Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition
•MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output strategy.•MEMD was employed to decompose the original time series without information loss.•The proposed model demonstrated its superiority than othe...
Uloženo v:
| Vydáno v: | Information sciences Ročník 607; s. 297 - 321 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2022
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output strategy.•MEMD was employed to decompose the original time series without information loss.•The proposed model demonstrated its superiority than other machine learning models.•The methodology goes well beyond straightforward application of the stock market.
Accurate and reliable multi-step-ahead forecasting of stock price indexes over long-term future trends is challenging for capital investors and decision-makers. This study developed a hybrid stock price index forecasting modelling framework using Long Short-Term Memory (LSTM) with Multivariate Empirical Mode Decomposition (MEMD), which can capture the inherent features of the complex dynamics of stock price index time series. In conjunction with time–frequency analysis and deep learning algorithms, the proposed modelling framework implemented multi-step-ahead forecasting for stock price indexes using a multiple-input multiple-output (MIMO) strategy, where MEMD was first employed to simultaneously decompose the relevant features of the stock price index. Then LSTM was used to train the forecasting model by using the components extracted by MEMD and performing multi-step-ahead forecasting of the closing price of the stock price index. The hyperparameters of the LSTM model were optimized using an orthogonal array tuning method (OATM) based on the Taguchi design of experiments for enhancing the performance of prediction. Three real-world datasets were used for model validation from three exchange markets including Standard & Poor 500 index (SPX), Shanghai Stock Exchange (SSE), and Hang Seng Index (HSI). The results of the experiments suggested that the proposed hybrid model outperforms the benchmark models and improves the accuracy of multi-step-ahead forecasting. |
|---|---|
| AbstractList | •MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output strategy.•MEMD was employed to decompose the original time series without information loss.•The proposed model demonstrated its superiority than other machine learning models.•The methodology goes well beyond straightforward application of the stock market.
Accurate and reliable multi-step-ahead forecasting of stock price indexes over long-term future trends is challenging for capital investors and decision-makers. This study developed a hybrid stock price index forecasting modelling framework using Long Short-Term Memory (LSTM) with Multivariate Empirical Mode Decomposition (MEMD), which can capture the inherent features of the complex dynamics of stock price index time series. In conjunction with time–frequency analysis and deep learning algorithms, the proposed modelling framework implemented multi-step-ahead forecasting for stock price indexes using a multiple-input multiple-output (MIMO) strategy, where MEMD was first employed to simultaneously decompose the relevant features of the stock price index. Then LSTM was used to train the forecasting model by using the components extracted by MEMD and performing multi-step-ahead forecasting of the closing price of the stock price index. The hyperparameters of the LSTM model were optimized using an orthogonal array tuning method (OATM) based on the Taguchi design of experiments for enhancing the performance of prediction. Three real-world datasets were used for model validation from three exchange markets including Standard & Poor 500 index (SPX), Shanghai Stock Exchange (SSE), and Hang Seng Index (HSI). The results of the experiments suggested that the proposed hybrid model outperforms the benchmark models and improves the accuracy of multi-step-ahead forecasting. |
| Author | Huang, Yanmei Deng, Changrui Bao, Yukun Hasan, Najmul |
| Author_xml | – sequence: 1 givenname: Changrui surname: Deng fullname: Deng, Changrui organization: Center of Big Data Analytics, Jiangxi University of Engineering, Xinyu 338000, PR China – sequence: 2 givenname: Yanmei surname: Huang fullname: Huang, Yanmei organization: Center of Big Data Analytics, Jiangxi University of Engineering, Xinyu 338000, PR China – sequence: 3 givenname: Najmul surname: Hasan fullname: Hasan, Najmul organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 4 givenname: Yukun surname: Bao fullname: Bao, Yukun email: yukunbao@hust.edu.cn, y.bao@ieee.org organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, PR China |
| BookMark | eNp9kMtOwzAQRS0EEm3hA9j5BxLGTpyHWKGKl1TEBtaW60yoSxJXtlvojk_HoaxYdHNnM-dq5kzJ6WAHJOSKQcqAFdfr1Aw-5cB5CiKFqjohE1aVPCl4zU7JBIBDAlyIczL1fg0AeVkUE_L9vO2CSXzATaJWqBrqg9UfdOOMRmqGBr9oax1q5YMZ3unWj9nZGH5lXUgCup722Fu3p71tsKOfJqxoP9bulDMqIMV-Y2Kf6n43aIPa9hvrTTB2uCBnreo8Xv7NGXm7v3udPyaLl4en-e0i0bwuQ9K2rM6hVEI1JWS1AKGYRhR8yVnRLivEQle1yuOHZbHMM50DCp1r1TBdZ5nKZqQ89GpnvXfYSm2CGi8ITplOMpCjSLmWUaQcRUoQMoqMJPtHRjm9cvujzM2BwfjSzqCTXhscNDYmugyyseYI_QMIAJH3 |
| CitedBy_id | crossref_primary_10_1016_j_physa_2025_130542 crossref_primary_10_3390_app14166862 crossref_primary_10_1007_s10489_024_06070_0 crossref_primary_10_1016_j_eswa_2023_120902 crossref_primary_10_1016_j_resourpol_2023_103320 crossref_primary_10_1016_j_asoc_2023_110356 crossref_primary_10_1016_j_eswa_2024_126080 crossref_primary_10_1016_j_asoc_2025_112779 crossref_primary_10_1016_j_energy_2023_127995 crossref_primary_10_3390_math11092077 crossref_primary_10_1108_JM2_09_2022_0232 crossref_primary_10_1186_s40854_023_00567_2 crossref_primary_10_1007_s10489_024_05468_0 crossref_primary_10_1007_s10489_023_04874_0 crossref_primary_10_1155_jama_7706431 crossref_primary_10_1002_widm_1519 crossref_primary_10_1080_21681015_2023_2212006 crossref_primary_10_1016_j_eswa_2023_121080 crossref_primary_10_1142_S2424786325500185 crossref_primary_10_1016_j_dajour_2023_100193 crossref_primary_10_3390_forecast6010005 crossref_primary_10_1016_j_psep_2024_05_043 crossref_primary_10_1016_j_ins_2022_09_047 crossref_primary_10_1016_j_epsr_2025_112061 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1016_j_ins_2024_121268 crossref_primary_10_1016_j_eswa_2024_125380 crossref_primary_10_1016_j_eswa_2025_129566 crossref_primary_10_1016_j_ins_2024_120652 crossref_primary_10_1016_j_eswa_2023_122891 crossref_primary_10_1109_ACCESS_2025_3585968 crossref_primary_10_1007_s12559_023_10203_x crossref_primary_10_1016_j_ins_2022_11_145 crossref_primary_10_1109_TII_2024_3523571 crossref_primary_10_1007_s10489_022_04285_7 crossref_primary_10_1016_j_asoc_2024_112359 crossref_primary_10_1016_j_eswa_2023_120880 crossref_primary_10_21015_vtse_v11i2_1571 crossref_primary_10_1007_s10489_024_05463_5 crossref_primary_10_1016_j_eswa_2024_126222 crossref_primary_10_1016_j_ins_2023_119382 crossref_primary_10_3390_info15120817 crossref_primary_10_1016_j_neucom_2025_131362 crossref_primary_10_1016_j_energy_2024_133374 crossref_primary_10_1016_j_eswa_2022_118391 crossref_primary_10_1108_CFRI_09_2023_0237 crossref_primary_10_1007_s40815_023_01637_4 crossref_primary_10_1016_j_eswa_2025_128538 crossref_primary_10_1016_j_ins_2023_119236 crossref_primary_10_1016_j_ins_2023_119951 crossref_primary_10_3390_ijfs13010028 crossref_primary_10_1016_j_eswa_2024_123948 crossref_primary_10_1016_j_enconman_2024_118726 crossref_primary_10_1016_j_asoc_2025_113221 crossref_primary_10_1016_j_epsr_2024_111091 crossref_primary_10_1016_j_asoc_2024_112388 crossref_primary_10_1016_j_ins_2024_120276 crossref_primary_10_1016_j_jksuci_2024_101959 crossref_primary_10_1016_j_asoc_2023_110867 crossref_primary_10_1016_j_resourpol_2022_102962 crossref_primary_10_1016_j_asoc_2023_110626 crossref_primary_10_1016_j_ins_2024_121126 |
| Cites_doi | 10.1016/j.ins.2020.05.066 10.1016/j.ins.2021.02.036 10.1016/j.najef.2021.101421 10.1016/j.jweia.2019.104073 10.1109/TCSI.2020.3012351 10.1007/978-981-15-3369-3_39 10.1098/rspa.1998.0193 10.1016/j.ins.2022.02.012 10.1109/ICBIM.2014.6970973 10.1016/j.enconman.2021.113917 10.1080/07350015.1995.10524599 10.1016/j.energy.2021.122117 10.1016/j.eneco.2013.07.028 10.1016/j.procs.2020.07.087 10.1016/j.asoc.2020.106567 10.1016/j.asoc.2020.106996 10.1016/j.ins.2020.12.068 10.1098/rspa.2009.0502 10.1016/j.knosys.2013.10.012 10.1016/j.eswa.2021.115149 10.1016/j.asoc.2021.108349 10.1016/j.frl.2022.102808 10.1016/j.engappai.2021.104154 10.1007/s10489-020-01814-0 10.1016/j.najef.2020.101145 10.13053/rcs-121-1-6 10.1080/03610926.2018.1478103 10.1088/1742-6596/1642/1/012014 10.1016/j.apenergy.2020.116346 10.1155/2020/6431712 10.1016/j.ins.2022.02.015 10.1016/j.energy.2021.122245 10.1016/j.enconman.2019.112461 10.1109/ACCESS.2020.3037681 10.1162/neco.1997.9.8.1735 10.1016/j.energy.2021.121981 10.1016/j.energy.2021.119759 10.1016/j.ribaf.2021.101610 10.1016/j.ins.2019.03.023 10.1007/978-3-030-36808-1_31 10.1016/j.ins.2022.03.023 10.1016/j.ins.2020.09.031 10.1016/j.eswa.2021.115078 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.05.088 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 321 |
| ExternalDocumentID | 10_1016_j_ins_2022_05_088 S0020025522005266 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-ff19407a5ad7039505a1cee52b216fb8ee6c89a425576b43c40e5c4cad1c933a3 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817892200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 20:52:13 EST 2025 Sat Nov 29 07:28:30 EST 2025 Fri Feb 23 02:38:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Long short-term memory Stock price index Multi-step-ahead forecasting Orthogonal array tuning method Multivariate empirical mode decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-ff19407a5ad7039505a1cee52b216fb8ee6c89a425576b43c40e5c4cad1c933a3 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2022_05_088 crossref_primary_10_1016_j_ins_2022_05_088 elsevier_sciencedirect_doi_10_1016_j_ins_2022_05_088 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhang, Lei, Wei (b0245) 2020; 52 Song, Song, Li (b0055) 2021 Yujun, Yimei, Jianhua, Lu (b0120) 2020; 2020 Pérez-Espinosa, Avila-George, Rodriguez-Jacobo, Cruz-Mendoza, Martínez-Miranda, Espinosa-Curiel (b0240) 2016; 121 Liu, Luo, Zhang, Chen (b0110) 2021; 179 Huang, Peng, Kareem, Song (b0165) 2020; 197 Banerjee, D. Ye (b0080) 2022; 594 Chen, Jiang, Zhang, Chen (b0090) 2021; 556 Bontempi (b0215) 2008 Li, Jiang, Chen, Qian (b0015) 2022; 238 Yang, Xue, Yang, Yin, Qu, Li, Wu (b0175) 2021; 566 Xu, Wang, Liu, Chen, Duan, Hong (b0050) 2022; 596 Liu, Ding, Bai (b0100) 2021; 233 Zhang, Pan (b0205) 2015, 2015 In: Gedeon T., Wong K., Lee M. (eds) Neural Information Processing. ICONIP 201Communications in Computer and Information Science, 2011142: 287-295. https://doi.org/10.1007/978-3-030-36808-1_31. Wu, Chen, Wang, Troiano, Loia, Fujita (b0185) 2020; 538 Xiong, Bao, Hu (b0150) 2014; 55 Shu, Gao (b0025) 2020; 8 Diebold, Mariano (b0225) 1995; 13 Agarwal, H., G. Jariwala, and A. Shah Zolfaghari, Gholami (b0010) 2021; 182 Takahashi, Takahashi (b0070) 2021; 100 Nguyen, Baraldi, Zio (b0030) 2021; 283 Niu, Xu, Wang (b0145) 2020; 50 Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Lecture Notes in Networks and Systems 2020. 121: 521-531. Altan, Karasu, Zio (b0035) 2021; 100 Ramesh, Baskaran, Krishnamoorthy, Damodaran, Sadasivam (b0195) 2019; 48 Chalvatzis, Hristu-Varsakelis (b0085) 2020; 96 Kaczmarek, Będowska-Sójka, Grobelny, Perez (b0130) 2022; 60 Li, Liu, Wu (b0095) 2022; 116 Fu, Wang, Tan, Zhang (b0140) 2020; 205 Thitimanan, Victor-Emil (b0220) 2020 Kamara, Chen, Pan (b0125) 2022; 594 Rong, Ma, Cao, Tian, Al-Dhelaan, Al-Rodhaan (b0020) 2019; 488 Guo, Tuckfield (b0115) 2020; 1642 Wang, Yang (b0075) 2022; 47 Meka, Alaeddini, Bhaganagar (b0235) 2021; 221 Ngoc Hai (b0250) 2020 Huang, Hasan, Deng, Bao (b0040) 2022; 239 Gul, Siddiqui, N.u. Rehman (b0170) 2020; 67 Lin, Yan, Xu, Liao, Ma (b0005) 2021; 57 Lanbouri, Achchab (b0180) 2020; 175 Zhang, X., et al. Xue, Ding, Zhao, Zhu, Li (b0060) 2022; 239 2014 2nd International Conference on Business and Information Management, 2014. ICBIM 2014(6970973): 131-135. Illa, Parvathala, Sharma (b0105) 2022; 56 Hochreiter, Schmidhuber (b0135) 1997; 9 Naik, Mohan, Jha (b0065) 2020; 171 Rehman, Mandic (b0210) 2010; 466 Wang, Wang, Yang, Di, Chang (b0190) 2021; 547 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0160) 1998; 454 Tao, Yukun, Zhongyi (b0155) 2013; 40 Li (10.1016/j.ins.2022.05.088_b0095) 2022; 116 Xu (10.1016/j.ins.2022.05.088_b0050) 2022; 596 Liu (10.1016/j.ins.2022.05.088_b0100) 2021; 233 Bontempi (10.1016/j.ins.2022.05.088_b0215) 2008 Gul (10.1016/j.ins.2022.05.088_b0170) 2020; 67 Pérez-Espinosa (10.1016/j.ins.2022.05.088_b0240) 2016; 121 Hochreiter (10.1016/j.ins.2022.05.088_b0135) 1997; 9 Tao (10.1016/j.ins.2022.05.088_b0155) 2013; 40 Zolfaghari (10.1016/j.ins.2022.05.088_b0010) 2021; 182 Chalvatzis (10.1016/j.ins.2022.05.088_b0085) 2020; 96 Wang (10.1016/j.ins.2022.05.088_b0190) 2021; 547 Yujun (10.1016/j.ins.2022.05.088_b0120) 2020; 2020 Takahashi (10.1016/j.ins.2022.05.088_b0070) 2021; 100 Huang (10.1016/j.ins.2022.05.088_b0160) 1998; 454 Rong (10.1016/j.ins.2022.05.088_b0020) 2019; 488 Diebold (10.1016/j.ins.2022.05.088_b0225) 1995; 13 Rehman (10.1016/j.ins.2022.05.088_b0210) 2010; 466 Huang (10.1016/j.ins.2022.05.088_b0040) 2022; 239 Ye (10.1016/j.ins.2022.05.088_b0080) 2022; 594 Nguyen (10.1016/j.ins.2022.05.088_b0030) 2021; 283 Wang (10.1016/j.ins.2022.05.088_b0075) 2022; 47 Kaczmarek (10.1016/j.ins.2022.05.088_b0130) 2022; 60 Ngoc Hai (10.1016/j.ins.2022.05.088_b0250) 2020 Chen (10.1016/j.ins.2022.05.088_b0090) 2021; 556 Lin (10.1016/j.ins.2022.05.088_b0005) 2021; 57 Wu (10.1016/j.ins.2022.05.088_b0185) 2020; 538 Liu (10.1016/j.ins.2022.05.088_b0110) 2021; 179 Shu (10.1016/j.ins.2022.05.088_b0025) 2020; 8 Zhang (10.1016/j.ins.2022.05.088_b0205) 2015 Song (10.1016/j.ins.2022.05.088_b0055) 2021 Xiong (10.1016/j.ins.2022.05.088_b0150) 2014; 55 Ramesh (10.1016/j.ins.2022.05.088_b0195) 2019; 48 Thitimanan (10.1016/j.ins.2022.05.088_b0220) 2020 Guo (10.1016/j.ins.2022.05.088_b0115) 2020; 1642 Kamara (10.1016/j.ins.2022.05.088_b0125) 2022; 594 Fu (10.1016/j.ins.2022.05.088_b0140) 2020; 205 Xue (10.1016/j.ins.2022.05.088_b0060) 2022; 239 Niu (10.1016/j.ins.2022.05.088_b0145) 2020; 50 10.1016/j.ins.2022.05.088_b0230 Lanbouri (10.1016/j.ins.2022.05.088_b0180) 2020; 175 Yang (10.1016/j.ins.2022.05.088_b0175) 2021; 566 Altan (10.1016/j.ins.2022.05.088_b0035) 2021; 100 Meka (10.1016/j.ins.2022.05.088_b0235) 2021; 221 Illa (10.1016/j.ins.2022.05.088_b0105) 2022; 56 Zhang (10.1016/j.ins.2022.05.088_b0245) 2020; 52 10.1016/j.ins.2022.05.088_b0200 10.1016/j.ins.2022.05.088_b0045 Li (10.1016/j.ins.2022.05.088_b0015) 2022; 238 Naik (10.1016/j.ins.2022.05.088_b0065) 2020; 171 Huang (10.1016/j.ins.2022.05.088_b0165) 2020; 197 |
| References_xml | – volume: 8 start-page: 206388 year: 2020 end-page: 206395 ident: b0025 article-title: Forecasting Stock Price Based on Frequency Components by EMD and Neural Networks publication-title: IEEE Access – volume: 283 start-page: 116346 year: 2021 ident: b0030 article-title: Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants publication-title: Appl. Energy – volume: 197 start-page: 104073 year: 2020 ident: b0165 article-title: Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 175 start-page: 603 year: 2020 end-page: 608 ident: b0180 article-title: Stock market prediction on high frequency data using long-short term memory publication-title: Procedia Comput. Sci. – volume: 182 start-page: 115149 year: 2021 ident: b0010 article-title: A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction publication-title: Expert Syst. Appl. – reference: 2014 2nd International Conference on Business and Information Management, 2014. ICBIM 2014(6970973): 131-135. – reference: In: Gedeon T., Wong K., Lee M. (eds) Neural Information Processing. ICONIP 201Communications in Computer and Information Science, 2011142: 287-295. https://doi.org/10.1007/978-3-030-36808-1_31. – volume: 596 start-page: 119 year: 2022 end-page: 136 ident: b0050 article-title: Toward practical privacy-preserving linear regression publication-title: Inf. Sci. – volume: 1642 start-page: 012014 year: 2020 ident: b0115 article-title: News-based Machine Learning and Deep Learning Methods for Stock Prediction publication-title: J. Phys. Conf. Ser. – volume: 48 start-page: 3622 year: 2019 end-page: 3642 ident: b0195 article-title: Back propagation neural network based big data analytics for a stock market challenge publication-title: Commun. Stat. Theory Methods – start-page: 113 year: 2015, 2015, end-page: 117 ident: b0205 article-title: A novel hybrid model based on EMD-BPNN for forecasting US and UK stock indices publication-title: Proceedings of 2015 IEEE international Conference on Progress in Informatics and Computing – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: b0225 article-title: Comparing predictive accuracy publication-title: J. Business Econ. Stat. – volume: 171 start-page: 1742 year: 2020 end-page: 1749 ident: b0065 article-title: GARCH model identification for stock crises events publication-title: ScienceDirect – volume: 239 start-page: 122117 year: 2022 ident: b0060 article-title: An option pricing model based on a renewable energy price index publication-title: Energy – reference: Agarwal, H., G. Jariwala, and A. Shah, – volume: 60 start-page: 101610 year: 2022 ident: b0130 article-title: False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network publication-title: Res. Internat. Business Finance – volume: 238 start-page: 121981 year: 2022 ident: b0015 article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks publication-title: Energy – volume: 488 start-page: 158 year: 2019 end-page: 180 ident: b0020 article-title: Deep rolling: A novel emotion prediction model for a multi-participant communication context publication-title: Inf. Sci. – reference: Zhang, X., et al., – volume: 40 start-page: 405 year: 2013 end-page: 415 ident: b0155 article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. – reference: Banerjee, D., – start-page: 144 year: 2020 end-page: 149 ident: b0250 article-title: An Empirical Research on the Effectiveness of Different LSTM Architectures on Vietnamese Stock Market publication-title: 2020 International Conference on Control, Robotics and Intelligent System – year: 2020 ident: b0220 article-title: Stock Market Prediction Using a Deep Learning Approach publication-title: 2020 12th International Conference on Electronics, Computers and Artificial Intelligence – volume: 556 start-page: 67 year: 2021 end-page: 94 ident: b0090 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Inf. Sci. – volume: 55 start-page: 87 year: 2014 end-page: 100 ident: b0150 article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting publication-title: Knowl.-Based Syst. – volume: 594 start-page: 177 year: 2022 end-page: 199 ident: b0080 article-title: ∊-Kernel-free soft quadratic surface support vector regression publication-title: Inf. Sci. – volume: 56 start-page: 1776 year: 2022 end-page: 1782 ident: b0105 article-title: Stock price prediction methodology using random forest algorithm and support vector machine publication-title: Mater. Today:. Proc. – volume: 47 start-page: 102808 year: 2022 ident: b0075 article-title: The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach publication-title: Finance Research Letters – volume: 121 start-page: 69 year: 2016 end-page: 81 ident: b0240 article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays publication-title: Res. Comput. Sci. – volume: 100 start-page: 104154 year: 2021 ident: b0070 article-title: A new interval type-2 fuzzy logic system under dynamic environment: Application to financial investment publication-title: Eng. Appl. Artif. Intell. – volume: 52 start-page: 101145 year: 2020 ident: b0245 article-title: Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching publication-title: North Am. J. Econ. and Finance – volume: 239 start-page: 122245 year: 2022 ident: b0040 article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting publication-title: Energy – volume: 233 start-page: 113917 year: 2021 ident: b0100 article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction publication-title: Energy Convers. Manage. – volume: 57 start-page: 101421 year: 2021 ident: b0005 article-title: Forecasting stock index price using the CEEMDAN-LSTM model publication-title: North Am. J. Econ. Finance – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0160 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. – volume: 538 start-page: 142 year: 2020 end-page: 158 ident: b0185 article-title: Adaptive stock trading strategies with deep reinforcement learning methods publication-title: Inf. Sci. – volume: 179 start-page: 115078 year: 2021 ident: b0110 article-title: A stock selection algorithm hybridizing grey wolf optimizer and support vector regression publication-title: Expert Syst. Appl. – volume: 96 start-page: 106567 year: 2020 ident: b0085 article-title: High-performance stock index trading via neural networks and trees publication-title: Appl. Soft Comput. – volume: 100 start-page: 106996 year: 2021 ident: b0035 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl. Soft Comput. – volume: 116 start-page: 108349 year: 2022 ident: b0095 article-title: Prediction on blockchain virtual currency transaction under long short-term memory model and deep belief network publication-title: Appl. Soft Comput. – volume: 205 start-page: 112461 year: 2020 ident: b0140 article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting publication-title: Energy Convers. Manage. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0135 article-title: Long Short-Term Memory publication-title: Neural Comput. – volume: 50 start-page: 4296 year: 2020 end-page: 4309 ident: b0145 article-title: A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network publication-title: Appl. Intell. – year: 2021 ident: b0055 article-title: Bayesian Analysis of ARCH-M model with a dynamic latent variable publication-title: Economet. Stat. – volume: 221 start-page: 119759 year: 2021 ident: b0235 article-title: A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables publication-title: Energy – reference: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Lecture Notes in Networks and Systems 2020. 121: 521-531. – year: 2008 ident: b0215 article-title: Long term time series prediction with multi-input multi-output local learning publication-title: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP) – volume: 2020 start-page: 1 year: 2020 end-page: 16 ident: b0120 article-title: A Hybrid Prediction Method for Stock Price Using LSTM and Ensemble EMD publication-title: Complexity – volume: 566 start-page: 347 year: 2021 end-page: 363 ident: b0175 article-title: A novel prediction model for the inbound passenger flow of urban rail transit publication-title: Inf. Sci. – volume: 67 start-page: 5040 year: 2020 end-page: 5050 ident: b0170 article-title: FPGA-Based Design for Online Computation of Multivariate Empirical Mode Decomposition publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. – volume: 594 start-page: 1 year: 2022 end-page: 19 ident: b0125 article-title: An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices publication-title: Inf. Sci. – volume: 547 start-page: 1066 year: 2021 end-page: 1079 ident: b0190 article-title: Advantages of direct input-to-output connections in neural networks: The Elman network for stock index forecasting publication-title: Inf. Sci. – volume: 466 start-page: 1291 year: 2010 end-page: 1302 ident: b0210 article-title: Multivariate empirical mode decomposition publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. – volume: 538 start-page: 142 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0185 article-title: Adaptive stock trading strategies with deep reinforcement learning methods publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.066 – volume: 566 start-page: 347 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0175 article-title: A novel prediction model for the inbound passenger flow of urban rail transit publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.02.036 – volume: 57 start-page: 101421 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0005 article-title: Forecasting stock index price using the CEEMDAN-LSTM model publication-title: North Am. J. Econ. Finance doi: 10.1016/j.najef.2021.101421 – volume: 197 start-page: 104073 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0165 article-title: Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2019.104073 – volume: 67 start-page: 5040 issue: 12 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0170 article-title: FPGA-Based Design for Online Computation of Multivariate Empirical Mode Decomposition publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2020.3012351 – ident: 10.1016/j.ins.2022.05.088_b0230 doi: 10.1007/978-981-15-3369-3_39 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.ins.2022.05.088_b0160 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 594 start-page: 177 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0080 article-title: ∊-Kernel-free soft quadratic surface support vector regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.02.012 – year: 2020 ident: 10.1016/j.ins.2022.05.088_b0220 article-title: Stock Market Prediction Using a Deep Learning Approach – ident: 10.1016/j.ins.2022.05.088_b0200 doi: 10.1109/ICBIM.2014.6970973 – volume: 233 start-page: 113917 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0100 article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.113917 – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10.1016/j.ins.2022.05.088_b0225 article-title: Comparing predictive accuracy publication-title: J. Business Econ. Stat. doi: 10.1080/07350015.1995.10524599 – volume: 171 start-page: 1742 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0065 article-title: GARCH model identification for stock crises events publication-title: ScienceDirect – year: 2021 ident: 10.1016/j.ins.2022.05.088_b0055 article-title: Bayesian Analysis of ARCH-M model with a dynamic latent variable publication-title: Economet. Stat. – volume: 239 start-page: 122117 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0060 article-title: An option pricing model based on a renewable energy price index publication-title: Energy doi: 10.1016/j.energy.2021.122117 – volume: 40 start-page: 405 year: 2013 ident: 10.1016/j.ins.2022.05.088_b0155 article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.07.028 – volume: 175 start-page: 603 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0180 article-title: Stock market prediction on high frequency data using long-short term memory publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.07.087 – volume: 96 start-page: 106567 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0085 article-title: High-performance stock index trading via neural networks and trees publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106567 – volume: 100 start-page: 106996 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0035 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106996 – year: 2008 ident: 10.1016/j.ins.2022.05.088_b0215 article-title: Long term time series prediction with multi-input multi-output local learning – volume: 556 start-page: 67 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0090 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.12.068 – volume: 466 start-page: 1291 issue: 2117 year: 2010 ident: 10.1016/j.ins.2022.05.088_b0210 article-title: Multivariate empirical mode decomposition publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.2009.0502 – volume: 55 start-page: 87 year: 2014 ident: 10.1016/j.ins.2022.05.088_b0150 article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.10.012 – volume: 182 start-page: 115149 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0010 article-title: A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115149 – volume: 116 start-page: 108349 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0095 article-title: Prediction on blockchain virtual currency transaction under long short-term memory model and deep belief network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108349 – volume: 47 start-page: 102808 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0075 article-title: The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach publication-title: Finance Research Letters doi: 10.1016/j.frl.2022.102808 – volume: 100 start-page: 104154 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0070 article-title: A new interval type-2 fuzzy logic system under dynamic environment: Application to financial investment publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104154 – volume: 50 start-page: 4296 issue: 12 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0145 article-title: A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network publication-title: Appl. Intell. doi: 10.1007/s10489-020-01814-0 – volume: 52 start-page: 101145 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0245 article-title: Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching publication-title: North Am. J. Econ. and Finance doi: 10.1016/j.najef.2020.101145 – volume: 121 start-page: 69 issue: 1 year: 2016 ident: 10.1016/j.ins.2022.05.088_b0240 article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays publication-title: Res. Comput. Sci. doi: 10.13053/rcs-121-1-6 – volume: 48 start-page: 3622 issue: 14 year: 2019 ident: 10.1016/j.ins.2022.05.088_b0195 article-title: Back propagation neural network based big data analytics for a stock market challenge publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610926.2018.1478103 – volume: 1642 start-page: 012014 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0115 article-title: News-based Machine Learning and Deep Learning Methods for Stock Prediction publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1642/1/012014 – volume: 283 start-page: 116346 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0030 article-title: Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116346 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0120 article-title: A Hybrid Prediction Method for Stock Price Using LSTM and Ensemble EMD publication-title: Complexity doi: 10.1155/2020/6431712 – volume: 594 start-page: 1 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0125 article-title: An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.02.015 – volume: 239 start-page: 122245 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0040 article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting publication-title: Energy doi: 10.1016/j.energy.2021.122245 – volume: 205 start-page: 112461 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0140 article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112461 – start-page: 144 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0250 article-title: An Empirical Research on the Effectiveness of Different LSTM Architectures on Vietnamese Stock Market – volume: 8 start-page: 206388 year: 2020 ident: 10.1016/j.ins.2022.05.088_b0025 article-title: Forecasting Stock Price Based on Frequency Components by EMD and Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037681 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.ins.2022.05.088_b0135 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 238 start-page: 121981 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0015 article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks publication-title: Energy doi: 10.1016/j.energy.2021.121981 – volume: 221 start-page: 119759 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0235 article-title: A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables publication-title: Energy doi: 10.1016/j.energy.2021.119759 – start-page: 113 year: 2015 ident: 10.1016/j.ins.2022.05.088_b0205 article-title: A novel hybrid model based on EMD-BPNN for forecasting US and UK stock indices – volume: 60 start-page: 101610 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0130 article-title: False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network publication-title: Res. Internat. Business Finance doi: 10.1016/j.ribaf.2021.101610 – volume: 488 start-page: 158 year: 2019 ident: 10.1016/j.ins.2022.05.088_b0020 article-title: Deep rolling: A novel emotion prediction model for a multi-participant communication context publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.03.023 – ident: 10.1016/j.ins.2022.05.088_b0045 doi: 10.1007/978-3-030-36808-1_31 – volume: 596 start-page: 119 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0050 article-title: Toward practical privacy-preserving linear regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.03.023 – volume: 56 start-page: 1776 year: 2022 ident: 10.1016/j.ins.2022.05.088_b0105 article-title: Stock price prediction methodology using random forest algorithm and support vector machine publication-title: Mater. Today:. Proc. – volume: 547 start-page: 1066 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0190 article-title: Advantages of direct input-to-output connections in neural networks: The Elman network for stock index forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.09.031 – volume: 179 start-page: 115078 year: 2021 ident: 10.1016/j.ins.2022.05.088_b0110 article-title: A stock selection algorithm hybridizing grey wolf optimizer and support vector regression publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115078 |
| SSID | ssj0004766 |
| Score | 2.6356473 |
| Snippet | •MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 297 |
| SubjectTerms | Long short-term memory Multi-step-ahead forecasting Multivariate empirical mode decomposition Orthogonal array tuning method Stock price index |
| Title | Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition |
| URI | https://dx.doi.org/10.1016/j.ins.2022.05.088 |
| Volume | 607 |
| WOSCitedRecordID | wos000817892200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEAwgBhjkBWJBZClx4jhZDmgQIFSxGFBnFTmOLdppQ9Q21bDjd_hLrh9pMuUhQGITVVHcRj0nvo-cey9CT3PNdSI1N7JyRpJSJyTTeUxiGaUlyzgXdmbkx3d8Msmm0_z9aPStq4XZLnhdZ5eXefNfoYZzALYpnf0LuHdfCifgM4AOR4Adjn8EvC2pJQBeQwTstFUA7p28CBrTPSiwzRGNtFBJsbaK59YmCxZm5ND6E_jixOzVwdIIcL-4OTkuV2uVh1uIrME5DdSymbneIuaKoFJGme7lX0N31xc7WY55W9sPsldum7H1Dat21hPMp7DPRb1U_WmxdrnaiZgvezXjC2FzveftRVsPMxgQ_Hb6OZ9W60prrig_jR9LTMDjDJXbnTNOSUrdeK9u-07d1NxuA3ZqX2_LY1d9_YOZcBmLOcQ2pmM7pbZ5qxsvuNd927zMtnEXtS2q0vQaOqCc5dkYHZy8OZ2-7YtwuXsx3t139wrdign3fujnTtDAsTm7jW75iASfOCbdQSNVH6Kbgz6Vh-jYV7fgZ3iAKPZ24S76us85bDmHLeew5RwecA5bzmHDOdxzDjvOYcs5bDiHh5zDO87ZK_AVzt1DH16dnr18TfxoDyIBoQ3ROsqTkAsmKjA5ObjhIgJ3jdGSRqkuM6VSmeUCDArEw2USyyRUTCZSVJHM41jE99G4_lyrBwiXCsBhOlUV40kVUcF0CbYkyyDWpqFQRyjs_utC-r73ZvzKougEjvMC4CkMPEXIClh5hJ7vljSu6cvvLk46AAv_JDlvtAC2_XrZw39b9gjd6B-hx2i8WbXqGF2X281svXriOfkdyG_CHg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step-ahead+stock+price+index+forecasting+using+long+short-term+memory+model+with+multivariate+empirical+mode+decomposition&rft.jtitle=Information+sciences&rft.au=Deng%2C+Changrui&rft.au=Huang%2C+Yanmei&rft.au=Hasan%2C+Najmul&rft.au=Bao%2C+Yukun&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=607&rft.spage=297&rft.epage=321&rft_id=info:doi/10.1016%2Fj.ins.2022.05.088&rft.externalDocID=S0020025522005266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |