A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm
Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems such as traveling salesman problem (TSP) for real-world applications. However, disadvantages such as long running time and easy stagnation s...
Saved in:
| Published in: | Mathematics (Basel) Vol. 10; no. 6; p. 925 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.03.2022
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems such as traveling salesman problem (TSP) for real-world applications. However, disadvantages such as long running time and easy stagnation still restrict its further wide application in many fields. In this study, a saltatory evolution ant colony optimization (SEACO) algorithm is proposed to increase the optimization speed. Different from the past research, this study innovatively starts from the perspective of near-optimal path identification and refines the domain knowledge of near-optimal path identification by quantitative analysis model using the pheromone matrix evolution data of the traditional ACO algorithm. Based on the domain knowledge, a near-optimal path prediction model is built to predict the evolutionary trend of the path pheromone matrix so as to fundamentally save the running time. Extensive experiment results on a traveling salesman problem library (TSPLIB) database demonstrate that the solution quality of the SEACO algorithm is better than that of the ACO algorithm, and it is more suitable for large-scale data sets within the specified time window. This means it can provide a promising direction to deal with the problem about slow optimization speed and low accuracy of the ACO algorithm. |
|---|---|
| AbstractList | Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems such as traveling salesman problem (TSP) for real-world applications. However, disadvantages such as long running time and easy stagnation still restrict its further wide application in many fields. In this study, a saltatory evolution ant colony optimization (SEACO) algorithm is proposed to increase the optimization speed. Different from the past research, this study innovatively starts from the perspective of near-optimal path identification and refines the domain knowledge of near-optimal path identification by quantitative analysis model using the pheromone matrix evolution data of the traditional ACO algorithm. Based on the domain knowledge, a near-optimal path prediction model is built to predict the evolutionary trend of the path pheromone matrix so as to fundamentally save the running time. Extensive experiment results on a traveling salesman problem library (TSPLIB) database demonstrate that the solution quality of the SEACO algorithm is better than that of the ACO algorithm, and it is more suitable for large-scale data sets within the specified time window. This means it can provide a promising direction to deal with the problem about slow optimization speed and low accuracy of the ACO algorithm. |
| Author | Li, Shugang Wei, Yanfang Liu, Xin Yu, Zhaoxu Zhu, He |
| Author_xml | – sequence: 1 givenname: Shugang orcidid: 0000-0002-3170-4073 surname: Li fullname: Li, Shugang – sequence: 2 givenname: Yanfang orcidid: 0000-0001-5900-7598 surname: Wei fullname: Wei, Yanfang – sequence: 3 givenname: Xin orcidid: 0000-0002-6838-4587 surname: Liu fullname: Liu, Xin – sequence: 4 givenname: He orcidid: 0000-0003-1073-0173 surname: Zhu fullname: Zhu, He – sequence: 5 givenname: Zhaoxu orcidid: 0000-0002-2375-0213 surname: Yu fullname: Yu, Zhaoxu |
| BookMark | eNqFUVFLwzAQDjLBOffmDwj4ajVJ0zbxrYxNB8M9OJ9DlqRbRtvMNFPmr7dbFYYI3ssdd9_38d3dJejVrjYAXGN0F8cc3VcyrDFCKeIkOQN9QkgWZe2gd1JfgGHTbFAbHMeM8j5Y5fDZfMCJbALM6wBHrnT1Hs63wVb2UwbrapiXK-dtWFcPcLE28EWWQQbn93D87spdB_mPegXOC1k2ZvidB-B1Ml6MnqLZ_HE6ymeRIjwLUVGwzDCdSl0wRg1SOk10TBgj2FCDqUoIx0alsh2kOjFyySVhKi2WidQxp_EATDtd7eRGbL2tpN8LJ604NpxfCemDVaURCDNkaEY4MhlNEGdcK13QlOLDGTPTat10Wlvv3namCWLjdr5u7QuSUkIpZpy0KNKhlHdN400hlA3H7YOXthQYicN_xOl_WtLtL9KP1T_hX0dsk50 |
| CitedBy_id | crossref_primary_10_3390_app15158455 crossref_primary_10_1007_s44174_025_00433_y crossref_primary_10_1177_18724981251324023 crossref_primary_10_3390_math11020390 crossref_primary_10_1109_JSEN_2023_3335939 crossref_primary_10_1109_TAES_2024_3434777 crossref_primary_10_3390_pr13041167 crossref_primary_10_7717_peerj_cs_1608 crossref_primary_10_1016_j_aei_2025_103657 crossref_primary_10_1186_s10033_024_01094_6 crossref_primary_10_1007_s11265_023_01838_y crossref_primary_10_1109_TIA_2025_3541597 crossref_primary_10_1155_2023_5059665 crossref_primary_10_1007_s00500_025_10469_3 crossref_primary_10_1016_j_asoc_2024_112579 crossref_primary_10_1109_JSEN_2024_3452230 crossref_primary_10_14710_jmasif_16_2_73574 crossref_primary_10_1016_j_compeleceng_2025_110498 crossref_primary_10_1109_ACCESS_2024_3524322 crossref_primary_10_3390_a16010015 crossref_primary_10_1016_j_sftr_2025_101261 crossref_primary_10_1007_s40747_024_01775_8 crossref_primary_10_1109_ACCESS_2024_3457753 crossref_primary_10_1016_j_cie_2022_108920 crossref_primary_10_1007_s10586_025_05495_7 crossref_primary_10_3390_jmse10091305 crossref_primary_10_3390_diagnostics13132258 crossref_primary_10_1109_ACCESS_2024_3359748 crossref_primary_10_3390_math11132792 crossref_primary_10_1080_15472450_2025_2553288 crossref_primary_10_1093_comjnl_bxae088 crossref_primary_10_1016_j_tsep_2024_102750 crossref_primary_10_1108_RPJ_03_2024_0110 crossref_primary_10_3390_app15137341 crossref_primary_10_1007_s11227_025_07762_1 crossref_primary_10_1098_rsta_2022_0403 crossref_primary_10_1016_j_clet_2025_100891 |
| Cites_doi | 10.1109/ACCESS.2020.3002817 10.1016/j.apm.2010.09.005 10.1109/MCI.2006.329691 10.1016/j.cogsys.2020.03.001 10.2991/ijcis.d.200117.001 10.1155/2020/5287189 10.1109/ACCESS.2021.3056651 10.1007/s10489-020-01841-x 10.1007/s11036-019-01258-y 10.1007/s12652-020-02614-7 10.31449/inf.v44i1.2672 10.1109/TEVC.2017.2682899 10.1504/IJBIC.2020.111267 10.3389/fnbot.2019.00015 10.1016/j.physa.2011.12.004 10.1117/12.2580303 10.1145/3396474.3396485 10.1109/ISdea.2012.470 10.1109/ITNEC48623.2020.9084730 10.1287/ijoc.3.4.376 10.1007/s00500-021-05675-8 10.1016/j.pmcj.2020.101311 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10060925 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_0180e47290e7450989dcdf464110067e 10_3390_math10060925 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c297t-ff87e8d6adf884e0cd65d328821e4e14c5291ec6acd66d5eab9a28c6fb5ad3943 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774074900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 18:35:15 EDT 2025 Fri Jul 25 12:01:46 EDT 2025 Sat Nov 29 07:16:30 EST 2025 Tue Nov 18 22:38:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-ff87e8d6adf884e0cd65d328821e4e14c5291ec6acd66d5eab9a28c6fb5ad3943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2375-0213 0000-0001-5900-7598 0000-0002-6838-4587 0000-0002-3170-4073 0000-0003-1073-0173 |
| OpenAccessLink | https://www.proquest.com/docview/2642441892?pq-origsite=%requestingapplication% |
| PQID | 2642441892 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0180e47290e7450989dcdf464110067e proquest_journals_2642441892 crossref_citationtrail_10_3390_math10060925 crossref_primary_10_3390_math10060925 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Dai (ref_9) 2019; 13 Yu (ref_8) 2020; 8 Hong (ref_23) 2011; 35 Klug (ref_26) 2019; 24 Lucky (ref_5) 2020; 44 Jasser (ref_24) 2014; 96 Dorigo (ref_2) 2006; 1 ref_11 Gao (ref_12) 2021; 25 Deng (ref_14) 2020; 16 Lipowski (ref_19) 2012; 391 ref_16 Pan (ref_15) 2021; 51 Reinelt (ref_20) 1991; 3 Zhang (ref_13) 2021; 9 ref_25 Zannou (ref_7) 2021; 70 ref_22 ref_21 Li (ref_17) 2020; 62 ref_1 Yu (ref_3) 2020; 2020 Gao (ref_18) 2020; 13 Zheng (ref_10) 2017; 21 ref_4 ref_6 |
| References_xml | – volume: 8 start-page: 154471 year: 2020 ident: ref_8 article-title: Dynamic Density Clustering Ant Colony Algorithm With Filtering Recommendation Backtracking Mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002817 – volume: 35 start-page: 1282 year: 2011 ident: ref_23 article-title: Forecasting urban traffic flow by SVR with continuous ACO publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.09.005 – volume: 1 start-page: 28 year: 2006 ident: ref_2 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 62 start-page: 1 year: 2020 ident: ref_17 article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2020.03.001 – volume: 13 start-page: 44 year: 2020 ident: ref_18 article-title: New ant colony optimization algorithm for the traveling salesman problem publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.d.200117.001 – volume: 2020 start-page: 5287189 year: 2020 ident: ref_3 article-title: A Novel Parallel Ant Colony Optimization Algorithm for Warehouse Path Planning publication-title: J. Control Sci. Eng. doi: 10.1155/2020/5287189 – volume: 9 start-page: 24933 year: 2021 ident: ref_13 article-title: An Adaptive Improved Ant Colony System Based on Population Information Entropy for Path Planning of Mobile Robot publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056651 – volume: 51 start-page: 752 year: 2021 ident: ref_15 article-title: Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony optimization publication-title: Appl. Intell. doi: 10.1007/s10489-020-01841-x – ident: ref_1 – ident: ref_21 – volume: 24 start-page: 1210 year: 2019 ident: ref_26 article-title: k-RNN: Extending NN-heuristics for the TSP publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-019-01258-y – ident: ref_16 doi: 10.1007/s12652-020-02614-7 – volume: 44 start-page: 63 year: 2020 ident: ref_5 article-title: Hybrid Nearest Neighbors Ant Colony Optimization for Clustering Social Media Comments publication-title: Informatica doi: 10.31449/inf.v44i1.2672 – volume: 21 start-page: 773 year: 2017 ident: ref_10 article-title: An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design Problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2682899 – volume: 16 start-page: 158 year: 2020 ident: ref_14 article-title: An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2020.111267 – ident: ref_25 – volume: 13 start-page: 15 year: 2019 ident: ref_9 article-title: Mobile Robot Path Planning Based on Ant Colony Algorithm With A(*) Heuristic Method publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00015 – volume: 391 start-page: 2193 year: 2012 ident: ref_19 article-title: Roulette-wheel selection via stochastic acceptance publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2011.12.004 – ident: ref_6 doi: 10.1117/12.2580303 – ident: ref_4 doi: 10.1145/3396474.3396485 – ident: ref_22 doi: 10.1109/ISdea.2012.470 – ident: ref_11 doi: 10.1109/ITNEC48623.2020.9084730 – volume: 3 start-page: 376 year: 1991 ident: ref_20 article-title: TSPLIB—A Traveling Salesman Problem Library publication-title: ORSA J. Comput. doi: 10.1287/ijoc.3.4.376 – volume: 25 start-page: 7155 year: 2021 ident: ref_12 article-title: Multi-UAV reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-021-05675-8 – volume: 70 start-page: 101311 year: 2021 ident: ref_7 article-title: Relevant node discovery and selection approach for the Internet of Things based on neural networks and ant colony optimization publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2020.101311 – volume: 96 start-page: 1 year: 2014 ident: ref_24 article-title: Ant Colony Optimization (ACO) and a Variation of Bee Colony Optimization (BCO) in Solving TSP Problem: A Comparative Study publication-title: Int. J. Comput. Appl. |
| SSID | ssj0000913849 |
| Score | 2.365899 |
| Snippet | Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 925 |
| SubjectTerms | ant colony algorithm Ant colony optimization Collaboration Combinatorial analysis Domains Efficiency Evolutionary algorithms Food science near-optimal path identification Optimization algorithms optimization speed Path predictors Pheromones Prediction models Quantitative analysis Traveling salesman problem Windows (intervals) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYOepGyTpmnirYqLF1dBBW8lTSYqrLuyW_39TtruUhDZi9d2QspkHt_QyTeEnDFXWgXoadoJiISPs0jzkkXackjA2aSUzbCJbDhULy_6oTPqK_SENfTAjeL6gWAKBELAGDKB2U1pZ50XUgSuM5lBiL5xpjvFVB2DNUuU0E2ne4J1fR_x31tYEeswFbuTg2qq_l-RuE4vgy2y2eJCmjffs01WYLxDNu4WpKqzXfKaUwxJdGBmFc3HFcWaH0t3eo9O_9HepqT56HWC5f7bxyVFA6CPZlTVv9HpzXdrY8uX7pHnwc3T9W3UzkmILNdZFXmvMlBOGueVEhBbJ1OXcMTODAQwYVOuGVhp8IV0KZhSG66s9GVqXKJFsk9Wx5MxHBAaZ9YpAxIjOBfSxaZkiU9LJiX3HvXcIxdzzRW2JREPsyxGBRYTQc9FV889cr6Q_mzIM_6QuwqHsJAJlNf1AzSEojWEYpkh9Mjx_AiL1g9nBcI9xC9MaX74H3sckXUerj_UPWjHZLWafsEJWbPf1ftselqb4A-Mp-BC priority: 102 providerName: Directory of Open Access Journals |
| Title | A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm |
| URI | https://www.proquest.com/docview/2642441892 https://doaj.org/article/0180e47290e7450989dcdf464110067e |
| Volume | 10 |
| WOSCitedRecordID | wos000774074900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGFUfkAJxQtdhx_cEHd1AqEVioG0jhFjv3cIXXp1mSTuPC385y6ZRICDlx8iF-iyO_5ffn59wh5yXztNOBOM15AJkKuMsNrlhnHoQDvilqum02o6VSfnJhZSri1qaxyoxN7Re2XLubI99FwoyVi2vC35xdZ7BoVT1dTC42bZDcilaGc7x6Mp7NP2yxLRL3Uwqwr3guM7_fRDzxlEYXExO7Y12xRD9n_m0buzczk3v_-4H1yNzmYdLSWiAfkBjQPyZ2jLTpr-4jMRxR1G53YtqOjpqOHqACb7_Qjao-zdC2TjhZz_Hh3evaGoiTRY7vo-vN4Or5KwvrvVx-TL5Px58N3WWq4kDluVJeFoBVoL60PWgvInZelLzg64QwEMOFKbhg4aXFC-hJsbSzXToa6tL4wonhCdpplA08JzZXz2oJEU8CF9LmtWRHKmknJQ-C5GpDXm6WvXEIjj00xFhVGJZFR1XVGDcirLfX5GoXjD3QHkYtbmoid3T9YruZV2opVhCwDgUFFDkqgv6SNdz4IKSJ6nlQwIHsbBldpQ7fVL-4--_v0c3KbxxsSfZnaHtnpVpfwgtxyV923djVM8jnsQ38cP6hsGMtNj-P4Y4zzs_dHs68_AfO99wE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRL0wBt1oYAP9ISiJo7j2EgILaWrrtpdVqJI5ZQ6fmyRttmyCUX9U_xGxnkslRBw6oFr7ERy_M03Y3v8DcDLyORaWLQ0aZgNmAvTQNI8CqSmNrZGxzlvik2kk4k4PpbTNfjR3YXxaZUdJ9ZEbRba75HvoONGTxQJSd-efw181Sh_utqV0GhgcWAvv-OSrXwzeo_zu03pcO9odz9oqwoEmsq0CpwTqRWGK-OEYDbUhicmphhpRpbZiOmEyshqrrCBm8SqXCoqNHd5okwsWYzfvQHrDMEe9mB9OhpPP692dbzKpmCyybCPYxnuYNx5GnnVE-mrcV_xfXWJgN88QO3Whnf_tx9yD-60ATQZNIi_D2u2eAAb45X6bPkQZgOC3E2GqqzIoKjILhJ8cUk-IDuetddOyWA-w8FUp2evCVoK-ajmVZ1vQPYuWmP896uP4NO1jPQx9IpFYTeBhKk2QlmOro4ybkKVR7FL8ohz6hwN0z686qY6063aui_6Mc9w1eWBkV0FRh-2V73PG5WRP_R751Gz6uO1wesHi-Usa6km85JsluGiKbQpw3hQSKONY5x5dUCe2j5sdYDKWsIqs19oevL35hdwa_9ofJgdjiYHT-E29bdB6pS8LehVy2_2GdzUF9WXcvm8tQ0CJ9eNvp-6i1Fi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwoDzFQgEf6AlFmziOYyNVaNvuiqqwrHhIvaWOH1ukbbZsQqv-NX4d4zy2lRBw6oFr7ERy_M03M8n4G4BXkcm1sGhp0jAbMBemgaR5FEhNbWyNjnPeNJtIJxNxeCina_CzOwvjyyo7TqyJ2iy0_0Y-QMeNnigSkg5cWxYx3Ru_Pf0e-A5S_k9r106jgciBvTjH9K3c3t_Dvd6idDz6svsuaDsMBJrKtAqcE6kVhivjhGA21IYnJqYYdUaW2YjphMrIaq5wgJvEqlwqKjR3eaJMLFmMz70B62mMSU8P1ndGk-mn1Rcer7gpmGyq7eNYhgOMQY8jr4AifWfuK36wbhfwmzeoXdx4439-OffgbhtYk2FjCfdhzRYP4M6HlSpt-RBmQ4KcTsaqrMiwqMguEn9xQT4ia560x1HJcD7DxVTHJ28IWhD5rOZVXYdARmetkf771kfw9VpW-hh6xaKwT4CEqTZCWY4ukDJuQpVHsUvyiHPqHA3TPrzutj3TrQq7bwYyzzAb8yDJroKkD1ur2aeN-sgf5u14BK3meM3w-sJiOctaCsq8VJtlmEyFNmUYJwpptHGMM68ayFPbh80OXFlLZGV2iaynfx9-CbcQctn7_cnBM7hN_SGRulJvE3rV8od9Djf1WfWtXL5ozYTA0XWD7xf-31n8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Fast+Ant+Colony+Optimization+Algorithm%3A+The+Saltatory+Evolution+Ant+Colony+Optimization+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Li%2C+Shugang&rft.au=Wei%2C+Yanfang&rft.au=Liu%2C+Xin&rft.au=Zhu%2C+He&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=6&rft.spage=925&rft_id=info:doi/10.3390%2Fmath10060925&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |