A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm

Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems such as traveling salesman problem (TSP) for real-world applications. However, disadvantages such as long running time and easy stagnation s...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 10; no. 6; p. 925
Main Authors: Li, Shugang, Wei, Yanfang, Liu, Xin, Zhu, He, Yu, Zhaoxu
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2022
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems such as traveling salesman problem (TSP) for real-world applications. However, disadvantages such as long running time and easy stagnation still restrict its further wide application in many fields. In this study, a saltatory evolution ant colony optimization (SEACO) algorithm is proposed to increase the optimization speed. Different from the past research, this study innovatively starts from the perspective of near-optimal path identification and refines the domain knowledge of near-optimal path identification by quantitative analysis model using the pheromone matrix evolution data of the traditional ACO algorithm. Based on the domain knowledge, a near-optimal path prediction model is built to predict the evolutionary trend of the path pheromone matrix so as to fundamentally save the running time. Extensive experiment results on a traveling salesman problem library (TSPLIB) database demonstrate that the solution quality of the SEACO algorithm is better than that of the ACO algorithm, and it is more suitable for large-scale data sets within the specified time window. This means it can provide a promising direction to deal with the problem about slow optimization speed and low accuracy of the ACO algorithm.
AbstractList Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems such as traveling salesman problem (TSP) for real-world applications. However, disadvantages such as long running time and easy stagnation still restrict its further wide application in many fields. In this study, a saltatory evolution ant colony optimization (SEACO) algorithm is proposed to increase the optimization speed. Different from the past research, this study innovatively starts from the perspective of near-optimal path identification and refines the domain knowledge of near-optimal path identification by quantitative analysis model using the pheromone matrix evolution data of the traditional ACO algorithm. Based on the domain knowledge, a near-optimal path prediction model is built to predict the evolutionary trend of the path pheromone matrix so as to fundamentally save the running time. Extensive experiment results on a traveling salesman problem library (TSPLIB) database demonstrate that the solution quality of the SEACO algorithm is better than that of the ACO algorithm, and it is more suitable for large-scale data sets within the specified time window. This means it can provide a promising direction to deal with the problem about slow optimization speed and low accuracy of the ACO algorithm.
Author Li, Shugang
Wei, Yanfang
Liu, Xin
Yu, Zhaoxu
Zhu, He
Author_xml – sequence: 1
  givenname: Shugang
  orcidid: 0000-0002-3170-4073
  surname: Li
  fullname: Li, Shugang
– sequence: 2
  givenname: Yanfang
  orcidid: 0000-0001-5900-7598
  surname: Wei
  fullname: Wei, Yanfang
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-6838-4587
  surname: Liu
  fullname: Liu, Xin
– sequence: 4
  givenname: He
  orcidid: 0000-0003-1073-0173
  surname: Zhu
  fullname: Zhu, He
– sequence: 5
  givenname: Zhaoxu
  orcidid: 0000-0002-2375-0213
  surname: Yu
  fullname: Yu, Zhaoxu
BookMark eNqFUVFLwzAQDjLBOffmDwj4ajVJ0zbxrYxNB8M9OJ9DlqRbRtvMNFPmr7dbFYYI3ssdd9_38d3dJejVrjYAXGN0F8cc3VcyrDFCKeIkOQN9QkgWZe2gd1JfgGHTbFAbHMeM8j5Y5fDZfMCJbALM6wBHrnT1Hs63wVb2UwbrapiXK-dtWFcPcLE28EWWQQbn93D87spdB_mPegXOC1k2ZvidB-B1Ml6MnqLZ_HE6ymeRIjwLUVGwzDCdSl0wRg1SOk10TBgj2FCDqUoIx0alsh2kOjFyySVhKi2WidQxp_EATDtd7eRGbL2tpN8LJ604NpxfCemDVaURCDNkaEY4MhlNEGdcK13QlOLDGTPTat10Wlvv3namCWLjdr5u7QuSUkIpZpy0KNKhlHdN400hlA3H7YOXthQYicN_xOl_WtLtL9KP1T_hX0dsk50
CitedBy_id crossref_primary_10_3390_app15158455
crossref_primary_10_1007_s44174_025_00433_y
crossref_primary_10_1177_18724981251324023
crossref_primary_10_3390_math11020390
crossref_primary_10_1109_JSEN_2023_3335939
crossref_primary_10_1109_TAES_2024_3434777
crossref_primary_10_3390_pr13041167
crossref_primary_10_7717_peerj_cs_1608
crossref_primary_10_1016_j_aei_2025_103657
crossref_primary_10_1186_s10033_024_01094_6
crossref_primary_10_1007_s11265_023_01838_y
crossref_primary_10_1109_TIA_2025_3541597
crossref_primary_10_1155_2023_5059665
crossref_primary_10_1007_s00500_025_10469_3
crossref_primary_10_1016_j_asoc_2024_112579
crossref_primary_10_1109_JSEN_2024_3452230
crossref_primary_10_14710_jmasif_16_2_73574
crossref_primary_10_1016_j_compeleceng_2025_110498
crossref_primary_10_1109_ACCESS_2024_3524322
crossref_primary_10_3390_a16010015
crossref_primary_10_1016_j_sftr_2025_101261
crossref_primary_10_1007_s40747_024_01775_8
crossref_primary_10_1109_ACCESS_2024_3457753
crossref_primary_10_1016_j_cie_2022_108920
crossref_primary_10_1007_s10586_025_05495_7
crossref_primary_10_3390_jmse10091305
crossref_primary_10_3390_diagnostics13132258
crossref_primary_10_1109_ACCESS_2024_3359748
crossref_primary_10_3390_math11132792
crossref_primary_10_1080_15472450_2025_2553288
crossref_primary_10_1093_comjnl_bxae088
crossref_primary_10_1016_j_tsep_2024_102750
crossref_primary_10_1108_RPJ_03_2024_0110
crossref_primary_10_3390_app15137341
crossref_primary_10_1007_s11227_025_07762_1
crossref_primary_10_1098_rsta_2022_0403
crossref_primary_10_1016_j_clet_2025_100891
Cites_doi 10.1109/ACCESS.2020.3002817
10.1016/j.apm.2010.09.005
10.1109/MCI.2006.329691
10.1016/j.cogsys.2020.03.001
10.2991/ijcis.d.200117.001
10.1155/2020/5287189
10.1109/ACCESS.2021.3056651
10.1007/s10489-020-01841-x
10.1007/s11036-019-01258-y
10.1007/s12652-020-02614-7
10.31449/inf.v44i1.2672
10.1109/TEVC.2017.2682899
10.1504/IJBIC.2020.111267
10.3389/fnbot.2019.00015
10.1016/j.physa.2011.12.004
10.1117/12.2580303
10.1145/3396474.3396485
10.1109/ISdea.2012.470
10.1109/ITNEC48623.2020.9084730
10.1287/ijoc.3.4.376
10.1007/s00500-021-05675-8
10.1016/j.pmcj.2020.101311
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10060925
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_0180e47290e7450989dcdf464110067e
10_3390_math10060925
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c297t-ff87e8d6adf884e0cd65d328821e4e14c5291ec6acd66d5eab9a28c6fb5ad3943
IEDL.DBID BENPR
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774074900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 18:35:15 EDT 2025
Fri Jul 25 12:01:46 EDT 2025
Sat Nov 29 07:16:30 EST 2025
Tue Nov 18 22:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ff87e8d6adf884e0cd65d328821e4e14c5291ec6acd66d5eab9a28c6fb5ad3943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2375-0213
0000-0001-5900-7598
0000-0002-6838-4587
0000-0002-3170-4073
0000-0003-1073-0173
OpenAccessLink https://www.proquest.com/docview/2642441892?pq-origsite=%requestingapplication%
PQID 2642441892
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_0180e47290e7450989dcdf464110067e
proquest_journals_2642441892
crossref_citationtrail_10_3390_math10060925
crossref_primary_10_3390_math10060925
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dai (ref_9) 2019; 13
Yu (ref_8) 2020; 8
Hong (ref_23) 2011; 35
Klug (ref_26) 2019; 24
Lucky (ref_5) 2020; 44
Jasser (ref_24) 2014; 96
Dorigo (ref_2) 2006; 1
ref_11
Gao (ref_12) 2021; 25
Deng (ref_14) 2020; 16
Lipowski (ref_19) 2012; 391
ref_16
Pan (ref_15) 2021; 51
Reinelt (ref_20) 1991; 3
Zhang (ref_13) 2021; 9
ref_25
Zannou (ref_7) 2021; 70
ref_22
ref_21
Li (ref_17) 2020; 62
ref_1
Yu (ref_3) 2020; 2020
Gao (ref_18) 2020; 13
Zheng (ref_10) 2017; 21
ref_4
ref_6
References_xml – volume: 8
  start-page: 154471
  year: 2020
  ident: ref_8
  article-title: Dynamic Density Clustering Ant Colony Algorithm With Filtering Recommendation Backtracking Mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002817
– volume: 35
  start-page: 1282
  year: 2011
  ident: ref_23
  article-title: Forecasting urban traffic flow by SVR with continuous ACO
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.09.005
– volume: 1
  start-page: 28
  year: 2006
  ident: ref_2
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 62
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: A pseudo-dynamic search ant colony optimization algorithm with improved negative feedback mechanism
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2020.03.001
– volume: 13
  start-page: 44
  year: 2020
  ident: ref_18
  article-title: New ant colony optimization algorithm for the traveling salesman problem
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.d.200117.001
– volume: 2020
  start-page: 5287189
  year: 2020
  ident: ref_3
  article-title: A Novel Parallel Ant Colony Optimization Algorithm for Warehouse Path Planning
  publication-title: J. Control Sci. Eng.
  doi: 10.1155/2020/5287189
– volume: 9
  start-page: 24933
  year: 2021
  ident: ref_13
  article-title: An Adaptive Improved Ant Colony System Based on Population Information Entropy for Path Planning of Mobile Robot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056651
– volume: 51
  start-page: 752
  year: 2021
  ident: ref_15
  article-title: Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01841-x
– ident: ref_1
– ident: ref_21
– volume: 24
  start-page: 1210
  year: 2019
  ident: ref_26
  article-title: k-RNN: Extending NN-heuristics for the TSP
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-019-01258-y
– ident: ref_16
  doi: 10.1007/s12652-020-02614-7
– volume: 44
  start-page: 63
  year: 2020
  ident: ref_5
  article-title: Hybrid Nearest Neighbors Ant Colony Optimization for Clustering Social Media Comments
  publication-title: Informatica
  doi: 10.31449/inf.v44i1.2672
– volume: 21
  start-page: 773
  year: 2017
  ident: ref_10
  article-title: An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design Problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2682899
– volume: 16
  start-page: 158
  year: 2020
  ident: ref_14
  article-title: An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2020.111267
– ident: ref_25
– volume: 13
  start-page: 15
  year: 2019
  ident: ref_9
  article-title: Mobile Robot Path Planning Based on Ant Colony Algorithm With A(*) Heuristic Method
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00015
– volume: 391
  start-page: 2193
  year: 2012
  ident: ref_19
  article-title: Roulette-wheel selection via stochastic acceptance
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2011.12.004
– ident: ref_6
  doi: 10.1117/12.2580303
– ident: ref_4
  doi: 10.1145/3396474.3396485
– ident: ref_22
  doi: 10.1109/ISdea.2012.470
– ident: ref_11
  doi: 10.1109/ITNEC48623.2020.9084730
– volume: 3
  start-page: 376
  year: 1991
  ident: ref_20
  article-title: TSPLIB—A Traveling Salesman Problem Library
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– volume: 25
  start-page: 7155
  year: 2021
  ident: ref_12
  article-title: Multi-UAV reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05675-8
– volume: 70
  start-page: 101311
  year: 2021
  ident: ref_7
  article-title: Relevant node discovery and selection approach for the Internet of Things based on neural networks and ant colony optimization
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2020.101311
– volume: 96
  start-page: 1
  year: 2014
  ident: ref_24
  article-title: Ant Colony Optimization (ACO) and a Variation of Bee Colony Optimization (BCO) in Solving TSP Problem: A Comparative Study
  publication-title: Int. J. Comput. Appl.
SSID ssj0000913849
Score 2.365899
Snippet Various studies have shown that the ant colony optimization (ACO) algorithm has a good performance in approximating complex combinatorial optimization problems...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 925
SubjectTerms ant colony algorithm
Ant colony optimization
Collaboration
Combinatorial analysis
Domains
Efficiency
Evolutionary algorithms
Food science
near-optimal path identification
Optimization algorithms
optimization speed
Path predictors
Pheromones
Prediction models
Quantitative analysis
Traveling salesman problem
Windows (intervals)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYOepGyTpmnirYqLF1dBBW8lTSYqrLuyW_39TtruUhDZi9d2QspkHt_QyTeEnDFXWgXoadoJiISPs0jzkkXackjA2aSUzbCJbDhULy_6oTPqK_SENfTAjeL6gWAKBELAGDKB2U1pZ50XUgSuM5lBiL5xpjvFVB2DNUuU0E2ne4J1fR_x31tYEeswFbuTg2qq_l-RuE4vgy2y2eJCmjffs01WYLxDNu4WpKqzXfKaUwxJdGBmFc3HFcWaH0t3eo9O_9HepqT56HWC5f7bxyVFA6CPZlTVv9HpzXdrY8uX7pHnwc3T9W3UzkmILNdZFXmvMlBOGueVEhBbJ1OXcMTODAQwYVOuGVhp8IV0KZhSG66s9GVqXKJFsk9Wx5MxHBAaZ9YpAxIjOBfSxaZkiU9LJiX3HvXcIxdzzRW2JREPsyxGBRYTQc9FV889cr6Q_mzIM_6QuwqHsJAJlNf1AzSEojWEYpkh9Mjx_AiL1g9nBcI9xC9MaX74H3sckXUerj_UPWjHZLWafsEJWbPf1ftselqb4A-Mp-BC
  priority: 102
  providerName: Directory of Open Access Journals
Title A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm
URI https://www.proquest.com/docview/2642441892
https://doaj.org/article/0180e47290e7450989dcdf464110067e
Volume 10
WOSCitedRecordID wos000774074900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGFUfkAJxQtdhx_cEHd1AqEVioG0jhFjv3cIXXp1mSTuPC385y6ZRICDlx8iF-iyO_5ffn59wh5yXztNOBOM15AJkKuMsNrlhnHoQDvilqum02o6VSfnJhZSri1qaxyoxN7Re2XLubI99FwoyVi2vC35xdZ7BoVT1dTC42bZDcilaGc7x6Mp7NP2yxLRL3Uwqwr3guM7_fRDzxlEYXExO7Y12xRD9n_m0buzczk3v_-4H1yNzmYdLSWiAfkBjQPyZ2jLTpr-4jMRxR1G53YtqOjpqOHqACb7_Qjao-zdC2TjhZz_Hh3evaGoiTRY7vo-vN4Or5KwvrvVx-TL5Px58N3WWq4kDluVJeFoBVoL60PWgvInZelLzg64QwEMOFKbhg4aXFC-hJsbSzXToa6tL4wonhCdpplA08JzZXz2oJEU8CF9LmtWRHKmknJQ-C5GpDXm6WvXEIjj00xFhVGJZFR1XVGDcirLfX5GoXjD3QHkYtbmoid3T9YruZV2opVhCwDgUFFDkqgv6SNdz4IKSJ6nlQwIHsbBldpQ7fVL-4--_v0c3KbxxsSfZnaHtnpVpfwgtxyV923djVM8jnsQ38cP6hsGMtNj-P4Y4zzs_dHs68_AfO99wE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRL0wBt1oYAP9ISiJo7j2EgILaWrrtpdVqJI5ZQ6fmyRttmyCUX9U_xGxnkslRBw6oFr7ERy_M03Y3v8DcDLyORaWLQ0aZgNmAvTQNI8CqSmNrZGxzlvik2kk4k4PpbTNfjR3YXxaZUdJ9ZEbRba75HvoONGTxQJSd-efw181Sh_utqV0GhgcWAvv-OSrXwzeo_zu03pcO9odz9oqwoEmsq0CpwTqRWGK-OEYDbUhicmphhpRpbZiOmEyshqrrCBm8SqXCoqNHd5okwsWYzfvQHrDMEe9mB9OhpPP692dbzKpmCyybCPYxnuYNx5GnnVE-mrcV_xfXWJgN88QO3Whnf_tx9yD-60ATQZNIi_D2u2eAAb45X6bPkQZgOC3E2GqqzIoKjILhJ8cUk-IDuetddOyWA-w8FUp2evCVoK-ajmVZ1vQPYuWmP896uP4NO1jPQx9IpFYTeBhKk2QlmOro4ybkKVR7FL8ohz6hwN0z686qY6063aui_6Mc9w1eWBkV0FRh-2V73PG5WRP_R751Gz6uO1wesHi-Usa6km85JsluGiKbQpw3hQSKONY5x5dUCe2j5sdYDKWsIqs19oevL35hdwa_9ofJgdjiYHT-E29bdB6pS8LehVy2_2GdzUF9WXcvm8tQ0CJ9eNvp-6i1Fi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwoDzFQgEf6AlFmziOYyNVaNvuiqqwrHhIvaWOH1ukbbZsQqv-NX4d4zy2lRBw6oFr7ERy_M03M8n4G4BXkcm1sGhp0jAbMBemgaR5FEhNbWyNjnPeNJtIJxNxeCina_CzOwvjyyo7TqyJ2iy0_0Y-QMeNnigSkg5cWxYx3Ru_Pf0e-A5S_k9r106jgciBvTjH9K3c3t_Dvd6idDz6svsuaDsMBJrKtAqcE6kVhivjhGA21IYnJqYYdUaW2YjphMrIaq5wgJvEqlwqKjR3eaJMLFmMz70B62mMSU8P1ndGk-mn1Rcer7gpmGyq7eNYhgOMQY8jr4AifWfuK36wbhfwmzeoXdx4439-OffgbhtYk2FjCfdhzRYP4M6HlSpt-RBmQ4KcTsaqrMiwqMguEn9xQT4ia560x1HJcD7DxVTHJ28IWhD5rOZVXYdARmetkf771kfw9VpW-hh6xaKwT4CEqTZCWY4ukDJuQpVHsUvyiHPqHA3TPrzutj3TrQq7bwYyzzAb8yDJroKkD1ur2aeN-sgf5u14BK3meM3w-sJiOctaCsq8VJtlmEyFNmUYJwpptHGMM68ayFPbh80OXFlLZGV2iaynfx9-CbcQctn7_cnBM7hN_SGRulJvE3rV8od9Djf1WfWtXL5ozYTA0XWD7xf-31n8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Fast+Ant+Colony+Optimization+Algorithm%3A+The+Saltatory+Evolution+Ant+Colony+Optimization+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Li%2C+Shugang&rft.au=Wei%2C+Yanfang&rft.au=Liu%2C+Xin&rft.au=Zhu%2C+He&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=6&rft.spage=925&rft_id=info:doi/10.3390%2Fmath10060925&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon