The truncated geometric election algorithm: Duration of the election

The present paper makes three distinct improvements over an earlier investigation of Kalpathy and Ward. We analyze the length of the entire election process (not just one participant’s duration), for a randomized election algorithm, with a truncated geometric number of survivors in each round. We no...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics & probability letters Ročník 101; s. 40 - 48
Hlavní autori: Louchard, Guy, Ward, Mark Daniel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2015
Predmet:
ISSN:0167-7152, 1879-2103
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The present paper makes three distinct improvements over an earlier investigation of Kalpathy and Ward. We analyze the length of the entire election process (not just one participant’s duration), for a randomized election algorithm, with a truncated geometric number of survivors in each round. We not only analyze the mean and variance; we analyze the asymptotic distribution of the entire election process. We also introduce a new variant of the election that guarantees a unique winner will be chosen; this methodology should be more useful in practice than the previous methodology. The method of analysis includes a precise analytic (complex-valued) approach, relying on singularity analysis of probability generating functions.
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2015.02.018