On an exact penalty function method for nonlinear mixed discrete programming problems and its applications in search engine advertising problems

In this paper, we study a new exact and smooth penalty function for the nonlinear mixed discrete programming problem by augumenting only one variable no matter how many constraints. Through the smooth and exact penalty function, we can transform the nonlinear mixed discrete programming problem into...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 271; s. 642 - 656
Hlavní autoři: Ma, Cheng, Zhang, Liansheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.11.2015
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study a new exact and smooth penalty function for the nonlinear mixed discrete programming problem by augumenting only one variable no matter how many constraints. Through the smooth and exact penalty function, we can transform the nonlinear mixed discrete programming problem into an unconstrained optimization model. We demonstrate that under mild conditions, when the penalty parameter is sufficiently large, optimizers of this penalty function are precisely the optimizers of the nonlinear mixed discrete programming problem. Alternatively, under some mild assumptions, the local exactness property is also presented. The numerical results demonstrate that the new penalty function is an effective and promising approach. As important applications, we solve an increasingly popular search engine advertising problem via the new proposed penalty function.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2015.09.020