Parameter Estimation of Soil Water Retention and Thermal Conductivity Curves Using HYDRUS‐1D and Inverse Solution

ABSTRACT Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of soil science Jg. 76; H. 3
Hauptverfasser: Tehrani, Ashkan, Liaghat, Abdolmajid, Delbaz, Reza
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.05.2025
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1351-0754, 1365-2389
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n) and three TCC parameters (empirical parameters in soil thermal conductivity function, b1, b2 and b3) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [θs] and residual [θr] water content, saturated hydraulic conductivity Ks, α and n) and three TCC parameters (b1, b2 and b3) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters.
AbstractList ABSTRACT Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n) and three TCC parameters (empirical parameters in soil thermal conductivity function, b1, b2 and b3) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [θs] and residual [θr] water content, saturated hydraulic conductivity Ks, α and n) and three TCC parameters (b1, b2 and b3) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters.
Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n ) and three TCC parameters (empirical parameters in soil thermal conductivity function, b 1 , b 2 and b 3 ) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [ θ s ] and residual [ θ r ] water content, saturated hydraulic conductivity K s , α and n ) and three TCC parameters ( b 1 , b 2 and b 3 ) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters.
Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study investigated simultaneous SWRC and TCC parameter estimation using an inverse solution approach. Water and heat movement in soil were modelled in two soil column experiments, including infiltration with warm water (IWW) and evaporation with heat pulse (EHP), using the HYDRUS‐1D package. For the IWW experiment, two scenarios were considered, each based on a selection of parameters for the inverse solution. For the EHP experiment, 13 scenarios were developed by varying combinations of heat pulses and soil suction sensors as inputs. Unique solutions were obtained in the first IWW, fifth EHP, and 12th EHP scenarios. The first IWW scenario estimated two SWRC parameters (empirical shape parameters, α and n) and three TCC parameters (empirical parameters in soil thermal conductivity function, b1, b2 and b3) using the temperature profile and cumulative infiltration as inputs. The fifth EHP scenario estimated five SWRC parameters (saturated [θs] and residual [θr] water content, saturated hydraulic conductivity Ks, α and n) and three TCC parameters (b1, b2 and b3) using three heat pulses and four tensiometers data as input to the model. The results showed both experiments could estimate SWRC and TCC, with EHP estimating up to eight parameters compared to five for IWW. The 12th EHP scenario (two heat pulses and two tensiometers) provided a unique solution using less input data, offering a more convenient approach, though with slightly wider bounds of estimated parameters.
Author Liaghat, Abdolmajid
Tehrani, Ashkan
Delbaz, Reza
Author_xml – sequence: 1
  givenname: Ashkan
  orcidid: 0000-0002-7602-6093
  surname: Tehrani
  fullname: Tehrani, Ashkan
  email: tehrani5@msu.edu
  organization: Michigan State University
– sequence: 2
  givenname: Abdolmajid
  orcidid: 0000-0002-3224-6529
  surname: Liaghat
  fullname: Liaghat, Abdolmajid
  email: aliaghat@ut.ac.ir
  organization: College of Agriculture and Natural Resources, University of Tehran
– sequence: 3
  givenname: Reza
  orcidid: 0000-0001-9898-3866
  surname: Delbaz
  fullname: Delbaz, Reza
  organization: College of Agriculture and Natural Resources, University of Tehran
BookMark eNp9kE1OwzAQhS1UJEphwwkssUNK8U-c2EuUFlpUCdS0QqwsN3EgVWoXOynqjiNwRk5C0rJmNjOa980b6Z2DnrFGA3CF0RC3davX3g9jhAQ7AX1MIxYQykWvmxkOUMzCM3Du_RohTLEQfeCflVMbXWsHx74uN6ourYG2gKktK_iiOmHeyuawVyaHi3ftNqqCiTV5k9Xlrqz3MGncTnu49KV5g5PX0XyZ_nx949HhYmp22nndWlZNZ3MBTgtVeX351wdgeT9eJJNg9vQwTe5mQUYEZwENcahQlNMi4hgTRLI4i2JOCoI4CoUmBLEVZqtc5CuOSSsJXmS6YFyHPOchHYDro-_W2Y9G-1qubeNM-1JSwnDEOeVRS90cqcxZ750u5Na1Obi9xEh2ocouVHkItYXxEf4sK73_h5TjxzQ93vwCGEF71Q
Cites_doi 10.1016/0017‐9310(94)00283‐2
10.5194/acp‐11‐7269‐2011
10.1016/S0022‐1694(01)00466‐8
10.2136/vzj2012.0033
10.1016/j.jconhyd.2008.10.002
10.3390/app9224799
10.1016/j.jhydrol.2008.08.014
10.1029/WR023i012p02175
10.2136/vzj2003.5890
10.1061/(ASCE)GT.1943‐5606.0001071
10.1071/sr9940447
10.1016/j.geoderma.2024.116946
10.31545/intagr/110850
10.2136/vzj2005.0076
10.1029/WR012i003p00513
10.1520/GTJ10053J
10.1016/0022‐1694(87)90207‐1
10.2478/johh‐2018‐0002
10.1155/2022/4544446
10.1016/j.jhydrol.2021.126250
10.2136/sssaj1998.03615995006200040007x
10.1016/j.enggeo.2020.105800
10.1007/s10706‐015‐9843‐2
10.5194/adgeo‐5‐89‐2005
10.1029/WR015i005p01195
10.5194/nhess‐13‐2369‐2013
10.1002/2017WR021714
10.1002/ird.2875
10.1097/00010694-196204000-00008
10.1016/j.jhydrol.2016.01.067
10.2136/sssaj2000.642439x
10.1590/1678‐4499.2017406
10.1007/s40948‐020‐00173‐x
10.1029/97WR03039
10.1029/2000WR000071
10.1515/johh‐2017‐0046
10.1016/j.catena.2022.106844
10.1016/j.jhydrol.2023.129898
10.1061/(ASCE)GT.1943‐5606.0001295
10.1016/j.ijthermalsci.2017.03.013
10.3390/soilsystems2040055
10.2136/sssaj1971.03615995003500010015x
10.2136/sssaj1980.03615995004400050002x
10.4236/ojss.2011.13011
10.5194/hess-15-3043-2011
10.2136/vzj2016.04.0033
10.1139/t06‐098
10.1016/j.still.2015.05.003
10.1097/SS.0b013e318221f132
10.1061/(ASCE)GT.1943‐5606.0000786
10.1063/1.1745010
10.2136/vzj2006.0007
10.1016/j.earscirev.2020.103419
10.1007/s11440‐014‐0333‐0
10.2136/sssaj1994.03615995005800030002x
10.14483/2256201x.18157
10.1117/12.510984
10.2136/sssaj1954.03615995001800040001x
10.1029/91WR01676
10.1016/j.enggeo.2023.107179
10.1029/TR038i002p00222
10.2478/johh‐2014‐0008
10.2136/sssaj1982.03615995004600030005x
10.1029/96WR01525
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QL
7SN
7ST
7T7
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
SOI
DOI 10.1111/ejss.70095
DatabaseName Wiley Online Library Open Access
CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage n/a
ExternalDocumentID 10_1111_ejss_70095
EJSS70095
Genre researchArticle
GrantInformation_xml – fundername: College of Agriculture and Natural Resources, University of Tehran
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
O8X
7QL
7SN
7ST
7T7
7UA
8FD
C1K
F1W
FR3
H96
L.G
P64
SOI
ID FETCH-LOGICAL-c2985-3414a06d3f6811202c7c6782f208049e2205b15bd9db81267898fcef58e48d843
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001478299900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1351-0754
IngestDate Thu Sep 18 13:11:06 EDT 2025
Sat Nov 29 06:56:18 EST 2025
Sun Sep 21 06:22:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2985-3414a06d3f6811202c7c6782f208049e2205b15bd9db81267898fcef58e48d843
Notes Funding
This research was supported by College of Agriculture and Natural Resources, University of Tehran.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3224-6529
0000-0002-7602-6093
0000-0001-9898-3866
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.70095
PQID 3251688386
PQPubID 2045158
PageCount 18
ParticipantIDs proquest_journals_3251688386
crossref_primary_10_1111_ejss_70095
wiley_primary_10_1111_ejss_70095_EJSS70095
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2015; 141
2023; 73
2020; 20
1995; 38
2002; 13
2023; 222
2015; 33
1980; 44
2004; 4
2016; 541
2022; 25
2011; 11
2011; 15
2023; 624
2014; 62
1996; 32
2017; 117
2007; 28
2020; 6
2018; 2
2001; 251
2013; 13
2013; 12
2021; 598
2003; 2
1986
1985
2020; 211
1954; 18
1994; 32
2002; 38
2019; 9
1979; 15
2011; 1
2019; 33
1987; 91
2024; 448
2023; 322
2019; 78
2015; 10
2000; 64
1996
2005; 42
2006; 5
2006
2004
1993
1991
2018; 66
1998; 62
2008; 362
1957; 38
2016; 15
1962; 93
2011; 176
1982; 46
1987; 23
1991; 27
1976; 12
2022; 2022
1993; 16
1971; 35
2015; 153
2013; 139
2005; 5
1994; 58
2020; 277
2018; 54
2007; 44
1998; 34
2009; 104
1931; 1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Jing J. (e_1_2_10_28_1) 2007; 28
Farouki T. O. (e_1_2_10_18_1) 1986
Tuller M. (e_1_2_10_69_1) 2004
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
Durner W. (e_1_2_10_17_1) 2006
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
Dane J. H. (e_1_2_10_14_1) 2020
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Campbell G. S. (e_1_2_10_7_1) 1985
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_56_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Lu N. (e_1_2_10_38_1) 2004
Guo Z. R. (e_1_2_10_23_1) 2002; 13
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – year: 1985
– volume: 117
  start-page: 172
  year: 2017
  end-page: 183
  article-title: Review of Soil Thermal Conductivity and Predictive Models
  publication-title: International Journal of Thermal Sciences
– volume: 33
  start-page: 389
  issue: 3
  year: 2019
  end-page: 395
  article-title: Influence of Winter Wheat on Soil Thermal Properties of a Paleudalf
  publication-title: International Agrophysics
– volume: 4
  start-page: 278
  year: 2004
  end-page: 289
– volume: 66
  start-page: 161
  issue: 2
  year: 2018
  end-page: 169
  article-title: Further Tests of the HYPROP Evaporation Method for Estimating the Unsaturated Soil Hydraulic Properties
  publication-title: Journal Of Hydrology And Hydromechanics
– volume: 28
  start-page: 50
  issue: 1
  year: 2007
  end-page: 54
  article-title: The Mechanism of Water Movement in the Freezing‐Thawing Process
  publication-title: Diqiu Xuebao/Acta Geoscientica Sinica
– volume: 42
  start-page: 1548
  issue: 6
  year: 2005
  end-page: 1568
  article-title: A Study of Hysteresis Models for Soil‐Water Characteristic Curves
  publication-title: Canadian Geotechnical Journal
– volume: 38
  start-page: 222
  issue: 2
  year: 1957
  end-page: 232
  article-title: Moisture Movement in Porous Materials Under Temperature Gradients
  publication-title: Eos, Transactions American Geophysical Union
– volume: 32
  start-page: 2683
  issue: 9
  year: 1996
  end-page: 2696
  article-title: Estimating Unsaturated Soil Hydraulic Properties From Tension Disc Infiltrometer Data by Numerical Inversion
  publication-title: Water Resources Research
– volume: 448
  year: 2024
  article-title: Extended HYDRUS‐1D Freezing Module Emphasizes Thermal Conductivity Schemes for Simulation of Soil Hydrothermal Dynamics
  publication-title: Geoderma
– volume: 211
  year: 2020
  article-title: Room for Improvement: A Review and Evaluation of 24 Soil Thermal Conductivity Parameterization Schemes Commonly Used in Land‐Surface, Hydrological, and Soil‐Vegetation‐Atmosphere Transfer Models
  publication-title: Earth‐Science Reviews
– volume: 91
  start-page: 255
  issue: 3–4
  year: 1987
  end-page: 293
  article-title: Parameter Estimation for Unsaturated Flow and Transport Models—A Review
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 27
  issue: 1
  year: 1971
  end-page: 33
  article-title: Measuring Soil Matric Potential In Situ by Sensing Heat Dissipation Within a Porous Body: I. Theory and Sensor Construction
  publication-title: Soil Science Society of America Journal
– volume: 153
  start-page: 145
  year: 2015
  end-page: 154
  article-title: Effects of Temperature Changes on Soil Hydraulic Properties
  publication-title: Soil and Tillage Research
– volume: 2022
  issue: 1
  year: 2022
  article-title: Inverse Modelling to Estimate Soil Hydraulic Properties at the Field Scale
  publication-title: Mathematical Problems in Engineering
– volume: 2
  start-page: 589
  issue: 4
  year: 2003
  end-page: 594
  article-title: In Situ Measurement of Soil Heat Flux With the Gradient Method
  publication-title: Vadose Zone Journal
– volume: 38
  start-page: 7.1
  issue: 1
  year: 2002
  end-page: 7.14
  article-title: Indirect Estimation of Soil Thermal Properties and Water Flux Using Heat Pulse Probe Measurements: Geometry and Dispersion Effects
  publication-title: Water Resources Research
– volume: 541
  start-page: 116
  year: 2016
  end-page: 126
  article-title: Inverse Modeling of Soil Water Content to Estimate the Hydraulic Properties of a Shallow Soil and the Associated Weathered Bedrock
  publication-title: Journal of Hydrology
– volume: 5
  start-page: 784
  issue: 2
  year: 2006
  end-page: 800
  article-title: Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone
  publication-title: Vadose Zone Journal
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  article-title: Comparison of Different Efficiency Criteria for Hydrological Model Assessment
  publication-title: Advances in Geosciences
– volume: 64
  start-page: 439
  issue: 2
  year: 2000
  end-page: 449
  article-title: Estimating Soil Hydraulic Properties During Constant Flux Infiltration Inverse Procedures
  publication-title: Soil Science Society of America Journal
– year: 1986
– volume: 62
  start-page: 7
  issue: 1
  year: 2014
  end-page: 15
  article-title: Parameter Estimation of Soil Hydraulic and Thermal Property Functions for Unsaturated Porous Media Using the HYDRUS‐2D Code
  publication-title: Journal Of Hydrology And Hydromechanics
– volume: 104
  start-page: 4
  issue: 1–4
  year: 2009
  end-page: 35
  article-title: A Review of Model Applications for Structured Soils: (a) Water Flow and Tracer Transport
  publication-title: Journal of Contaminant Hydrology
– volume: 20
  year: 2020
– volume: 176
  start-page: 387
  issue: 8
  year: 2011
  end-page: 398
  article-title: Coupled Liquid Water, Water Vapor, and Heat Transport Simulations in an Unsaturated Zone of a Sandy Loam Field
  publication-title: Soil Science
– volume: 62
  start-page: 894
  issue: 4
  year: 1998
  end-page: 905
  article-title: Parameter Estimation Analysis of the Evaporation Method for Determining Soil Hydraulic Properties
  publication-title: Soil Science Society of America Journal
– volume: 15
  start-page: 1195
  issue: 5
  year: 1979
  end-page: 1206
  article-title: Analysis of Water and Heat Flow in Unsaturated‐Saturated Porous Media
  publication-title: Water Resources Research
– volume: 44
  start-page: 113
  issue: 2
  year: 2007
  end-page: 125
  article-title: Installation Procedure for Thermal Conductivity Matric Suction Sensors and Analysis of Their Long‐Term Readings
  publication-title: Canadian Geotechnical Journal
– volume: 598
  year: 2021
  article-title: Development of the HYDRUS‐1D Freezing Module and Its Application in Simulating the Coupled Movement of Water, Vapor, and Heat
  publication-title: Journal of Hydrology
– year: 2004
– volume: 27
  start-page: 2735
  issue: 10
  year: 1991
  end-page: 2741
  article-title: Porous Media With Linearly Variable Hydraulic Properties
  publication-title: Water Resources Research
– volume: 6
  start-page: 50
  issue: 3
  year: 2020
  article-title: Mediate Relation Between Electrical and Thermal Conductivity of Soil
  publication-title: Geomechanics and Geophysics for Geo‐Energy and Geo‐Resources
– volume: 322
  year: 2023
  article-title: Evaluating Innovative Direct and Indirect Soil Suction and Volumetric Measurement Techniques for the Determination of Soil Water Retention Curves Following Drying and Wetting Paths
  publication-title: Engineering Geology
– volume: 15
  start-page: 1
  issue: 7
  year: 2016
  end-page: 25
  article-title: Recent Developments and Applications of the HYDRUS Computer Software Packages
  publication-title: Vadose Zone Journal
– volume: 38
  start-page: 2297
  issue: 12
  year: 1995
  end-page: 2303
  article-title: Evaluation of Heat and Moisture Transfer Properties in a Frozen‐Unfrozen Water‐Soil System
  publication-title: International Journal of Heat and Mass Transfer
– volume: 12
  start-page: 513
  issue: 3
  year: 1976
  end-page: 522
  article-title: A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media
  publication-title: Water Resources Research
– volume: 78
  start-page: 119
  issue: 1
  year: 2019
  end-page: 130
  article-title: Performance Evaluation of Different Soil Water Retention Functions for Modeling of Water Flow Under Transient Condition
  publication-title: Bragantia
– year: 1993
– volume: 34
  start-page: 223
  issue: 2
  year: 1998
  end-page: 231
  article-title: A Conceptual Model of the Soil Water Retention Curve
  publication-title: Water Resources Research
– volume: 66
  start-page: 170
  issue: 2
  year: 2018
  end-page: 180
  article-title: Inverse Estimation of Soil Hydraulic Properties and Water Repellency Following Artificially Induced Drought Stress
  publication-title: Journal Of Hydrology And Hydromechanics
– volume: 5
  start-page: 684
  issue: 2
  year: 2006
  end-page: 696
  article-title: Estimation of Soil Hydraulic Properties From Numerical Inversion of Tension Disk Infiltrometer Data
  publication-title: Vadose Zone Journal
– volume: 1
  start-page: 318
  issue: 5
  year: 1931
  end-page: 333
  article-title: Capillary Conduction of Liquids Through Porous Mediums
  publication-title: Physics
– volume: 362
  start-page: 191
  issue: 3–4
  year: 2008
  end-page: 205
  article-title: Coupling of Heat, Water Vapor, and Liquid Water Fluxes to Compute Evaporation in Bare Soils
  publication-title: Journal of Hydrology
– volume: 12
  issue: 1
  year: 2013
  article-title: Temperature Dependence of Thermal Properties of Sands Across a Wide Range of Temperatures (30–70°C)
  publication-title: Vadose Zone Journal
– volume: 33
  start-page: 207
  year: 2015
  end-page: 221
  article-title: Critical Review of Thermal Conductivity Models for Unsaturated Soils
  publication-title: Geotechnical and Geological Engineering
– volume: 1
  start-page: 77
  issue: 03
  year: 2011
  end-page: 85
  article-title: Influence of the Hysteretic Behaviour on Silt Loam Soil Thermal Properties
  publication-title: Open Journal of Soil Science
– year: 1996
– volume: 139
  start-page: 507
  issue: 3
  year: 2013
  end-page: 510
  article-title: Hysteresis of Unsaturated Hydromechanical Properties of a Silty Soil
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 32
  issue: 3
  year: 1994
  article-title: Comparison of Single and Dual Probes for Measuring Soil Thermal Properties With Transient Heating
  publication-title: Soil Research
– volume: 54
  start-page: 1389
  issue: 2
  year: 2018
  end-page: 1399
  article-title: Derivation of an Explicit Form of the Percolation‐Based Effective‐Medium Approximation for Thermal Conductivity of Partially Saturated Soils
  publication-title: Water Resources Research
– volume: 9
  issue: 22
  year: 2019
  article-title: A Numerical Model to Estimate the Soil Thermal Conductivity Using Field Experimental Data
  publication-title: Applied Sciences
– volume: 624
  year: 2023
  article-title: Estimating Soil Water Retention Curves From Thermal Conductivity Measurements: A Percolation‐Based Effective‐Medium Approximation
  publication-title: Journal of Hydrology
– volume: 222
  year: 2023
  article-title: Water and Heat Coupling Processes and Its Simulation in Frozen Soils: Current Status and Future Research Directions
  publication-title: Catena
– volume: 277
  year: 2020
  article-title: Comparative Study on Thermal Properties of Undisturbed and Compacted Lateritic Soils Subjected to Drying and Wetting
  publication-title: Engineering Geology
– volume: 58
  start-page: 647
  issue: 3
  year: 1994
  end-page: 652
  article-title: Inverse Method to Determine Soil Hydraulic Functions From Multistep Outflow Experiments
  publication-title: Soil Science Society of America Journal
– volume: 73
  start-page: 50
  issue: 1
  year: 2023
  end-page: 63
  article-title: Developing a Simple Method for Estimating Soil Infiltration in Furrow and Border Irrigation Using Advance, Recession and Runoff Data
  publication-title: Irrigation and Drainage
– volume: 13
  start-page: 2369
  issue: 9
  year: 2013
  end-page: 2379
  article-title: Estimating Soil Suction From Electrical Resistivity
  publication-title: Natural Hazards and Earth System Sciences
– volume: 15
  start-page: 3043
  issue: 10
  year: 2011
  end-page: 3059
  article-title: Inverse Modelling of In Situ Soil Water Dynamics: Investigating the Effect of Different Prior Distributions of the Soil Hydraulic Parameters
  publication-title: Hydrology and Earth System Sciences
– volume: 46
  start-page: 466
  issue: 3
  year: 1982
  end-page: 470
  article-title: Temperature Dependence of Unsaturated Hydraulic Conductivity of Two Soils
  publication-title: Soil Science Society of America Journal
– volume: 93
  start-page: 271
  issue: 4
  year: 1962
  end-page: 274
  article-title: Unsaturated Conductivity and Diffusivity Measurements by a Constant Flux Method
  publication-title: Soil Science
– volume: 141
  issue: 6
  year: 2015
  article-title: Closed‐Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 25
  start-page: 21
  issue: 1
  year: 2022
  end-page: 35
  article-title: Using Inverse Modeling by HYDRUS‐1D to Predict Some Soil Hydraulic Parameters From Soil Water Evaporation
  publication-title: Colombia Forestal
– year: 2006
– volume: 10
  start-page: 209
  year: 2015
  end-page: 218
  article-title: A Comparison of Laboratory and In Situ Methods to Determine Soil Thermal Conductivity for Energy Foundations and Other Ground Heat Exchanger Applications
  publication-title: Acta Geotechnica
– volume: 18
  start-page: 351
  issue: 4
  year: 1954
  end-page: 358
  article-title: The Movement of Soil Moisture in Response to Temperature Gradients
  publication-title: Soil Science Society of America Journal
– volume: 23
  start-page: 2175
  issue: 12
  year: 1987
  end-page: 2186
  article-title: Soil Heat and Water Flow With a Partial Surface Mulch
  publication-title: Water Resources Research
– volume: 16
  start-page: 323
  issue: 3
  year: 1993
  end-page: 329
  article-title: Estimating Water Content of Soils From Electrical Resistivity
  publication-title: Geotechnical Testing Journal
– year: 1991
– volume: 2
  issue: 4
  year: 2018
  article-title: Estimating Soil Water Retention Curve by Inverse Modelling From Combination of In Situ Dynamic Soil Water Content and Soil Potential Data
  publication-title: Soil Systems
– volume: 251
  start-page: 163
  issue: 3–4
  year: 2001
  end-page: 176
  article-title: Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters With Hierarchical Pedotransfer Functions
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 298
  issue: 3
  year: 2002
  end-page: 302
  article-title: Analysis on the Characteristics of Soil Moisture Transfer During Freezing and Thawing Period
  publication-title: Advances in Water Science
– volume: 11
  start-page: 7269
  issue: 14
  year: 2011
  end-page: 7287
  article-title: Inverse Modeling of Cloud‐Aerosol Interactions–Part 1: Detailed Response Surface Analysis
  publication-title: Atmospheric Chemistry and Physics
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  end-page: 898
  article-title: A Closed‐Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
  publication-title: Soil Science Society of America Journal
– ident: e_1_2_10_64_1
  doi: 10.1016/0017‐9310(94)00283‐2
– ident: e_1_2_10_43_1
  doi: 10.5194/acp‐11‐7269‐2011
– ident: e_1_2_10_57_1
  doi: 10.1016/S0022‐1694(01)00466‐8
– ident: e_1_2_10_65_1
  doi: 10.2136/vzj2012.0033
– ident: e_1_2_10_31_1
  doi: 10.1016/j.jconhyd.2008.10.002
– ident: e_1_2_10_51_1
  doi: 10.3390/app9224799
– ident: e_1_2_10_5_1
  doi: 10.1016/j.jhydrol.2008.08.014
– ident: e_1_2_10_9_1
  doi: 10.1029/WR023i012p02175
– ident: e_1_2_10_11_1
  doi: 10.2136/vzj2003.5890
– ident: e_1_2_10_44_1
  doi: 10.1061/(ASCE)GT.1943‐5606.0001071
– ident: e_1_2_10_6_1
  doi: 10.1071/sr9940447
– ident: e_1_2_10_8_1
  doi: 10.1016/j.geoderma.2024.116946
– ident: e_1_2_10_24_1
  doi: 10.31545/intagr/110850
– ident: e_1_2_10_49_1
  doi: 10.2136/vzj2005.0076
– ident: e_1_2_10_40_1
  doi: 10.1029/WR012i003p00513
– ident: e_1_2_10_29_1
  doi: 10.1520/GTJ10053J
– ident: e_1_2_10_32_1
  doi: 10.1016/0022‐1694(87)90207‐1
– ident: e_1_2_10_19_1
  doi: 10.2478/johh‐2018‐0002
– ident: e_1_2_10_55_1
  doi: 10.1155/2022/4544446
– ident: e_1_2_10_76_1
  doi: 10.1016/j.jhydrol.2021.126250
– ident: e_1_2_10_63_1
  doi: 10.2136/sssaj1998.03615995006200040007x
– ident: e_1_2_10_74_1
  doi: 10.1016/j.enggeo.2020.105800
– ident: e_1_2_10_12_1
– ident: e_1_2_10_16_1
  doi: 10.1007/s10706‐015‐9843‐2
– ident: e_1_2_10_33_1
  doi: 10.5194/adgeo‐5‐89‐2005
– volume: 13
  start-page: 298
  issue: 3
  year: 2002
  ident: e_1_2_10_23_1
  article-title: Analysis on the Characteristics of Soil Moisture Transfer During Freezing and Thawing Period
  publication-title: Advances in Water Science
– ident: e_1_2_10_66_1
  doi: 10.1029/WR015i005p01195
– ident: e_1_2_10_47_1
  doi: 10.5194/nhess‐13‐2369‐2013
– ident: e_1_2_10_53_1
  doi: 10.1002/2017WR021714
– ident: e_1_2_10_48_1
  doi: 10.1002/ird.2875
– ident: e_1_2_10_22_1
  doi: 10.1097/00010694-196204000-00008
– ident: e_1_2_10_34_1
  doi: 10.1016/j.jhydrol.2016.01.067
– ident: e_1_2_10_60_1
  doi: 10.2136/sssaj2000.642439x
– ident: e_1_2_10_72_1
– ident: e_1_2_10_56_1
– ident: e_1_2_10_2_1
  doi: 10.1590/1678‐4499.2017406
– volume-title: Soil Physics With BASIC: Transport Models for Soil‐Plant Systems
  year: 1985
  ident: e_1_2_10_7_1
– ident: e_1_2_10_59_1
  doi: 10.1007/s40948‐020‐00173‐x
– volume-title: Methods of Soil Analysis, Part 4: Physical Methods
  year: 2020
  ident: e_1_2_10_14_1
– volume-title: Unsaturated Soil Mechanics
  year: 2004
  ident: e_1_2_10_38_1
– ident: e_1_2_10_3_1
  doi: 10.1029/97WR03039
– ident: e_1_2_10_26_1
  doi: 10.1029/2000WR000071
– ident: e_1_2_10_4_1
  doi: 10.1515/johh‐2017‐0046
– ident: e_1_2_10_27_1
  doi: 10.1016/j.catena.2022.106844
– volume-title: Encyclopedia of Hydrological Sciences
  year: 2006
  ident: e_1_2_10_17_1
– ident: e_1_2_10_20_1
  doi: 10.1016/j.jhydrol.2023.129898
– ident: e_1_2_10_36_1
  doi: 10.1061/(ASCE)GT.1943‐5606.0001295
– ident: e_1_2_10_75_1
  doi: 10.1016/j.ijthermalsci.2017.03.013
– ident: e_1_2_10_30_1
  doi: 10.3390/soilsystems2040055
– ident: e_1_2_10_45_1
  doi: 10.2136/sssaj1971.03615995003500010015x
– ident: e_1_2_10_71_1
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: e_1_2_10_52_1
  doi: 10.4236/ojss.2011.13011
– ident: e_1_2_10_58_1
  doi: 10.5194/hess-15-3043-2011
– ident: e_1_2_10_62_1
  doi: 10.2136/vzj2016.04.0033
– ident: e_1_2_10_67_1
  doi: 10.1139/t06‐098
– ident: e_1_2_10_21_1
  doi: 10.1016/j.still.2015.05.003
– ident: e_1_2_10_15_1
  doi: 10.1097/SS.0b013e318221f132
– ident: e_1_2_10_37_1
  doi: 10.1061/(ASCE)GT.1943‐5606.0000786
– ident: e_1_2_10_50_1
  doi: 10.1063/1.1745010
– ident: e_1_2_10_54_1
  doi: 10.2136/vzj2006.0007
– ident: e_1_2_10_25_1
  doi: 10.1016/j.earscirev.2020.103419
– ident: e_1_2_10_35_1
  doi: 10.1007/s11440‐014‐0333‐0
– ident: e_1_2_10_70_1
  doi: 10.2136/sssaj1994.03615995005800030002x
– ident: e_1_2_10_39_1
  doi: 10.14483/2256201x.18157
– start-page: 278
  volume-title: Encyclopedia of Soils in the Environment
  year: 2004
  ident: e_1_2_10_69_1
– ident: e_1_2_10_10_1
  doi: 10.1117/12.510984
– ident: e_1_2_10_68_1
  doi: 10.2136/sssaj1954.03615995001800040001x
– ident: e_1_2_10_73_1
  doi: 10.1029/91WR01676
– volume: 28
  start-page: 50
  issue: 1
  year: 2007
  ident: e_1_2_10_28_1
  article-title: The Mechanism of Water Movement in the Freezing‐Thawing Process
  publication-title: Diqiu Xuebao/Acta Geoscientica Sinica
– ident: e_1_2_10_41_1
  doi: 10.1016/j.enggeo.2023.107179
– ident: e_1_2_10_46_1
  doi: 10.1029/TR038i002p00222
– volume-title: Thermal Properties of Soil
  year: 1986
  ident: e_1_2_10_18_1
– ident: e_1_2_10_42_1
  doi: 10.2478/johh‐2014‐0008
– ident: e_1_2_10_13_1
  doi: 10.2136/sssaj1982.03615995004600030005x
– ident: e_1_2_10_61_1
  doi: 10.1029/96WR01525
SSID ssj0013199
Score 2.4364142
Snippet ABSTRACT Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils....
Soil water retention curve (SWRC) and thermal conductivity curve (TCC) are crucial soil properties affecting water flow and plant growth in soils. This study...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Evaporation
Heat
Heat conductivity
Heat pulses
Heat transfer
heat transport modelling
Hydraulic conductivity
HYDRUS‐1D
Infiltration
inverse solution
Moisture content
Parameter estimation
Parameters
Plant growth
Retention
Soil columns
Soil conductivity
Soil properties
Soil suction
Soil temperature
Soil water
Temperature profile
Temperature profiles
Tensiometers
Tensometers
Thermal conductivity
Uniqueness
Warm water
Water content
Water flow
water flow modelling
Water temperature
Title Parameter Estimation of Soil Water Retention and Thermal Conductivity Curves Using HYDRUS‐1D and Inverse Solution
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.70095
https://www.proquest.com/docview/3251688386
Volume 76
WOSCitedRecordID wos001478299900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013199
  issn: 1351-0754
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7q46AH32J9lAU9CZEm2aYT8CJ9ICJSWot6CtmXVEoqSduzP8Hf6C9xd5NYvQjiLWSzIcxj59vNzHwAZ35decKtC0cx33eoYtxhyJVjUi5QcA0hVGzJJpp3d_j4GPYqcFnWwuT9Ib4O3Ixn2PXaOHjMsm9OLl-y7KJpIMISrLiuj4a4waO9xT-EnD3SUNA5OjDSojmpyeNZzP0ZjhYY8ztStaGmu_m_j9yCjQJikqvcJrahIpMdWL96Tos2G3IXsl5skrK0TElH-3hevkgmigwmozF5iM1A38Bpez9OBNHmpJfwMWlNEtMh1lJOkNYsncuM2LQDcv3U7g8HH2_vbtvOMB080kyS8uBtD4bdzn3r2inoFxzuhdhwdHyjcT0QvgpQo7K6x5tchzZPaS3qfYU0JbrMbTARCqZhgh4KUXGpGigpCqT-Piwnk0QeAEGpAikllxgo6sYMqQpCLjyMOaOUiSqcllqIXvMuG1G5OzEijKwIq3BcKigqPC2LfA3QAkQfgyqcW1X88oaoczMY2KvDvzx8BGueof21eY7HsDxNZ_IEVvl8OsrSmrW6Gqy0-93h7SczcN5Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt1ifC3oSIm2yTTdH6YOqtZQ-UE8h-5JKSSVRz_4Ef6O_xNlNavUiiLeQzYYwj51vNzPfAJx6Je3Kckk6mnueQzUXDmdCOyblgkmBEEJHttlEtdNhd3dBN8_NMbUwGT_E14Gb8Qy7XhsHNwfS37xcPabpedVghHlYoGhHaOAL9V5z2J79RsgaSJoudA7GRprzk5pUntnsnxFpBjO_g1UbbZpr__zOdVjNYSa5yOxiA-ZUvAkrFw9JTrWhtiDtRiYxC-VKGujnWQkjmWjSn4zG5DYyAz0Dqe39KJYETQqX8TGpTWLDEmvbTpDaS_KqUmJTD0jrvt4b9j_e3st1O8OweCSpItPDt20YNhuDWsvJWzA4wg1YxcEYR6OSLz3tM0RmJVdUBYY3V6MmcW-hTJkuL1e4DCRHqIBDAdNC6QpTlElGvR0oxJNY7QJhSvtKKaGYr2k54oxqPxDSZZHglHJZhJOpGsKnjGkjnO5QjAhDK8IiHEw1FObeloYegjSfMbSAIpxZXfzyhrBx1e_bq72_PHwMS63BTTtsX3au92HZNW2Abd7jARSekxd1CIvi9XmUJke5EX4Ck1riNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdGDb7FadUFPQiRNtunmWPqgaimltVhPIfuSSklL0vbsT_A3-kvc3aRWL4J4C9lsCPPY-XYzMx_AtWtLh5dsbknquhaWlFmUMGnplAvCmYIQMjRkE5VOhwyHfjfLzdG1MGl_iK8DN-0ZZr3WDi6mXH7zcvGaJLcVjRHWIY81i0wO8vVec9Be_UZICSQ1C52lYiPO-pPqVJ7V7J8RaQUzv4NVE22au__8zj3YyWAmqqZ2sQ9rIjqA7epLnLXaEIeQdEOdmKXkihrKz9MSRjSRqD8ZjdFTqAd6GlKb-2HEkTIptYyPUW0S6S6xhnYC1ebxQiTIpB6g1nO9N-h_vL2X6maG7uIRJwItD9-OYNBsPNZaVkbBYDHHJ2VLxTgc2h53pUcUMrMdVmEqvDlSaVLtLYQu06WlMuU-pwoqqCGfSCZkmQhMOMHuMeSiSSROABEhPSEEE8STuBRSgqXnM-6QkFGMKS_A1VINwTTttBEsdyhahIERYQGKSw0FmbclgatAmkeIS7wC3Bhd_PKGoHHf75ur0788fAmb3XozaN91Hs5gy9EswCbtsQi5WTwX57DBFrNREl9kNvgJS6PhsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+of+Soil+Water+Retention+and+Thermal+Conductivity+Curves+Using+HYDRUS%E2%80%901D+and+Inverse+Solution&rft.jtitle=European+journal+of+soil+science&rft.au=Tehrani%2C+Ashkan&rft.au=Liaghat%2C+Abdolmajid&rft.au=Delbaz%2C+Reza&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=76&rft.issue=3&rft_id=info:doi/10.1111%2Fejss.70095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon