The truncated geometric election algorithm: Duration of the election

The present paper makes three distinct improvements over an earlier investigation of Kalpathy and Ward. We analyze the length of the entire election process (not just one participant’s duration), for a randomized election algorithm, with a truncated geometric number of survivors in each round. We no...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics & probability letters Ročník 101; s. 40 - 48
Hlavní autoři: Louchard, Guy, Ward, Mark Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2015
Témata:
ISSN:0167-7152, 1879-2103
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The present paper makes three distinct improvements over an earlier investigation of Kalpathy and Ward. We analyze the length of the entire election process (not just one participant’s duration), for a randomized election algorithm, with a truncated geometric number of survivors in each round. We not only analyze the mean and variance; we analyze the asymptotic distribution of the entire election process. We also introduce a new variant of the election that guarantees a unique winner will be chosen; this methodology should be more useful in practice than the previous methodology. The method of analysis includes a precise analytic (complex-valued) approach, relying on singularity analysis of probability generating functions.
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2015.02.018