)GT.1943‐5606.0001071 10.1071/sr9940447 10.1016/j.geoderma.2024.116946 10.31545/intagr/110850 10.2136/vzj2005.0076 10.1029/WR012i003p00513 10.1520/GTJ10053J 10.1016/0022‐1694(87)90207‐1 10.2478/johh‐2018‐0002 10.1155/2022/4544446 10.1016/j.jhydrol.2021.126250 10.2136/sssaj1998.03615995006200040007x 10.1016/j.enggeo.2020.105800 10.1007/s10706‐015‐9843‐2 10.5194/adgeo‐5‐89‐2005 10.1029/WR015i005p01195 10.5194/nhess‐13‐2369‐2013 10.1002/2017WR021714 10.1002/ird.2875 10.1097/00010694-196204000-00008 10.1016/j.jhydrol.2016.01.067 10.2136/sssaj2000.642439x 10.1590/1678‐4499.2017406 10.1007/s40948‐020‐00173‐x 10.1029/97WR03039 10.1029/2000WR000071 10.1515/johh‐2017‐0046 10.1016/j.catena.2022.106844 10.1016/j.jhydrol.2023.129898 10.1061/(ASCE)GT.1943‐5606.0001295 10.1016/j.ijthermalsci.2017.03.013 10.3390/soilsystems2040055 10.2136/sssaj1971.03615995003500010015x 10.2136/sssaj1980.03615995004400050002x 10.4236/ojss.2011.13011 10.5194/hess-15-3043-2011 10.2136/vzj2016.04.0033 10.1139/t06‐098 10.1016/j.still.2015.05.003 10.1097/SS.0b013e318221f132 10.1061/(ASCE)GT.1943‐5606.0000786 10.1063/1.1745010 10.2136/vzj2006.0007 10.1016/j.earscirev.2020.103419 10.1007/s11440‐014‐0333‐0 10.2136/sssaj1994.03615995005800030002x 10.14483/2256201x.18157 10.1117/12.510984 10.2136/sssaj1954.03615995001800040001x 10.1029/91WR01676 10.1016/j.enggeo.2023.107179 10.1029/TR038i002p00222 10.2478/johh‐2014‐0008 10.2136/sssaj1982.03615995004600030005x 10.1029/96WR01525 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QL 7SN 7ST 7T7 7UA 8FD C1K F1W FR3 H96 L.G P64 SOI |
| DOI | 10.1111/ejss.70095 |
| DatabaseName | Wiley_OA刊 CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley_OA刊 url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1365-2389 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_ejss_70095 EJSS70095 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: College of Agriculture and Natural Resources, University of Tehran |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XOL Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION O8X 7QL 7SN 7ST 7T7 7UA 8FD C1K F1W FR3 H96 L.G P64 SOI |
| ID | FETCH-LOGICAL-c2985-3414a06d3f6811202c7c6782f208049e2205b15bd9db81267898fcef58e48d843 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001478299900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1351-0754 |
| IngestDate | Thu Sep 18 13:11:06 EDT 2025 Sat Nov 29 06:56:18 EST 2025 Sun Sep 21 06:22:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2985-3414a06d3f6811202c7c6782f208049e2205b15bd9db81267898fcef58e48d843 |
| Notes | Funding This research was supported by College of Agriculture and Natural Resources, University of Tehran. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3224-6529 0000-0002-7602-6093 0000-0001-9898-3866 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.70095 |
| PQID | 3251688386 |
| PQPubID | 2045158 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3251688386 crossref_primary_10_1111_ejss_70095 wiley_primary_10_1111_ejss_70095_EJSS70095 |
| PublicationCentury | 2000 |
| PublicationDate | May/June 2025 2025-05-00 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | European journal of soil science |
| PublicationYear | 2025 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | 2015; 141 2023; 73 2020; 20 1995; 38 2002; 13 2023; 222 2015; 33 1980; 44 2004; 4 2016; 541 2022; 25 2011; 11 2011; 15 2023; 624 2014; 62 1996; 32 2017; 117 2007; 28 2020; 6 2018; 2 2001; 251 2013; 13 2013; 12 2021; 598 2003; 2 1986 1985 2020; 211 1954; 18 1994; 32 2002; 38 2019; 9 1979; 15 2011; 1 2019; 33 1987; 91 2024; 448 2023; 322 2019; 78 2015; 10 2000; 64 1996 2005; 42 2006; 5 2006 2004 1993 1991 2018; 66 1998; 62 2008; 362 1957; 38 2016; 15 1962; 93 2011; 176 1982; 46 1987; 23 1991; 27 1976; 12 2022; 2022 1993; 16 1971; 35 2015; 153 2013; 139 2005; 5 1994; 58 2020; 277 2018; 54 2007; 44 1998; 34 2009; 104 1931; 1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Jing J. (e_1_2_10_28_1) 2007; 28 Farouki T. O. (e_1_2_10_18_1) 1986 Tuller M. (e_1_2_10_69_1) 2004 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 Durner W. (e_1_2_10_17_1) 2006 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 Dane J. H. (e_1_2_10_14_1) 2020 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Campbell G. S. (e_1_2_10_7_1) 1985 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_56_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Lu N. (e_1_2_10_38_1) 2004 Guo Z. R. (e_1_2_10_23_1) 2002; 13 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
| References_xml | – year: 1985 – volume: 117 start-page: 172 year: 2017 end-page: 183 article-title: Review of Soil Thermal Conductivity and Predictive Models publication-title: International Journal of Thermal Sciences – volume: 33 start-page: 389 issue: 3 year: 2019 end-page: 395 article-title: Influence of Winter Wheat on Soil Thermal Properties of a Paleudalf publication-title: International Agrophysics – volume: 4 start-page: 278 year: 2004 end-page: 289 – volume: 66 start-page: 161 issue: 2 year: 2018 end-page: 169 article-title: Further Tests of the HYPROP Evaporation Method for Estimating the Unsaturated Soil Hydraulic Properties publication-title: Journal Of Hydrology And Hydromechanics – volume: 28 start-page: 50 issue: 1 year: 2007 end-page: 54 article-title: The Mechanism of Water Movement in the Freezing‐Thawing Process publication-title: Diqiu Xuebao/Acta Geoscientica Sinica – volume: 42 start-page: 1548 issue: 6 year: 2005 end-page: 1568 article-title: A Study of Hysteresis Models for Soil‐Water Characteristic Curves publication-title: Canadian Geotechnical Journal – volume: 38 start-page: 222 issue: 2 year: 1957 end-page: 232 article-title: Moisture Movement in Porous Materials Under Temperature Gradients publication-title: Eos, Transactions American Geophysical Union – volume: 32 start-page: 2683 issue: 9 year: 1996 end-page: 2696 article-title: Estimating Unsaturated Soil Hydraulic Properties From Tension Disc Infiltrometer Data by Numerical Inversion publication-title: Water Resources Research – volume: 448 year: 2024 article-title: Extended HYDRUS‐1D Freezing Module Emphasizes Thermal Conductivity Schemes for Simulation of Soil Hydrothermal Dynamics publication-title: Geoderma – volume: 211 year: 2020 article-title: Room for Improvement: A Review and Evaluation of 24 Soil Thermal Conductivity Parameterization Schemes Commonly Used in Land‐Surface, Hydrological, and Soil‐Vegetation‐Atmosphere Transfer Models publication-title: Earth‐Science Reviews – volume: 91 start-page: 255 issue: 3–4 year: 1987 end-page: 293 article-title: Parameter Estimation for Unsaturated Flow and Transport Models—A Review publication-title: Journal of Hydrology – volume: 35 start-page: 27 issue: 1 year: 1971 end-page: 33 article-title: Measuring Soil Matric Potential In Situ by Sensing Heat Dissipation Within a Porous Body: I. Theory and Sensor Construction publication-title: Soil Science Society of America Journal – volume: 153 start-page: 145 year: 2015 end-page: 154 article-title: Effects of Temperature Changes on Soil Hydraulic Properties publication-title: Soil and Tillage Research – volume: 2022 issue: 1 year: 2022 article-title: Inverse Modelling to Estimate Soil Hydraulic Properties at the Field Scale publication-title: Mathematical Problems in Engineering – volume: 2 start-page: 589 issue: 4 year: 2003 end-page: 594 article-title: In Situ Measurement of Soil Heat Flux With the Gradient Method publication-title: Vadose Zone Journal – volume: 38 start-page: 7.1 issue: 1 year: 2002 end-page: 7.14 article-title: Indirect Estimation of Soil Thermal Properties and Water Flux Using Heat Pulse Probe Measurements: Geometry and Dispersion Effects publication-title: Water Resources Research – volume: 541 start-page: 116 year: 2016 end-page: 126 article-title: Inverse Modeling of Soil Water Content to Estimate the Hydraulic Properties of a Shallow Soil and the Associated Weathered Bedrock publication-title: Journal of Hydrology – volume: 5 start-page: 784 issue: 2 year: 2006 end-page: 800 article-title: Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone publication-title: Vadose Zone Journal – volume: 5 start-page: 89 year: 2005 end-page: 97 article-title: Comparison of Different Efficiency Criteria for Hydrological Model Assessment publication-title: Advances in Geosciences – volume: 64 start-page: 439 issue: 2 year: 2000 end-page: 449 article-title: Estimating Soil Hydraulic Properties During Constant Flux Infiltration Inverse Procedures publication-title: Soil Science Society of America Journal – year: 1986 – volume: 62 start-page: 7 issue: 1 year: 2014 end-page: 15 article-title: Parameter Estimation of Soil Hydraulic and Thermal Property Functions for Unsaturated Porous Media Using the HYDRUS‐2D Code publication-title: Journal Of Hydrology And Hydromechanics – volume: 104 start-page: 4 issue: 1–4 year: 2009 end-page: 35 article-title: A Review of Model Applications for Structured Soils: (a) Water Flow and Tracer Transport publication-title: Journal of Contaminant Hydrology – volume: 20 year: 2020 – volume: 176 start-page: 387 issue: 8 year: 2011 end-page: 398 article-title: Coupled Liquid Water, Water Vapor, and Heat Transport Simulations in an Unsaturated Zone of a Sandy Loam Field publication-title: Soil Science – volume: 62 start-page: 894 issue: 4 year: 1998 end-page: 905 article-title: Parameter Estimation Analysis of the Evaporation Method for Determining Soil Hydraulic Properties publication-title: Soil Science Society of America Journal – volume: 15 start-page: 1195 issue: 5 year: 1979 end-page: 1206 article-title: Analysis of Water and Heat Flow in Unsaturated‐Saturated Porous Media publication-title: Water Resources Research – volume: 44 start-page: 113 issue: 2 year: 2007 end-page: 125 article-title: Installation Procedure for Thermal Conductivity Matric Suction Sensors and Analysis of Their Long‐Term Readings publication-title: Canadian Geotechnical Journal – volume: 598 year: 2021 article-title: Development of the HYDRUS‐1D Freezing Module and Its Application in Simulating the Coupled Movement of Water, Vapor, and Heat publication-title: Journal of Hydrology – year: 2004 – volume: 27 start-page: 2735 issue: 10 year: 1991 end-page: 2741 article-title: Porous Media With Linearly Variable Hydraulic Properties publication-title: Water Resources Research – volume: 6 start-page: 50 issue: 3 year: 2020 article-title: Mediate Relation Between Electrical and Thermal Conductivity of Soil publication-title: Geomechanics and Geophysics for Geo‐Energy and Geo‐Resources – volume: 322 year: 2023 article-title: Evaluating Innovative Direct and Indirect Soil Suction and Volumetric Measurement Techniques for the Determination of Soil Water Retention Curves Following Drying and Wetting Paths publication-title: Engineering Geology – volume: 15 start-page: 1 issue: 7 year: 2016 end-page: 25 article-title: Recent Developments and Applications of the HYDRUS Computer Software Packages publication-title: Vadose Zone Journal – volume: 38 start-page: 2297 issue: 12 year: 1995 end-page: 2303 article-title: Evaluation of Heat and Moisture Transfer Properties in a Frozen‐Unfrozen Water‐Soil System publication-title: International Journal of Heat and Mass Transfer – volume: 12 start-page: 513 issue: 3 year: 1976 end-page: 522 article-title: A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media publication-title: Water Resources Research – volume: 78 start-page: 119 issue: 1 year: 2019 end-page: 130 article-title: Performance Evaluation of Different Soil Water Retention Functions for Modeling of Water Flow Under Transient Condition publication-title: Bragantia – year: 1993 – volume: 34 start-page: 223 issue: 2 year: 1998 end-page: 231 article-title: A Conceptual Model of the Soil Water Retention Curve publication-title: Water Resources Research – volume: 66 start-page: 170 issue: 2 year: 2018 end-page: 180 article-title: Inverse Estimation of Soil Hydraulic Properties and Water Repellency Following Artificially Induced Drought Stress publication-title: Journal Of Hydrology And Hydromechanics – volume: 5 start-page: 684 issue: 2 year: 2006 end-page: 696 article-title: Estimation of Soil Hydraulic Properties From Numerical Inversion of Tension Disk Infiltrometer Data publication-title: Vadose Zone Journal – volume: 1 start-page: 318 issue: 5 year: 1931 end-page: 333 article-title: Capillary Conduction of Liquids Through Porous Mediums publication-title: Physics – volume: 362 start-page: 191 issue: 3–4 year: 2008 end-page: 205 article-title: Coupling of Heat, Water Vapor, and Liquid Water Fluxes to Compute Evaporation in Bare Soils publication-title: Journal of Hydrology – volume: 12 issue: 1 year: 2013 article-title: Temperature Dependence of Thermal Properties of Sands Across a Wide Range of Temperatures (30–70°C) publication-title: Vadose Zone Journal – volume: 33 start-page: 207 year: 2015 end-page: 221 article-title: Critical Review of Thermal Conductivity Models for Unsaturated Soils publication-title: Geotechnical and Geological Engineering – volume: 1 start-page: 77 issue: 03 year: 2011 end-page: 85 article-title: Influence of the Hysteretic Behaviour on Silt Loam Soil Thermal Properties publication-title: Open Journal of Soil Science – year: 1996 – volume: 139 start-page: 507 issue: 3 year: 2013 end-page: 510 article-title: Hysteresis of Unsaturated Hydromechanical Properties of a Silty Soil publication-title: Journal of Geotechnical and Geoenvironmental Engineering – volume: 32 issue: 3 year: 1994 article-title: Comparison of Single and Dual Probes for Measuring Soil Thermal Properties With Transient Heating publication-title: Soil Research – volume: 54 start-page: 1389 issue: 2 year: 2018 end-page: 1399 article-title: Derivation of an Explicit Form of the Percolation‐Based Effective‐Medium Approximation for Thermal Conductivity of Partially Saturated Soils publication-title: Water Resources Research – volume: 9 issue: 22 year: 2019 article-title: A Numerical Model to Estimate the Soil Thermal Conductivity Using Field Experimental Data publication-title: Applied Sciences – volume: 624 year: 2023 article-title: Estimating Soil Water Retention Curves From Thermal Conductivity Measurements: A Percolation‐Based Effective‐Medium Approximation publication-title: Journal of Hydrology – volume: 222 year: 2023 article-title: Water and Heat Coupling Processes and Its Simulation in Frozen Soils: Current Status and Future Research Directions publication-title: Catena – volume: 277 year: 2020 article-title: Comparative Study on Thermal Properties of Undisturbed and Compacted Lateritic Soils Subjected to Drying and Wetting publication-title: Engineering Geology – volume: 58 start-page: 647 issue: 3 year: 1994 end-page: 652 article-title: Inverse Method to Determine Soil Hydraulic Functions From Multistep Outflow Experiments publication-title: Soil Science Society of America Journal – volume: 73 start-page: 50 issue: 1 year: 2023 end-page: 63 article-title: Developing a Simple Method for Estimating Soil Infiltration in Furrow and Border Irrigation Using Advance, Recession and Runoff Data publication-title: Irrigation and Drainage – volume: 13 start-page: 2369 issue: 9 year: 2013 end-page: 2379 article-title: Estimating Soil Suction From Electrical Resistivity publication-title: Natural Hazards and Earth System Sciences – volume: 15 start-page: 3043 issue: 10 year: 2011 end-page: 3059 article-title: Inverse Modelling of In Situ Soil Water Dynamics: Investigating the Effect of Different Prior Distributions of the Soil Hydraulic Parameters publication-title: Hydrology and Earth System Sciences – volume: 46 start-page: 466 issue: 3 year: 1982 end-page: 470 article-title: Temperature Dependence of Unsaturated Hydraulic Conductivity of Two Soils publication-title: Soil Science Society of America Journal – volume: 93 start-page: 271 issue: 4 year: 1962 end-page: 274 article-title: Unsaturated Conductivity and Diffusivity Measurements by a Constant Flux Method publication-title: Soil Science – volume: 141 issue: 6 year: 2015 article-title: Closed‐Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature publication-title: Journal of Geotechnical and Geoenvironmental Engineering – volume: 25 start-page: 21 issue: 1 year: 2022 end-page: 35 article-title: Using Inverse Modeling by HYDRUS‐1D to Predict Some Soil Hydraulic Parameters From Soil Water Evaporation publication-title: Colombia Forestal – year: 2006 – volume: 10 start-page: 209 year: 2015 end-page: 218 article-title: A Comparison of Laboratory and In Situ Methods to Determine Soil Thermal Conductivity for Energy Foundations and Other Ground Heat Exchanger Applications publication-title: Acta Geotechnica – volume: 18 start-page: 351 issue: 4 year: 1954 end-page: 358 article-title: The Movement of Soil Moisture in Response to Temperature Gradients publication-title: Soil Science Society of America Journal – volume: 23 start-page: 2175 issue: 12 year: 1987 end-page: 2186 article-title: Soil Heat and Water Flow With a Partial Surface Mulch publication-title: Water Resources Research – volume: 16 start-page: 323 issue: 3 year: 1993 end-page: 329 article-title: Estimating Water Content of Soils From Electrical Resistivity publication-title: Geotechnical Testing Journal – year: 1991 – volume: 2 issue: 4 year: 2018 article-title: Estimating Soil Water Retention Curve by Inverse Modelling From Combination of In Situ Dynamic Soil Water Content and Soil Potential Data publication-title: Soil Systems – volume: 251 start-page: 163 issue: 3–4 year: 2001 end-page: 176 article-title: Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters With Hierarchical Pedotransfer Functions publication-title: Journal of Hydrology – volume: 13 start-page: 298 issue: 3 year: 2002 end-page: 302 article-title: Analysis on the Characteristics of Soil Moisture Transfer During Freezing and Thawing Period publication-title: Advances in Water Science – volume: 11 start-page: 7269 issue: 14 year: 2011 end-page: 7287 article-title: Inverse Modeling of Cloud‐Aerosol Interactions–Part 1: Detailed Response Surface Analysis publication-title: Atmospheric Chemistry and Physics – volume: 44 start-page: 892 issue: 5 year: 1980 end-page: 898 article-title: A Closed‐Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils publication-title: Soil Science Society of America Journal – ident: e_1_2_10_64_1 doi: 10.1016/0017‐9310(94)00283‐2 – ident: e_1_2_10_43_1 doi: 10.5194/acp‐11‐7269‐2011 – ident: e_1_2_10_57_1 doi: 10.1016/S0022‐1694(01)00466‐8 – ident: e_1_2_10_65_1 doi: 10.2136/vzj2012.0033 – ident: e_1_2_10_31_1 doi: 10.1016/j.jconhyd.2008.10.002 – ident: e_1_2_10_51_1 doi: 10.3390/app9224799 – ident: e_1_2_10_5_1 doi: 10.1016/j.jhydrol.2008.08.014 – ident: e_1_2_10_9_1 doi: 10.1029/WR023i012p02175 – ident: e_1_2_10_11_1 doi: 10.2136/vzj2003.5890 – ident: e_1_2_10_44_1 doi: 10.1061/(ASCE)GT.1943‐5606.0001071 – ident: e_1_2_10_6_1 doi: 10.1071/sr9940447 – ident: e_1_2_10_8_1 doi: 10.1016/j.geoderma.2024.116946 – ident: e_1_2_10_24_1 doi: 10.31545/intagr/110850 – ident: e_1_2_10_49_1 doi: 10.2136/vzj2005.0076 – ident: e_1_2_10_40_1 doi: 10.1029/WR012i003p00513 – ident: e_1_2_10_29_1 doi: 10.1520/GTJ10053J – ident: e_1_2_10_32_1 doi: 10.1016/0022‐1694(87)90207‐1 – ident: e_1_2_10_19_1 doi: 10.2478/johh‐2018‐0002 – ident: e_1_2_10_55_1 doi: 10.1155/2022/4544446 – ident: e_1_2_10_76_1 doi: 10.1016/j.jhydrol.2021.126250 – ident: e_1_2_10_63_1 doi: 10.2136/sssaj1998.03615995006200040007x – ident: e_1_2_10_74_1 doi: 10.1016/j.enggeo.2020.105800 – ident: e_1_2_10_12_1 – ident: e_1_2_10_16_1 doi: 10.1007/s10706‐015‐9843‐2 – ident: e_1_2_10_33_1 doi: 10.5194/adgeo‐5‐89‐2005 – volume: 13 start-page: 298 issue: 3 year: 2002 ident: e_1_2_10_23_1 article-title: Analysis on the Characteristics of Soil Moisture Transfer During Freezing and Thawing Period publication-title: Advances in Water Science – ident: e_1_2_10_66_1 doi: 10.1029/WR015i005p01195 – ident: e_1_2_10_47_1 doi: 10.5194/nhess‐13‐2369‐2013 – ident: e_1_2_10_53_1 doi: 10.1002/2017WR021714 – ident: e_1_2_10_48_1 doi: 10.1002/ird.2875 – ident: e_1_2_10_22_1 doi: 10.1097/00010694-196204000-00008 – ident: e_1_2_10_34_1 doi: 10.1016/j.jhydrol.2016.01.067 – ident: e_1_2_10_60_1 doi: 10.2136/sssaj2000.642439x – ident: e_1_2_10_72_1 – ident: e_1_2_10_56_1 – ident: e_1_2_10_2_1 doi: 10.1590/1678‐4499.2017406 – volume-title: Soil Physics With BASIC: Transport Models for Soil‐Plant Systems year: 1985 ident: e_1_2_10_7_1 – ident: e_1_2_10_59_1 doi: 10.1007/s40948‐020‐00173‐x – volume-title: Methods of Soil Analysis, Part 4: Physical Methods year: 2020 ident: e_1_2_10_14_1 – volume-title: Unsaturated Soil Mechanics year: 2004 ident: e_1_2_10_38_1 – ident: e_1_2_10_3_1 doi: 10.1029/97WR03039 – ident: e_1_2_10_26_1 doi: 10.1029/2000WR000071 – ident: e_1_2_10_4_1 doi: 10.1515/johh‐2017‐0046 – ident: e_1_2_10_27_1 doi: 10.1016/j.catena.2022.106844 – volume-title: Encyclopedia of Hydrological Sciences year: 2006 ident: e_1_2_10_17_1 – ident: e_1_2_10_20_1 doi: 10.1016/j.jhydrol.2023.129898 – ident: e_1_2_10_36_1 doi: 10.1061/(ASCE)GT.1943‐5606.0001295 – ident: e_1_2_10_75_1 doi: 10.1016/j.ijthermalsci.2017.03.013 – ident: e_1_2_10_30_1 doi: 10.3390/soilsystems2040055 – ident: e_1_2_10_45_1 doi: 10.2136/sssaj1971.03615995003500010015x – ident: e_1_2_10_71_1 doi: 10.2136/sssaj1980.03615995004400050002x – ident: e_1_2_10_52_1 doi: 10.4236/ojss.2011.13011 – ident: e_1_2_10_58_1 doi: 10.5194/hess-15-3043-2011 – ident: e_1_2_10_62_1 doi: 10.2136/vzj2016.04.0033 – ident: e_1_2_10_67_1 doi: 10.1139/t06‐098 – ident: e_1_2_10_21_1 doi: 10.1016/j.still.2015.05.003 – ident: e_1_2_10_15_1 doi: 10.1097/SS.0b013e318221f132 – ident: e_1_2_10_37_1 doi: 10.1061/(ASCE)GT.1943‐5606.0000786 – ident: e_1_2_10_50_1 doi: 10.1063/1.1745010 – ident: e_1_2_10_54_1 doi: 10.2136/vzj2006.0007 – ident: e_1_2_10_25_1 doi: 10.1016/j.earscirev.2020.103419 – ident: e_1_2_10_35_1 doi: 10.1007/s11440‐014‐0333‐0 – ident: e_1_2_10_70_1 doi: 10.2136/sssaj1994.03615995005800030002x – ident: e_1_2_10_39_1 doi: 10.14483/2256201x.18157 – start-page: 278 volume-title: Encyclopedia of Soils in the Environment year: 2004 ident: e_1_2_10_69_1 – ident: e_1_2_10_10_1 doi: 10.1117/12.510984 – ident: e_1_2_10_68_1 doi: 10.2136/sssaj1954.03615995001800040001x – ident: e_1_2_10_73_1 doi: 10.1029/91WR01676 – volume: 28 start-page: 50 issue: 1 year: 2007 ident: e_1_2_10_28_1 article-title: The Mechanism of Water Movement in the Freezing‐Thawing Process publication-title: Diqiu Xuebao/Acta Geoscientica Sinica – ident: e_1_2_10_41_1 doi: 10.1016/j.enggeo.2023.107179 – ident: e_1_2_10_46_1 doi: 10.1029/TR038i002p00222 – volume-title: Thermal Properties of Soil year: 1986 ident: e_1_2_10_18_1 – ident: e_1_2_10_42_1 doi: 10.2478/johh‐2014‐0008 – ident: e_1_2_10_13_1 doi: 10.2136/sssaj1982.03615995004600030005x – ident: e_1_2_10_61_1 doi: 10.1029/96WR01525 |
| SSID | ssj0013199 |
| Score | 2.4364142 |
| Snippet | ABSTRACT
Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils.... Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Evaporation Heat Heat conductivity Heat pulses Heat transfer heat transport modelling Hydraulic conductivity HYDRUS‐1D Infiltration inverse solution Moisture content Parameter estimation Parameters Plant growth Retention Soil columns Soil conductivity Soil properties Soil suction Soil temperature Soil water Temperature profile Temperature profiles Tensiometers Tensometers Thermal conductivity Uniqueness Warm water Water content Water flow water flow modelling Water temperature |
| Title | Parameter Estimation of Soil Water Retention and Thermal Conductivity Curves Using HYDRUS‐1D and Inverse Solution |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.70095 https://www.proquest.com/docview/3251688386 |
| Volume | 76 |
| WOSCitedRecordID | wos001478299900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2389 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013199 issn: 1351-0754 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqLQt6EiJtdpNuwEvpgyJSSmuxnkKS3UilpJK0PfsT_I3-Emc3ia0XQbyFbDaEndc3m9n5AK5rkkpMdmxVJc4N5oeB4TAhDOqLEIXiMWGFmmyi0e_zycQZFOAuPwuT9of43nBTlqH9tTJwz082jFy-JsltQ0GELSjV65Qr4gaTDdb_EFL2SEVBZ2BgZFlzUlXHs577MxytMeYmUtWhprv_v488gL0MYpJmqhOHUJDREew2X-KszYY8hmTgqaIsXFPSQRtPjy-SeUhG8-mMPHlqYKjgtL7vRYKgOqELn5HWPFIdYjXlBGkt45VMiC47IL3n9nA8-nz_qLf1DNXBI04kyTfeTmDc7Ty2ekZGv2AEpsMtA-Mb82q2oKHNEZXVzKARYGgzUYYc8wqpjuj6dcsXjvARJuCQw8NAhhaXjAvO6CkUo3kkz4BIwaj00V8IYTMrrHnctpjETCzwhW1RWYarXAruW9plw82zE7WErl7CMlRyAbmZpSUuRYBmc065XYYbLYpf3uB27kcjfXX-l4cvYMdUtL-6zrECxUW8lJewHawW0ySuaq2rQqk97I4fvgBRr9z1 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt1ituqAnIVKTTbo5lj6oWkuxFvUUkuxGlJJK0vbsT_A3-kuc2aS2XgTxFrLZEOax881kHgBnZWUpdHYcyhIXBg-i0HC5lIYVyAiZ4nNpR3rYRKXTEY-PbjfPzaFamKw_xHfAjTRDn9ek4BSQntNy9ZqmFxXCCIuwxNHMkJibvDv7iZCNj6QZdAZaRp53J6VEntnen_ZoBjLnoaq2Nc2Nf37lJqznIJNVM6nYggUVb8Na9TnJG22oHUi7PqVlIVVZA7U8K2Bkw4j1hi8D9uDTwh0Ban3fjyVDgcJDfMBqw5h6xOqhE6w2TiYqZTrxgLWe6nf93uf7x2Vd76AeHkmq2DT0tgv9ZuO-1jLyAQxGaLrCNtDCcb_sSCtyBOKyshlWQjRuJnJRoGehqEg3uLQD6coAgQIuuSIKVWQLxYUU3NqDQjyM1T4wJbmlAjwxpHS4HZV94dhcoS8WBtKxLVWE0ykbvLesz4Y39U-IhJ4mYRFKUw55ua6lnoUQzRHCEk4RzjUvfnmD17ju9fTVwV8ePoGV1v1t22tfdW4OYdWkIcA667EEhVEyVkewHE5GL2lyrEXwC45Q30A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ifC3oSIm2zSTdH6QMfpZTWYj2FJDsrlZJKYnv2J_gb_SXOblKrF0G8hWw2hJ3XN5vZ-QDOS2gjJTuurhIXFg9VZHlcSssOpSKhBFw6ypBNVNttMRh4nbw2R5-FyfpDfG24acsw_lobOL5I9c3K8TlNL6saIyzCEtcsMgVYqneb_db8N0JGIKlZ6CyKjTzvT6pLeeazf0akOcz8DlZNtGlu_PM7N2E9h5nsKtOLLVjAeBvWrp6SvNUG7kDaCXRhFq0ra5CdZ0cY2Vix3ng4Yg-BHuhqSG3uB7FkpFLkxkesNo51l1hDO8Fqk2SKKTOlB-z6sd7t9z7e3st1M0N38UhSZLPNt13oNxv3tWsrp2CwooonHItiHA9KrrSVKwiZlSpRNaLwViE5CsotUB_TDctOKD0ZElSgIU-oCJUjkAspuL0HhXgc4z4wlNzGkHyGlC53VCkQrsORsrEolK5jYxHOZmLwX7JOG_4sQ9FL6JslLMLRTEJ-bm2pbxNIc4WwhVuECyOLX97gN257PXN18JeHT2GlU2_6rZv23SGsVjQLsCl7PILCazLBY1iOpq_DNDnJdfATYb_gVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+of+Soil+Water+Retention+and+Thermal+Conductivity+Curves+Using+HYDRUS%E2%80%901D+and+Inverse+Solution&rft.jtitle=European+journal+of+soil+science&rft.au=Tehrani%2C+Ashkan&rft.au=Liaghat%2C+Abdolmajid&rft.au=Delbaz%2C+Reza&rft.date=2025-05-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=76&rft.issue=3&rft_id=info:doi/10.1111%2Fejss.70095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejss_70095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon |