Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition

•MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output strategy.•MEMD was employed to decompose the original time series without information loss.•The proposed model demonstrated its superiority than othe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 607; s. 297 - 321
Hlavní autoři: Deng, Changrui, Huang, Yanmei, Hasan, Najmul, Bao, Yukun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output strategy.•MEMD was employed to decompose the original time series without information loss.•The proposed model demonstrated its superiority than other machine learning models.•The methodology goes well beyond straightforward application of the stock market. Accurate and reliable multi-step-ahead forecasting of stock price indexes over long-term future trends is challenging for capital investors and decision-makers. This study developed a hybrid stock price index forecasting modelling framework using Long Short-Term Memory (LSTM) with Multivariate Empirical Mode Decomposition (MEMD), which can capture the inherent features of the complex dynamics of stock price index time series. In conjunction with time–frequency analysis and deep learning algorithms, the proposed modelling framework implemented multi-step-ahead forecasting for stock price indexes using a multiple-input multiple-output (MIMO) strategy, where MEMD was first employed to simultaneously decompose the relevant features of the stock price index. Then LSTM was used to train the forecasting model by using the components extracted by MEMD and performing multi-step-ahead forecasting of the closing price of the stock price index. The hyperparameters of the LSTM model were optimized using an orthogonal array tuning method (OATM) based on the Taguchi design of experiments for enhancing the performance of prediction. Three real-world datasets were used for model validation from three exchange markets including Standard & Poor 500 index (SPX), Shanghai Stock Exchange (SSE), and Hang Seng Index (HSI). The results of the experiments suggested that the proposed hybrid model outperforms the benchmark models and improves the accuracy of multi-step-ahead forecasting.
AbstractList •MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output strategy.•MEMD was employed to decompose the original time series without information loss.•The proposed model demonstrated its superiority than other machine learning models.•The methodology goes well beyond straightforward application of the stock market. Accurate and reliable multi-step-ahead forecasting of stock price indexes over long-term future trends is challenging for capital investors and decision-makers. This study developed a hybrid stock price index forecasting modelling framework using Long Short-Term Memory (LSTM) with Multivariate Empirical Mode Decomposition (MEMD), which can capture the inherent features of the complex dynamics of stock price index time series. In conjunction with time–frequency analysis and deep learning algorithms, the proposed modelling framework implemented multi-step-ahead forecasting for stock price indexes using a multiple-input multiple-output (MIMO) strategy, where MEMD was first employed to simultaneously decompose the relevant features of the stock price index. Then LSTM was used to train the forecasting model by using the components extracted by MEMD and performing multi-step-ahead forecasting of the closing price of the stock price index. The hyperparameters of the LSTM model were optimized using an orthogonal array tuning method (OATM) based on the Taguchi design of experiments for enhancing the performance of prediction. Three real-world datasets were used for model validation from three exchange markets including Standard & Poor 500 index (SPX), Shanghai Stock Exchange (SSE), and Hang Seng Index (HSI). The results of the experiments suggested that the proposed hybrid model outperforms the benchmark models and improves the accuracy of multi-step-ahead forecasting.
Author Huang, Yanmei
Deng, Changrui
Bao, Yukun
Hasan, Najmul
Author_xml – sequence: 1
  givenname: Changrui
  surname: Deng
  fullname: Deng, Changrui
  organization: Center of Big Data Analytics, Jiangxi University of Engineering, Xinyu 338000, PR China
– sequence: 2
  givenname: Yanmei
  surname: Huang
  fullname: Huang, Yanmei
  organization: Center of Big Data Analytics, Jiangxi University of Engineering, Xinyu 338000, PR China
– sequence: 3
  givenname: Najmul
  surname: Hasan
  fullname: Hasan, Najmul
  organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 4
  givenname: Yukun
  surname: Bao
  fullname: Bao, Yukun
  email: yukunbao@hust.edu.cn, y.bao@ieee.org
  organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, PR China
BookMark eNp9kMtOwzAQRS0EEm3hA9j5BxLGTpyHWKGKl1TEBtaW60yoSxJXtlvojk_HoaxYdHNnM-dq5kzJ6WAHJOSKQcqAFdfr1Aw-5cB5CiKFqjohE1aVPCl4zU7JBIBDAlyIczL1fg0AeVkUE_L9vO2CSXzATaJWqBrqg9UfdOOMRmqGBr9oax1q5YMZ3unWj9nZGH5lXUgCup722Fu3p71tsKOfJqxoP9bulDMqIMV-Y2Kf6n43aIPa9hvrTTB2uCBnreo8Xv7NGXm7v3udPyaLl4en-e0i0bwuQ9K2rM6hVEI1JWS1AKGYRhR8yVnRLivEQle1yuOHZbHMM50DCp1r1TBdZ5nKZqQ89GpnvXfYSm2CGi8ITplOMpCjSLmWUaQcRUoQMoqMJPtHRjm9cvujzM2BwfjSzqCTXhscNDYmugyyseYI_QMIAJH3
CitedBy_id crossref_primary_10_1016_j_physa_2025_130542
crossref_primary_10_3390_app14166862
crossref_primary_10_1007_s10489_024_06070_0
crossref_primary_10_1016_j_eswa_2023_120902
crossref_primary_10_1016_j_resourpol_2023_103320
crossref_primary_10_1016_j_asoc_2023_110356
crossref_primary_10_1016_j_eswa_2024_126080
crossref_primary_10_1016_j_asoc_2025_112779
crossref_primary_10_1016_j_energy_2023_127995
crossref_primary_10_3390_math11092077
crossref_primary_10_1108_JM2_09_2022_0232
crossref_primary_10_1186_s40854_023_00567_2
crossref_primary_10_1007_s10489_024_05468_0
crossref_primary_10_1007_s10489_023_04874_0
crossref_primary_10_1155_jama_7706431
crossref_primary_10_1002_widm_1519
crossref_primary_10_1080_21681015_2023_2212006
crossref_primary_10_1016_j_eswa_2023_121080
crossref_primary_10_1142_S2424786325500185
crossref_primary_10_1016_j_dajour_2023_100193
crossref_primary_10_3390_forecast6010005
crossref_primary_10_1016_j_psep_2024_05_043
crossref_primary_10_1016_j_ins_2022_09_047
crossref_primary_10_1016_j_epsr_2025_112061
crossref_primary_10_1016_j_eswa_2023_121202
crossref_primary_10_1016_j_ins_2024_121268
crossref_primary_10_1016_j_eswa_2024_125380
crossref_primary_10_1016_j_eswa_2025_129566
crossref_primary_10_1016_j_ins_2024_120652
crossref_primary_10_1016_j_eswa_2023_122891
crossref_primary_10_1109_ACCESS_2025_3585968
crossref_primary_10_1007_s12559_023_10203_x
crossref_primary_10_1016_j_ins_2022_11_145
crossref_primary_10_1109_TII_2024_3523571
crossref_primary_10_1007_s10489_022_04285_7
crossref_primary_10_1016_j_asoc_2024_112359
crossref_primary_10_1016_j_eswa_2023_120880
crossref_primary_10_21015_vtse_v11i2_1571
crossref_primary_10_1007_s10489_024_05463_5
crossref_primary_10_1016_j_eswa_2024_126222
crossref_primary_10_1016_j_ins_2023_119382
crossref_primary_10_3390_info15120817
crossref_primary_10_1016_j_neucom_2025_131362
crossref_primary_10_1016_j_energy_2024_133374
crossref_primary_10_1016_j_eswa_2022_118391
crossref_primary_10_1108_CFRI_09_2023_0237
crossref_primary_10_1007_s40815_023_01637_4
crossref_primary_10_1016_j_eswa_2025_128538
crossref_primary_10_1016_j_ins_2023_119236
crossref_primary_10_1016_j_ins_2023_119951
crossref_primary_10_3390_ijfs13010028
crossref_primary_10_1016_j_eswa_2024_123948
crossref_primary_10_1016_j_enconman_2024_118726
crossref_primary_10_1016_j_asoc_2025_113221
crossref_primary_10_1016_j_epsr_2024_111091
crossref_primary_10_1016_j_asoc_2024_112388
crossref_primary_10_1016_j_ins_2024_120276
crossref_primary_10_1016_j_jksuci_2024_101959
crossref_primary_10_1016_j_asoc_2023_110867
crossref_primary_10_1016_j_resourpol_2022_102962
crossref_primary_10_1016_j_asoc_2023_110626
crossref_primary_10_1016_j_ins_2024_121126
Cites_doi 10.1016/j.ins.2020.05.066
10.1016/j.ins.2021.02.036
10.1016/j.najef.2021.101421
10.1016/j.jweia.2019.104073
10.1109/TCSI.2020.3012351
10.1007/978-981-15-3369-3_39
10.1098/rspa.1998.0193
10.1016/j.ins.2022.02.012
10.1109/ICBIM.2014.6970973
10.1016/j.enconman.2021.113917
10.1080/07350015.1995.10524599
10.1016/j.energy.2021.122117
10.1016/j.eneco.2013.07.028
10.1016/j.procs.2020.07.087
10.1016/j.asoc.2020.106567
10.1016/j.asoc.2020.106996
10.1016/j.ins.2020.12.068
10.1098/rspa.2009.0502
10.1016/j.knosys.2013.10.012
10.1016/j.eswa.2021.115149
10.1016/j.asoc.2021.108349
10.1016/j.frl.2022.102808
10.1016/j.engappai.2021.104154
10.1007/s10489-020-01814-0
10.1016/j.najef.2020.101145
10.13053/rcs-121-1-6
10.1080/03610926.2018.1478103
10.1088/1742-6596/1642/1/012014
10.1016/j.apenergy.2020.116346
10.1155/2020/6431712
10.1016/j.ins.2022.02.015
10.1016/j.energy.2021.122245
10.1016/j.enconman.2019.112461
10.1109/ACCESS.2020.3037681
10.1162/neco.1997.9.8.1735
10.1016/j.energy.2021.121981
10.1016/j.energy.2021.119759
10.1016/j.ribaf.2021.101610
10.1016/j.ins.2019.03.023
10.1007/978-3-030-36808-1_31
10.1016/j.ins.2022.03.023
10.1016/j.ins.2020.09.031
10.1016/j.eswa.2021.115078
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.05.088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 321
ExternalDocumentID 10_1016_j_ins_2022_05_088
S0020025522005266
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-ff19407a5ad7039505a1cee52b216fb8ee6c89a425576b43c40e5c4cad1c933a3
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817892200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 20:52:13 EST 2025
Sat Nov 29 07:28:30 EST 2025
Fri Feb 23 02:38:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Stock price index
Multi-step-ahead forecasting
Orthogonal array tuning method
Multivariate empirical mode decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-ff19407a5ad7039505a1cee52b216fb8ee6c89a425576b43c40e5c4cad1c933a3
PageCount 25
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_05_088
crossref_primary_10_1016_j_ins_2022_05_088
elsevier_sciencedirect_doi_10_1016_j_ins_2022_05_088
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Lei, Wei (b0245) 2020; 52
Song, Song, Li (b0055) 2021
Yujun, Yimei, Jianhua, Lu (b0120) 2020; 2020
Pérez-Espinosa, Avila-George, Rodriguez-Jacobo, Cruz-Mendoza, Martínez-Miranda, Espinosa-Curiel (b0240) 2016; 121
Liu, Luo, Zhang, Chen (b0110) 2021; 179
Huang, Peng, Kareem, Song (b0165) 2020; 197
Banerjee, D.
Ye (b0080) 2022; 594
Chen, Jiang, Zhang, Chen (b0090) 2021; 556
Bontempi (b0215) 2008
Li, Jiang, Chen, Qian (b0015) 2022; 238
Yang, Xue, Yang, Yin, Qu, Li, Wu (b0175) 2021; 566
Xu, Wang, Liu, Chen, Duan, Hong (b0050) 2022; 596
Liu, Ding, Bai (b0100) 2021; 233
Zhang, Pan (b0205) 2015, 2015
In: Gedeon T., Wong K., Lee M. (eds) Neural Information Processing. ICONIP 201Communications in Computer and Information Science, 2011142: 287-295. https://doi.org/10.1007/978-3-030-36808-1_31.
Wu, Chen, Wang, Troiano, Loia, Fujita (b0185) 2020; 538
Xiong, Bao, Hu (b0150) 2014; 55
Shu, Gao (b0025) 2020; 8
Diebold, Mariano (b0225) 1995; 13
Agarwal, H., G. Jariwala, and A. Shah
Zolfaghari, Gholami (b0010) 2021; 182
Takahashi, Takahashi (b0070) 2021; 100
Nguyen, Baraldi, Zio (b0030) 2021; 283
Niu, Xu, Wang (b0145) 2020; 50
Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Lecture Notes in Networks and Systems 2020. 121: 521-531.
Altan, Karasu, Zio (b0035) 2021; 100
Ramesh, Baskaran, Krishnamoorthy, Damodaran, Sadasivam (b0195) 2019; 48
Chalvatzis, Hristu-Varsakelis (b0085) 2020; 96
Kaczmarek, Będowska-Sójka, Grobelny, Perez (b0130) 2022; 60
Li, Liu, Wu (b0095) 2022; 116
Fu, Wang, Tan, Zhang (b0140) 2020; 205
Thitimanan, Victor-Emil (b0220) 2020
Kamara, Chen, Pan (b0125) 2022; 594
Rong, Ma, Cao, Tian, Al-Dhelaan, Al-Rodhaan (b0020) 2019; 488
Guo, Tuckfield (b0115) 2020; 1642
Wang, Yang (b0075) 2022; 47
Meka, Alaeddini, Bhaganagar (b0235) 2021; 221
Ngoc Hai (b0250) 2020
Huang, Hasan, Deng, Bao (b0040) 2022; 239
Gul, Siddiqui, N.u. Rehman (b0170) 2020; 67
Lin, Yan, Xu, Liao, Ma (b0005) 2021; 57
Lanbouri, Achchab (b0180) 2020; 175
Zhang, X., et al.
Xue, Ding, Zhao, Zhu, Li (b0060) 2022; 239
2014 2nd International Conference on Business and Information Management, 2014. ICBIM 2014(6970973): 131-135.
Illa, Parvathala, Sharma (b0105) 2022; 56
Hochreiter, Schmidhuber (b0135) 1997; 9
Naik, Mohan, Jha (b0065) 2020; 171
Rehman, Mandic (b0210) 2010; 466
Wang, Wang, Yang, Di, Chang (b0190) 2021; 547
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0160) 1998; 454
Tao, Yukun, Zhongyi (b0155) 2013; 40
Li (10.1016/j.ins.2022.05.088_b0095) 2022; 116
Xu (10.1016/j.ins.2022.05.088_b0050) 2022; 596
Liu (10.1016/j.ins.2022.05.088_b0100) 2021; 233
Bontempi (10.1016/j.ins.2022.05.088_b0215) 2008
Gul (10.1016/j.ins.2022.05.088_b0170) 2020; 67
Pérez-Espinosa (10.1016/j.ins.2022.05.088_b0240) 2016; 121
Hochreiter (10.1016/j.ins.2022.05.088_b0135) 1997; 9
Tao (10.1016/j.ins.2022.05.088_b0155) 2013; 40
Zolfaghari (10.1016/j.ins.2022.05.088_b0010) 2021; 182
Chalvatzis (10.1016/j.ins.2022.05.088_b0085) 2020; 96
Wang (10.1016/j.ins.2022.05.088_b0190) 2021; 547
Yujun (10.1016/j.ins.2022.05.088_b0120) 2020; 2020
Takahashi (10.1016/j.ins.2022.05.088_b0070) 2021; 100
Huang (10.1016/j.ins.2022.05.088_b0160) 1998; 454
Rong (10.1016/j.ins.2022.05.088_b0020) 2019; 488
Diebold (10.1016/j.ins.2022.05.088_b0225) 1995; 13
Rehman (10.1016/j.ins.2022.05.088_b0210) 2010; 466
Huang (10.1016/j.ins.2022.05.088_b0040) 2022; 239
Ye (10.1016/j.ins.2022.05.088_b0080) 2022; 594
Nguyen (10.1016/j.ins.2022.05.088_b0030) 2021; 283
Wang (10.1016/j.ins.2022.05.088_b0075) 2022; 47
Kaczmarek (10.1016/j.ins.2022.05.088_b0130) 2022; 60
Ngoc Hai (10.1016/j.ins.2022.05.088_b0250) 2020
Chen (10.1016/j.ins.2022.05.088_b0090) 2021; 556
Lin (10.1016/j.ins.2022.05.088_b0005) 2021; 57
Wu (10.1016/j.ins.2022.05.088_b0185) 2020; 538
Liu (10.1016/j.ins.2022.05.088_b0110) 2021; 179
Shu (10.1016/j.ins.2022.05.088_b0025) 2020; 8
Zhang (10.1016/j.ins.2022.05.088_b0205) 2015
Song (10.1016/j.ins.2022.05.088_b0055) 2021
Xiong (10.1016/j.ins.2022.05.088_b0150) 2014; 55
Ramesh (10.1016/j.ins.2022.05.088_b0195) 2019; 48
Thitimanan (10.1016/j.ins.2022.05.088_b0220) 2020
Guo (10.1016/j.ins.2022.05.088_b0115) 2020; 1642
Kamara (10.1016/j.ins.2022.05.088_b0125) 2022; 594
Fu (10.1016/j.ins.2022.05.088_b0140) 2020; 205
Xue (10.1016/j.ins.2022.05.088_b0060) 2022; 239
Niu (10.1016/j.ins.2022.05.088_b0145) 2020; 50
10.1016/j.ins.2022.05.088_b0230
Lanbouri (10.1016/j.ins.2022.05.088_b0180) 2020; 175
Yang (10.1016/j.ins.2022.05.088_b0175) 2021; 566
Altan (10.1016/j.ins.2022.05.088_b0035) 2021; 100
Meka (10.1016/j.ins.2022.05.088_b0235) 2021; 221
Illa (10.1016/j.ins.2022.05.088_b0105) 2022; 56
Zhang (10.1016/j.ins.2022.05.088_b0245) 2020; 52
10.1016/j.ins.2022.05.088_b0200
10.1016/j.ins.2022.05.088_b0045
Li (10.1016/j.ins.2022.05.088_b0015) 2022; 238
Naik (10.1016/j.ins.2022.05.088_b0065) 2020; 171
Huang (10.1016/j.ins.2022.05.088_b0165) 2020; 197
References_xml – volume: 8
  start-page: 206388
  year: 2020
  end-page: 206395
  ident: b0025
  article-title: Forecasting Stock Price Based on Frequency Components by EMD and Neural Networks
  publication-title: IEEE Access
– volume: 283
  start-page: 116346
  year: 2021
  ident: b0030
  article-title: Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants
  publication-title: Appl. Energy
– volume: 197
  start-page: 104073
  year: 2020
  ident: b0165
  article-title: Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 175
  start-page: 603
  year: 2020
  end-page: 608
  ident: b0180
  article-title: Stock market prediction on high frequency data using long-short term memory
  publication-title: Procedia Comput. Sci.
– volume: 182
  start-page: 115149
  year: 2021
  ident: b0010
  article-title: A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction
  publication-title: Expert Syst. Appl.
– reference: 2014 2nd International Conference on Business and Information Management, 2014. ICBIM 2014(6970973): 131-135.
– reference: In: Gedeon T., Wong K., Lee M. (eds) Neural Information Processing. ICONIP 201Communications in Computer and Information Science, 2011142: 287-295. https://doi.org/10.1007/978-3-030-36808-1_31.
– volume: 596
  start-page: 119
  year: 2022
  end-page: 136
  ident: b0050
  article-title: Toward practical privacy-preserving linear regression
  publication-title: Inf. Sci.
– volume: 1642
  start-page: 012014
  year: 2020
  ident: b0115
  article-title: News-based Machine Learning and Deep Learning Methods for Stock Prediction
  publication-title: J. Phys. Conf. Ser.
– volume: 48
  start-page: 3622
  year: 2019
  end-page: 3642
  ident: b0195
  article-title: Back propagation neural network based big data analytics for a stock market challenge
  publication-title: Commun. Stat. Theory Methods
– start-page: 113
  year: 2015, 2015,
  end-page: 117
  ident: b0205
  article-title: A novel hybrid model based on EMD-BPNN for forecasting US and UK stock indices
  publication-title: Proceedings of 2015 IEEE international Conference on Progress in Informatics and Computing
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0225
  article-title: Comparing predictive accuracy
  publication-title: J. Business Econ. Stat.
– volume: 171
  start-page: 1742
  year: 2020
  end-page: 1749
  ident: b0065
  article-title: GARCH model identification for stock crises events
  publication-title: ScienceDirect
– volume: 239
  start-page: 122117
  year: 2022
  ident: b0060
  article-title: An option pricing model based on a renewable energy price index
  publication-title: Energy
– reference: Agarwal, H., G. Jariwala, and A. Shah,
– volume: 60
  start-page: 101610
  year: 2022
  ident: b0130
  article-title: False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network
  publication-title: Res. Internat. Business Finance
– volume: 238
  start-page: 121981
  year: 2022
  ident: b0015
  article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
  publication-title: Energy
– volume: 488
  start-page: 158
  year: 2019
  end-page: 180
  ident: b0020
  article-title: Deep rolling: A novel emotion prediction model for a multi-participant communication context
  publication-title: Inf. Sci.
– reference: Zhang, X., et al.,
– volume: 40
  start-page: 405
  year: 2013
  end-page: 415
  ident: b0155
  article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
– reference: Banerjee, D.,
– start-page: 144
  year: 2020
  end-page: 149
  ident: b0250
  article-title: An Empirical Research on the Effectiveness of Different LSTM Architectures on Vietnamese Stock Market
  publication-title: 2020 International Conference on Control, Robotics and Intelligent System
– year: 2020
  ident: b0220
  article-title: Stock Market Prediction Using a Deep Learning Approach
  publication-title: 2020 12th International Conference on Electronics, Computers and Artificial Intelligence
– volume: 556
  start-page: 67
  year: 2021
  end-page: 94
  ident: b0090
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Inf. Sci.
– volume: 55
  start-page: 87
  year: 2014
  end-page: 100
  ident: b0150
  article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
  publication-title: Knowl.-Based Syst.
– volume: 594
  start-page: 177
  year: 2022
  end-page: 199
  ident: b0080
  article-title: ∊-Kernel-free soft quadratic surface support vector regression
  publication-title: Inf. Sci.
– volume: 56
  start-page: 1776
  year: 2022
  end-page: 1782
  ident: b0105
  article-title: Stock price prediction methodology using random forest algorithm and support vector machine
  publication-title: Mater. Today:. Proc.
– volume: 47
  start-page: 102808
  year: 2022
  ident: b0075
  article-title: The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach
  publication-title: Finance Research Letters
– volume: 121
  start-page: 69
  year: 2016
  end-page: 81
  ident: b0240
  article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays
  publication-title: Res. Comput. Sci.
– volume: 100
  start-page: 104154
  year: 2021
  ident: b0070
  article-title: A new interval type-2 fuzzy logic system under dynamic environment: Application to financial investment
  publication-title: Eng. Appl. Artif. Intell.
– volume: 52
  start-page: 101145
  year: 2020
  ident: b0245
  article-title: Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching
  publication-title: North Am. J. Econ. and Finance
– volume: 239
  start-page: 122245
  year: 2022
  ident: b0040
  article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting
  publication-title: Energy
– volume: 233
  start-page: 113917
  year: 2021
  ident: b0100
  article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction
  publication-title: Energy Convers. Manage.
– volume: 57
  start-page: 101421
  year: 2021
  ident: b0005
  article-title: Forecasting stock index price using the CEEMDAN-LSTM model
  publication-title: North Am. J. Econ. Finance
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0160
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
– volume: 538
  start-page: 142
  year: 2020
  end-page: 158
  ident: b0185
  article-title: Adaptive stock trading strategies with deep reinforcement learning methods
  publication-title: Inf. Sci.
– volume: 179
  start-page: 115078
  year: 2021
  ident: b0110
  article-title: A stock selection algorithm hybridizing grey wolf optimizer and support vector regression
  publication-title: Expert Syst. Appl.
– volume: 96
  start-page: 106567
  year: 2020
  ident: b0085
  article-title: High-performance stock index trading via neural networks and trees
  publication-title: Appl. Soft Comput.
– volume: 100
  start-page: 106996
  year: 2021
  ident: b0035
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl. Soft Comput.
– volume: 116
  start-page: 108349
  year: 2022
  ident: b0095
  article-title: Prediction on blockchain virtual currency transaction under long short-term memory model and deep belief network
  publication-title: Appl. Soft Comput.
– volume: 205
  start-page: 112461
  year: 2020
  ident: b0140
  article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0135
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
– volume: 50
  start-page: 4296
  year: 2020
  end-page: 4309
  ident: b0145
  article-title: A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network
  publication-title: Appl. Intell.
– year: 2021
  ident: b0055
  article-title: Bayesian Analysis of ARCH-M model with a dynamic latent variable
  publication-title: Economet. Stat.
– volume: 221
  start-page: 119759
  year: 2021
  ident: b0235
  article-title: A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables
  publication-title: Energy
– reference: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), Lecture Notes in Networks and Systems 2020. 121: 521-531.
– year: 2008
  ident: b0215
  article-title: Long term time series prediction with multi-input multi-output local learning
  publication-title: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP)
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 16
  ident: b0120
  article-title: A Hybrid Prediction Method for Stock Price Using LSTM and Ensemble EMD
  publication-title: Complexity
– volume: 566
  start-page: 347
  year: 2021
  end-page: 363
  ident: b0175
  article-title: A novel prediction model for the inbound passenger flow of urban rail transit
  publication-title: Inf. Sci.
– volume: 67
  start-page: 5040
  year: 2020
  end-page: 5050
  ident: b0170
  article-title: FPGA-Based Design for Online Computation of Multivariate Empirical Mode Decomposition
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– volume: 594
  start-page: 1
  year: 2022
  end-page: 19
  ident: b0125
  article-title: An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices
  publication-title: Inf. Sci.
– volume: 547
  start-page: 1066
  year: 2021
  end-page: 1079
  ident: b0190
  article-title: Advantages of direct input-to-output connections in neural networks: The Elman network for stock index forecasting
  publication-title: Inf. Sci.
– volume: 466
  start-page: 1291
  year: 2010
  end-page: 1302
  ident: b0210
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
– volume: 538
  start-page: 142
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0185
  article-title: Adaptive stock trading strategies with deep reinforcement learning methods
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.066
– volume: 566
  start-page: 347
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0175
  article-title: A novel prediction model for the inbound passenger flow of urban rail transit
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.02.036
– volume: 57
  start-page: 101421
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0005
  article-title: Forecasting stock index price using the CEEMDAN-LSTM model
  publication-title: North Am. J. Econ. Finance
  doi: 10.1016/j.najef.2021.101421
– volume: 197
  start-page: 104073
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0165
  article-title: Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2019.104073
– volume: 67
  start-page: 5040
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0170
  article-title: FPGA-Based Design for Online Computation of Multivariate Empirical Mode Decomposition
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2020.3012351
– ident: 10.1016/j.ins.2022.05.088_b0230
  doi: 10.1007/978-981-15-3369-3_39
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.ins.2022.05.088_b0160
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 594
  start-page: 177
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0080
  article-title: ∊-Kernel-free soft quadratic surface support vector regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.02.012
– year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0220
  article-title: Stock Market Prediction Using a Deep Learning Approach
– ident: 10.1016/j.ins.2022.05.088_b0200
  doi: 10.1109/ICBIM.2014.6970973
– volume: 233
  start-page: 113917
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0100
  article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.113917
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 10.1016/j.ins.2022.05.088_b0225
  article-title: Comparing predictive accuracy
  publication-title: J. Business Econ. Stat.
  doi: 10.1080/07350015.1995.10524599
– volume: 171
  start-page: 1742
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0065
  article-title: GARCH model identification for stock crises events
  publication-title: ScienceDirect
– year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0055
  article-title: Bayesian Analysis of ARCH-M model with a dynamic latent variable
  publication-title: Economet. Stat.
– volume: 239
  start-page: 122117
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0060
  article-title: An option pricing model based on a renewable energy price index
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122117
– volume: 40
  start-page: 405
  year: 2013
  ident: 10.1016/j.ins.2022.05.088_b0155
  article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.07.028
– volume: 175
  start-page: 603
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0180
  article-title: Stock market prediction on high frequency data using long-short term memory
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.07.087
– volume: 96
  start-page: 106567
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0085
  article-title: High-performance stock index trading via neural networks and trees
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106567
– volume: 100
  start-page: 106996
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0035
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106996
– year: 2008
  ident: 10.1016/j.ins.2022.05.088_b0215
  article-title: Long term time series prediction with multi-input multi-output local learning
– volume: 556
  start-page: 67
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0090
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.12.068
– volume: 466
  start-page: 1291
  issue: 2117
  year: 2010
  ident: 10.1016/j.ins.2022.05.088_b0210
  article-title: Multivariate empirical mode decomposition
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2009.0502
– volume: 55
  start-page: 87
  year: 2014
  ident: 10.1016/j.ins.2022.05.088_b0150
  article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.10.012
– volume: 182
  start-page: 115149
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0010
  article-title: A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115149
– volume: 116
  start-page: 108349
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0095
  article-title: Prediction on blockchain virtual currency transaction under long short-term memory model and deep belief network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108349
– volume: 47
  start-page: 102808
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0075
  article-title: The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2022.102808
– volume: 100
  start-page: 104154
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0070
  article-title: A new interval type-2 fuzzy logic system under dynamic environment: Application to financial investment
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104154
– volume: 50
  start-page: 4296
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0145
  article-title: A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01814-0
– volume: 52
  start-page: 101145
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0245
  article-title: Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching
  publication-title: North Am. J. Econ. and Finance
  doi: 10.1016/j.najef.2020.101145
– volume: 121
  start-page: 69
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2022.05.088_b0240
  article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays
  publication-title: Res. Comput. Sci.
  doi: 10.13053/rcs-121-1-6
– volume: 48
  start-page: 3622
  issue: 14
  year: 2019
  ident: 10.1016/j.ins.2022.05.088_b0195
  article-title: Back propagation neural network based big data analytics for a stock market challenge
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610926.2018.1478103
– volume: 1642
  start-page: 012014
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0115
  article-title: News-based Machine Learning and Deep Learning Methods for Stock Prediction
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1642/1/012014
– volume: 283
  start-page: 116346
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0030
  article-title: Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116346
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0120
  article-title: A Hybrid Prediction Method for Stock Price Using LSTM and Ensemble EMD
  publication-title: Complexity
  doi: 10.1155/2020/6431712
– volume: 594
  start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0125
  article-title: An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.02.015
– volume: 239
  start-page: 122245
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0040
  article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122245
– volume: 205
  start-page: 112461
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0140
  article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112461
– start-page: 144
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0250
  article-title: An Empirical Research on the Effectiveness of Different LSTM Architectures on Vietnamese Stock Market
– volume: 8
  start-page: 206388
  year: 2020
  ident: 10.1016/j.ins.2022.05.088_b0025
  article-title: Forecasting Stock Price Based on Frequency Components by EMD and Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037681
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.ins.2022.05.088_b0135
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 238
  start-page: 121981
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0015
  article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121981
– volume: 221
  start-page: 119759
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0235
  article-title: A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119759
– start-page: 113
  year: 2015
  ident: 10.1016/j.ins.2022.05.088_b0205
  article-title: A novel hybrid model based on EMD-BPNN for forecasting US and UK stock indices
– volume: 60
  start-page: 101610
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0130
  article-title: False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network
  publication-title: Res. Internat. Business Finance
  doi: 10.1016/j.ribaf.2021.101610
– volume: 488
  start-page: 158
  year: 2019
  ident: 10.1016/j.ins.2022.05.088_b0020
  article-title: Deep rolling: A novel emotion prediction model for a multi-participant communication context
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.03.023
– ident: 10.1016/j.ins.2022.05.088_b0045
  doi: 10.1007/978-3-030-36808-1_31
– volume: 596
  start-page: 119
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0050
  article-title: Toward practical privacy-preserving linear regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.03.023
– volume: 56
  start-page: 1776
  year: 2022
  ident: 10.1016/j.ins.2022.05.088_b0105
  article-title: Stock price prediction methodology using random forest algorithm and support vector machine
  publication-title: Mater. Today:. Proc.
– volume: 547
  start-page: 1066
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0190
  article-title: Advantages of direct input-to-output connections in neural networks: The Elman network for stock index forecasting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.031
– volume: 179
  start-page: 115078
  year: 2021
  ident: 10.1016/j.ins.2022.05.088_b0110
  article-title: A stock selection algorithm hybridizing grey wolf optimizer and support vector regression
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115078
SSID ssj0004766
Score 2.6356473
Snippet •MEMD- LSTM model for multi-step ahead stock price forecasting was built.•Multi-step ahead forecasting was based on the multiple-input multiple-output...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Long short-term memory
Multi-step-ahead forecasting
Multivariate empirical mode decomposition
Orthogonal array tuning method
Stock price index
Title Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition
URI https://dx.doi.org/10.1016/j.ins.2022.05.088
Volume 607
WOSCitedRecordID wos000817892200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEAwgBhjkBWJBZClx4jhZDmgQIFSxGFBnFTmOLdppQ9Q21bDjd_hLrh9pMuUhQGITVVHcRj0nvo-cey9CT3PNdSI1N7JyRpJSJyTTeUxiGaUlyzgXdmbkx3d8Msmm0_z9aPStq4XZLnhdZ5eXefNfoYZzALYpnf0LuHdfCifgM4AOR4Adjn8EvC2pJQBeQwTstFUA7p28CBrTPSiwzRGNtFBJsbaK59YmCxZm5ND6E_jixOzVwdIIcL-4OTkuV2uVh1uIrME5DdSymbneIuaKoFJGme7lX0N31xc7WY55W9sPsldum7H1Dat21hPMp7DPRb1U_WmxdrnaiZgvezXjC2FzveftRVsPMxgQ_Hb6OZ9W60prrig_jR9LTMDjDJXbnTNOSUrdeK9u-07d1NxuA3ZqX2_LY1d9_YOZcBmLOcQ2pmM7pbZ5qxsvuNd927zMtnEXtS2q0vQaOqCc5dkYHZy8OZ2-7YtwuXsx3t139wrdign3fujnTtDAsTm7jW75iASfOCbdQSNVH6Kbgz6Vh-jYV7fgZ3iAKPZ24S76us85bDmHLeew5RwecA5bzmHDOdxzDjvOYcs5bDiHh5zDO87ZK_AVzt1DH16dnr18TfxoDyIBoQ3ROsqTkAsmKjA5ObjhIgJ3jdGSRqkuM6VSmeUCDArEw2USyyRUTCZSVJHM41jE99G4_lyrBwiXCsBhOlUV40kVUcF0CbYkyyDWpqFQRyjs_utC-r73ZvzKougEjvMC4CkMPEXIClh5hJ7vljSu6cvvLk46AAv_JDlvtAC2_XrZw39b9gjd6B-hx2i8WbXqGF2X281svXriOfkdyG_CHg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step-ahead+stock+price+index+forecasting+using+long+short-term+memory+model+with+multivariate+empirical+mode+decomposition&rft.jtitle=Information+sciences&rft.au=Deng%2C+Changrui&rft.au=Huang%2C+Yanmei&rft.au=Hasan%2C+Najmul&rft.au=Bao%2C+Yukun&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=607&rft.spage=297&rft.epage=321&rft_id=info:doi/10.1016%2Fj.ins.2022.05.088&rft.externalDocID=S0020025522005266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon