Hate speech and offensive language detection in Dravidian languages using deep ensemble framework

Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many more. On the other hand, it is also used for spreading rumors, bullying people, and abusing certain groups of people with hateful words. The hate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer speech & language Ročník 75; s. 101386
Hlavní autori: Roy, Pradeep Kumar, Bhawal, Snehaan, Subalalitha, Chinnaudayar Navaneethakrishnan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2022
Predmet:
ISSN:0885-2308, 1095-8363
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many more. On the other hand, it is also used for spreading rumors, bullying people, and abusing certain groups of people with hateful words. The hate and offensive posts must be detected and removed as early as possible from the social platforms because such posts are spread very quickly and tend to have a lot of negative impacts on human beings. In the last few years, offensive content and hate speech detection has become popular topic of research. Detecting hate speech on social platforms has many challenges, one of them being the use of code-mixed language. Majority of the social media users usually post their messages in code-mixed languages such as Hindi–English, Tamil–English, Malayalam–English, Telugu–English and others. In this exhaustive study, we explore and compare the use of various machine learning and deep learning approaches. An ensemble model by combining the outcomes of transformer and deep learning-based models is suggested to detect hate speech and offensive language on social networking platforms. The experimental outcomes of the proposed weighted ensemble framework outperformed state-of-the-art models by achieving 0.802 and 0.933 weighted F1-score for Malayalam and Tamil code-mixed datasets. •Proposed a weighted ensemble framework for hate and offensive code-mixed posts identification on social platforms.•Two code-mixed datasets, namely Tamil and Malayalam, are used in this research.•The proposed model utilized the outcomes of deep learning and transformer-based models.•Transformer based models like m-BERT, distilBERT, xlm-RoBERTa performed better than the ML and DL based models.
AbstractList Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many more. On the other hand, it is also used for spreading rumors, bullying people, and abusing certain groups of people with hateful words. The hate and offensive posts must be detected and removed as early as possible from the social platforms because such posts are spread very quickly and tend to have a lot of negative impacts on human beings. In the last few years, offensive content and hate speech detection has become popular topic of research. Detecting hate speech on social platforms has many challenges, one of them being the use of code-mixed language. Majority of the social media users usually post their messages in code-mixed languages such as Hindi–English, Tamil–English, Malayalam–English, Telugu–English and others. In this exhaustive study, we explore and compare the use of various machine learning and deep learning approaches. An ensemble model by combining the outcomes of transformer and deep learning-based models is suggested to detect hate speech and offensive language on social networking platforms. The experimental outcomes of the proposed weighted ensemble framework outperformed state-of-the-art models by achieving 0.802 and 0.933 weighted F1-score for Malayalam and Tamil code-mixed datasets. •Proposed a weighted ensemble framework for hate and offensive code-mixed posts identification on social platforms.•Two code-mixed datasets, namely Tamil and Malayalam, are used in this research.•The proposed model utilized the outcomes of deep learning and transformer-based models.•Transformer based models like m-BERT, distilBERT, xlm-RoBERTa performed better than the ML and DL based models.
ArticleNumber 101386
Author Roy, Pradeep Kumar
Subalalitha, Chinnaudayar Navaneethakrishnan
Bhawal, Snehaan
Author_xml – sequence: 1
  givenname: Pradeep Kumar
  orcidid: 0000-0001-5513-2834
  surname: Roy
  fullname: Roy, Pradeep Kumar
  email: pkroynitp@gmail.com
  organization: Department of Computer Science & Engineering, Indian Institute of Information Technology, Surat, India
– sequence: 2
  givenname: Snehaan
  orcidid: 0000-0002-1072-5326
  surname: Bhawal
  fullname: Bhawal, Snehaan
  email: mailtosnehaan@gmail.com
  organization: School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar Odisha, India
– sequence: 3
  givenname: Chinnaudayar Navaneethakrishnan
  surname: Subalalitha
  fullname: Subalalitha, Chinnaudayar Navaneethakrishnan
  email: subalalitha@gmail.com
  organization: Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6T4kcSJWKECLVIlNrC2pva4uKROZadF_D2Jiliw6Go0mntGumdCRqENSMgtZzPOeHm3nZnUzAQTYthlVV6QMWd1kVWylCMyZlVVZEKy6opMUtoyxsoiV2MCS-iQpj2i-aAQLG2dw5D8EWkDYXOADVKLHZrOt4H6QB8jHL31EP7uiR6SD5s-hnvas7hbN0hdhB1-tfHzmlw6aBLe_M4peX9-epsvs9Xr4mX-sMqMqFWXOeCgpGQFs5XlhVBKqtrmmJscBJY1SMMUFAYVV8V6jZVzIErHnWJKAjA5Jfz018Q2pYhO76PfQfzWnOnBkd7q3pEeHOmTo55R_xjjOxiqdhF8c5a8P5HYVzp6jDoZj8Gg9bGXpW3rz9A_ALmEsQ
CitedBy_id crossref_primary_10_1038_s41598_025_88687_w
crossref_primary_10_1515_lpp_2023_0019
crossref_primary_10_1016_j_ijedudev_2024_103081
crossref_primary_10_1016_j_eswa_2025_129756
crossref_primary_10_1007_s11042_023_14481_3
crossref_primary_10_1109_TNSE_2024_3398219
crossref_primary_10_3390_app131911000
crossref_primary_10_1007_s13042_025_02715_9
crossref_primary_10_1007_s11042_025_20716_2
crossref_primary_10_1016_j_engappai_2023_107239
crossref_primary_10_1109_TBDATA_2024_3445372
crossref_primary_10_1109_TCSS_2023_3236527
crossref_primary_10_1145_3653303
crossref_primary_10_1109_ACCESS_2023_3310244
crossref_primary_10_1145_3600229
crossref_primary_10_1177_08944393231161124
crossref_primary_10_1007_s13278_024_01361_3
crossref_primary_10_1016_j_engappai_2023_107143
crossref_primary_10_2478_ias_2024_0012
crossref_primary_10_1002_wics_1648
crossref_primary_10_1109_ACCESS_2025_3535694
crossref_primary_10_1007_s12597_025_00993_z
crossref_primary_10_1007_s11227_023_05361_6
crossref_primary_10_1007_s00530_023_01051_8
crossref_primary_10_1016_j_datak_2025_102409
crossref_primary_10_1007_s11042_022_13918_5
crossref_primary_10_1108_JARHE_04_2024_0157
crossref_primary_10_1145_3711710
crossref_primary_10_1016_j_csl_2022_101464
crossref_primary_10_1093_comjnl_bxaf070
crossref_primary_10_1145_3712260
Cites_doi 10.18653/v1/S19-2011
10.1007/s11063-020-10284-x
10.1109/ACCESS.2020.3037073
10.18653/v1/W19-3506
10.1177/0165551520917651
10.1007/s42979-021-00977-y
10.1002/poi3.85
10.1609/icwsm.v11i1.14955
10.18653/v1/N16-2013
10.1145/3441501.3441517
10.18653/v1/W16-5618
10.18653/v1/P19-2038
10.1145/3041021.3054223
10.1016/j.future.2019.09.001
10.1609/aaai.v27i1.8539
10.1109/TNNLS.2016.2582924
10.1145/2740908.2742760
10.1109/ACCESS.2018.2806394
10.1016/S0262-4079(18)30377-4
10.18653/v1/W17-3013
10.1109/ACCESS.2020.2968173
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.csl.2022.101386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1095-8363
ExternalDocumentID 10_1016_j_csl_2022_101386
S0885230822000250
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABOYX
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMW
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M3U
M3X
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPS
SSB
SSO
SSS
SST
SSV
SSY
SSZ
T5K
TN5
UHS
WUQ
XFK
XPP
YK3
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-fa1a733050d8d15277379d4e4c4a2e69a3c07a5ce7175bbe8ffa26f1f7073aa03
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821456000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-2308
IngestDate Sat Nov 29 07:14:56 EST 2025
Tue Nov 18 22:34:22 EST 2025
Fri Feb 23 02:41:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Hate speech
Transfer learning
Dravidian language
Offensive language
BERT
Low-resource
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-fa1a733050d8d15277379d4e4c4a2e69a3c07a5ce7175bbe8ffa26f1f7073aa03
ORCID 0000-0002-1072-5326
0000-0001-5513-2834
ParticipantIDs crossref_primary_10_1016_j_csl_2022_101386
crossref_citationtrail_10_1016_j_csl_2022_101386
elsevier_sciencedirect_doi_10_1016_j_csl_2022_101386
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Computer speech & language
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Das, Acharjya, Patra (b21) 2014
Ranasinghe, Gupte, Zampieri, Nwogu (b53) 2020
Roy, Tripathy, Das, Gao (b58) 2020; 8
Jayanthi, Gupta (b37) 2021
Saumya, S., Kumar, A., Singh, J.P., 2021. Offensive language identification in Dravidian code mixed social media text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 36–45.
Conneau, Khandelwal, Goyal, Chaudhary, Wenzek, Guzmán, Ott, Zettlemoyer, Stoyanov (b20) 2019
Fauzi, Yuniarti (b28) 2018; 11
Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N., 2015. Hate speech detection with comment embeddings. In: Proceedings of the 24th International Conference on World Wide Web. pp. 29–30.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b71) 2017
Waseem, Z., 2016. Are you a racist or am i seeing things? Annotator influence on hate speech detection on Twitter. In: Proceedings of the First Workshop on NLP and Computational Social Science. pp. 138–142.
Hande, Puranik, Yasaswini, Priyadharshini, Thavareesan, Sampath, Shanmugavadivel, Thenmozhi, Chakravarthi (b35) 2021
Vasantharajan, C., Thayasivam, U., 2021. Hypers@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian code-mixed YouTube comments and posts. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 195–202.
Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M., 2017. Hate me, hate me not: Hate speech detection on Facebook. In: Proceedings of the First Italian Conference on Cybersecurity, ITASEC17. pp. 86–95.
Devlin, Chang, Lee, Toutanova (b25) 2018
Alfina, Mulia, Fanany, Ekanata (b4) 2017
Ghanghor, N., Ponnusamy, R., Kumaresan, P.K., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITK@ LT-EDI-EACL2021: Hope speech detection for equality, diversity, and inclusion in Tamil, Malayalam and English. In: Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion. pp. 197–203.
Kedia, Nandy (b40) 2021
Zhao, Y., Tao, X., 2021. Zyj123@ DravidianLangTech-EACL2021: Offensive language identification based on xlm-RoBERTa with DPCNN. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 216–221.
Al-Hassan, Al-Dossari (b2) 2021
Gambäck, B., Sikdar, U.K., 2017. Using convolutional neural networks to classify hate-speech. In: Proceedings of the First Workshop on Abusive Language Online. pp. 85–90.
Susanty, Rahman, Normansyah, Irawan (b69) 2019
Febriana, Budiarto (b29) 2019
Kamble, Joshi (b39) 2018
Yasaswini, K., Puranik, K., Hande, A., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITT@ DravidianLangTech-EACL2021: Transfer learning for offensive language detection in Dravidian languages.
Balaji, Bharathi (b9) 2020
Chakravarthi, M, McCrae, Premjith, Soman, Mandl (b14) 2020
Albadi, Kurdi, Mishra (b3) 2018
Dave, B., Bhat, S., Majumder, P., 2021. IRNLP_DAIICT@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian languages using tf-idf char n-grams and MuRIL. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 266–269.
Badjatiya, P., Gupta, S., Gupta, M., Varma, V., 2017. Deep learning for hate speech detection in tweets. In: Proceedings of the 26th International Conference on World Wide Web Companion. pp. 759–760.
Liu, P., Li, W., Zou, L., 2019. Nuli at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers. In: Proceedings of the 13th International Workshop on Semantic Evaluation. pp. 87–91.
Roy (b56) 2020; 52
Zhu, Zhou (b81) 2020
Greff, Srivastava, Koutník, Schmidhuber (b33) 2016; 28
Renjit, Idicula (b55) 2020
Saha, Paharia, Chakraborty, Saha, Mukherjee (b59) 2021
Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B.R., Fransen, T., McCrae, J.P., 2020. A comparative study of different state-of-the-art hate speech detection methods in Hindi-English code-mixed data. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying. pp. 42–48.
Charitidis, Doropoulos, Vologiannidis, Papastergiou, Karakeva (b17) 2020; 17
Pires, Schlinger, Garrette (b52) 2019
Chen, S., Kong, B., 2021. CS@ DravidianLangTech-EACL2021: Offensive language identification based on multilingual BERT model. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 230–235.
Chowdhury, A.G., Didolkar, A., Sawhney, R., Shah, R., 2019. Arhnet-leveraging community interaction for detection of religious hate speech in Arabic. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. pp. 273–280.
Oriola, Kotzé (b49) 2020; 8
Munikar, Shakya, Shrestha (b47) 2019
Kumar, Saumya, Singh (b42) 2020
Sanh, Debut, Chaumond, Wolf (b61) 2019
Waseem, Z., Hovy, D., 2016. Hateful symbols or hateful people? Predictive features for hate speech detection on Twitter. In: Proceedings of the NAACL Student Research Workshop. pp. 88–93.
Kwok, I., Wang, Y., 2013. Locate the hate: Detecting tweets against blacks. In: Twenty-Seventh AAAI Conference on Artificial Intelligence. pp. 1621–1622.
Roy, Singh, Banerjee (b57) 2020; 102
Li, Z., 2021. Codewithzichao@ DravidianLangTech-EACL2021: Exploring multilingual transformers for offensive language identification on code mixing text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 164–168.
Sai, S., Sharma, Y., 2021. Towards offensive language identification for Dravidian languages. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 18–27.
Baruah, Das, Barbhuiya, Dey (b11) 2021
Chakravarthi, Priyadharshini, Muralidaran, Jose, Suryawanshi, Sherly, McCrae (b16) 2021
Sharma, Agrawal, Shrivastava (b64) 2018
Sreelakshmi, K., Premjith, B., Kp, S., 2021. Amrita_CEN_NLP@ DravidianLangTech-EACL2021: Deep learning-based offensive language identification in Malayalam, Tamil and Kannada. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 249–254.
Hande, Hegde, Priyadharshini, Ponnusamy, Kumaresan, Thavareesan, Chakravarthi (b34) 2021
Zhang, Luo (b78) 2019; 10
Davidson, T., Warmsley, D., Macy, M., Weber, I., 2017. Automated hate speech detection and the problem of offensive language. In: Eleventh International Aaai Conference on Web and Social Media. pp. 512–515.
Ajees (b1) 2020
Burnap, Williams (b12) 2015; 7
Chakravarthi, Muralidaran, Priyadharshini, McCrae (b15) 2020
Ibrohim, M.O., Budi, I., 2019. Multi-label hate speech and abusive language detection in Indonesian Twitter. In: Proceedings of the Third Workshop on Abusive Language Online. pp. 6–57.
Veena, Ramanan, G (b72) 2020
Banerjee, Chakravarthi, McCrae (b10) 2020
Sharif, Hossain, Hoque (b63) 2021
Watanabe, Bouazizi, Ohtsuki (b76) 2018; 6
Singh, Bhattacharyya (b65) 2020
Khanuja, Bansal, Mehtani, Khosla, Dey, Gopalan, Margam, Aggarwal, Nagipogu, Dave (b41) 2021
Nayel, Shashirekha (b48) 2019
Warner, Hirschberg (b73) 2012
Zhang, Robinson, Tepper (b79) 2018
Kalchbrenner, Grefenstette, Blunsom (b38) 2014
Gao, Huang (b31) 2017
Aljarah, Habib, Hijazi, Faris, Qaddoura, Hammo, Abushariah, Alfawareh (b5) 2021; 47
Andrew, J.J., 2021. JudithJeyafreedaAndrew@ DravidianLangTech-EACL2021: Offensive language detection for Dravidian code-mixed YouTube comments. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 169–174.
Stokel-Walker (b67) 2018
Mandl, T., Modha, S., Kumar, M.A., Chakravarthi, B.R., 2020. Overview of the HASOC track at FIRE 2020: Hate speech and offensive language identification in Tamil, Malayalam, Hindi, English and German. In: Forum for Information Retrieval Evaluation. pp. 29–32.
Park, Fung (b50) 2017
Dowlagar, S., Mamidi, R., 2021. Offlangone@ DravidianLangTech-EACL2021: Transformers with the class balanced loss for offensive language identification in Dravidian code-mixed text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 154–159.
Chakravarthi, Kumaresan, Sakuntharaj, Madasamy, Thavareesan, B, Chinnaudayar Navaneethakrishnan, McCrae, Mandl (b13) 2021
Sun, Qiu, Xu, Huang (b68) 2019
Arora (b7) 2020
Pathak, Joshi, Joshi, Mundada, Joshi (b51) 2021
10.1016/j.csl.2022.101386_b30
10.1016/j.csl.2022.101386_b74
Nayel (10.1016/j.csl.2022.101386_b48) 2019
10.1016/j.csl.2022.101386_b75
10.1016/j.csl.2022.101386_b32
Alfina (10.1016/j.csl.2022.101386_b4) 2017
10.1016/j.csl.2022.101386_b70
10.1016/j.csl.2022.101386_b6
10.1016/j.csl.2022.101386_b8
Banerjee (10.1016/j.csl.2022.101386_b10) 2020
Susanty (10.1016/j.csl.2022.101386_b69) 2019
Chakravarthi (10.1016/j.csl.2022.101386_b14) 2020
Kumar (10.1016/j.csl.2022.101386_b42) 2020
Park (10.1016/j.csl.2022.101386_b50) 2017
Sharif (10.1016/j.csl.2022.101386_b63) 2021
Renjit (10.1016/j.csl.2022.101386_b55) 2020
Kedia (10.1016/j.csl.2022.101386_b40) 2021
Roy (10.1016/j.csl.2022.101386_b56) 2020; 52
Hande (10.1016/j.csl.2022.101386_b35) 2021
10.1016/j.csl.2022.101386_b26
10.1016/j.csl.2022.101386_b27
Albadi (10.1016/j.csl.2022.101386_b3) 2018
10.1016/j.csl.2022.101386_b22
10.1016/j.csl.2022.101386_b66
10.1016/j.csl.2022.101386_b23
10.1016/j.csl.2022.101386_b24
Stokel-Walker (10.1016/j.csl.2022.101386_b67) 2018
10.1016/j.csl.2022.101386_b43
Munikar (10.1016/j.csl.2022.101386_b47) 2019
10.1016/j.csl.2022.101386_b80
Chakravarthi (10.1016/j.csl.2022.101386_b16) 2021
Aljarah (10.1016/j.csl.2022.101386_b5) 2021; 47
Greff (10.1016/j.csl.2022.101386_b33) 2016; 28
Kamble (10.1016/j.csl.2022.101386_b39) 2018
Roy (10.1016/j.csl.2022.101386_b57) 2020; 102
Chakravarthi (10.1016/j.csl.2022.101386_b13) 2021
Balaji (10.1016/j.csl.2022.101386_b9) 2020
10.1016/j.csl.2022.101386_b77
Oriola (10.1016/j.csl.2022.101386_b49) 2020; 8
Ajees (10.1016/j.csl.2022.101386_b1) 2020
Hande (10.1016/j.csl.2022.101386_b34) 2021
10.1016/j.csl.2022.101386_b36
Zhang (10.1016/j.csl.2022.101386_b79) 2018
Devlin (10.1016/j.csl.2022.101386_b25) 2018
Febriana (10.1016/j.csl.2022.101386_b29) 2019
10.1016/j.csl.2022.101386_b54
Vaswani (10.1016/j.csl.2022.101386_b71) 2017
Sharma (10.1016/j.csl.2022.101386_b64) 2018
Conneau (10.1016/j.csl.2022.101386_b20) 2019
Fauzi (10.1016/j.csl.2022.101386_b28) 2018; 11
Warner (10.1016/j.csl.2022.101386_b73) 2012
Pathak (10.1016/j.csl.2022.101386_b51) 2021
Watanabe (10.1016/j.csl.2022.101386_b76) 2018; 6
Kalchbrenner (10.1016/j.csl.2022.101386_b38) 2014
Zhu (10.1016/j.csl.2022.101386_b81) 2020
Burnap (10.1016/j.csl.2022.101386_b12) 2015; 7
Das (10.1016/j.csl.2022.101386_b21) 2014
10.1016/j.csl.2022.101386_b44
10.1016/j.csl.2022.101386_b45
10.1016/j.csl.2022.101386_b46
10.1016/j.csl.2022.101386_b62
Veena (10.1016/j.csl.2022.101386_b72) 2020
Zhang (10.1016/j.csl.2022.101386_b78) 2019; 10
Ranasinghe (10.1016/j.csl.2022.101386_b53) 2020
10.1016/j.csl.2022.101386_b60
Sun (10.1016/j.csl.2022.101386_b68) 2019
Khanuja (10.1016/j.csl.2022.101386_b41) 2021
Gao (10.1016/j.csl.2022.101386_b31) 2017
Saha (10.1016/j.csl.2022.101386_b59) 2021
Pires (10.1016/j.csl.2022.101386_b52) 2019
Roy (10.1016/j.csl.2022.101386_b58) 2020; 8
Jayanthi (10.1016/j.csl.2022.101386_b37) 2021
Charitidis (10.1016/j.csl.2022.101386_b17) 2020; 17
Arora (10.1016/j.csl.2022.101386_b7) 2020
10.1016/j.csl.2022.101386_b19
Sanh (10.1016/j.csl.2022.101386_b61) 2019
Al-Hassan (10.1016/j.csl.2022.101386_b2) 2021
Singh (10.1016/j.csl.2022.101386_b65) 2020
10.1016/j.csl.2022.101386_b18
Baruah (10.1016/j.csl.2022.101386_b11) 2021
Chakravarthi (10.1016/j.csl.2022.101386_b15) 2020
References_xml – year: 2019
  ident: b20
  article-title: Unsupervised cross-lingual representation learning at scale
– reference: Li, Z., 2021. Codewithzichao@ DravidianLangTech-EACL2021: Exploring multilingual transformers for offensive language identification on code mixing text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 164–168.
– volume: 102
  start-page: 524
  year: 2020
  end-page: 533
  ident: b57
  article-title: Deep learning to filter sms spam
  publication-title: Future Gener. Comput. Syst.
– start-page: 350
  year: 2019
  end-page: 353
  ident: b69
  article-title: Offensive language detection using artificial neural network
  publication-title: 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT
– reference: Sreelakshmi, K., Premjith, B., Kp, S., 2021. Amrita_CEN_NLP@ DravidianLangTech-EACL2021: Deep learning-based offensive language identification in Malayalam, Tamil and Kannada. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 249–254.
– start-page: 21
  year: 2020
  end-page: 25
  ident: b10
  article-title: Comparison of pretrained embeddings to identify hate speech in Indian code-mixed text
  publication-title: 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, ICACCCN
– start-page: 233
  year: 2017
  end-page: 238
  ident: b4
  article-title: Hate speech detection in the Indonesian language: A dataset and preliminary study
  publication-title: 2017 International Conference on Advanced Computer Science and Information Systems, ICACSIS
– start-page: 260
  year: 2017
  end-page: 266
  ident: b31
  article-title: Detecting online hate speech using context aware models
– volume: 10
  start-page: 925
  year: 2019
  end-page: 945
  ident: b78
  article-title: Hate speech detection: A solved problem? The challenging case of long tail on twitter
  publication-title: Semantic Web J.
– volume: 47
  start-page: 805
  year: 2021
  end-page: 821
  ident: b5
  article-title: Intelligent detection of hate speech in Arabic social network: A machine learning approach
  publication-title: J. Inf. Sci.
– start-page: 411
  year: 2020
  end-page: 416
  ident: b65
  article-title: CFILT IIT Bombay@ HASOC-Dravidian-CodeMix FIRE 2020: Assisting ensemble of transformers with random transliteration
– start-page: 404
  year: 2020
  end-page: 410
  ident: b1
  article-title: Ajees@ HASOC-Dravidian-CodeMix-FIRE2020
– start-page: 1
  year: 2019
  end-page: 5
  ident: b47
  article-title: Fine-grained sentiment classification using BERT
  publication-title: 2019 Artificial Intelligence for Transforming Business and Society (AITB), vol. 1
– reference: Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M., 2017. Hate me, hate me not: Hate speech detection on Facebook. In: Proceedings of the First Italian Conference on Cybersecurity, ITASEC17. pp. 86–95.
– start-page: 745
  year: 2018
  end-page: 760
  ident: b79
  article-title: Detecting hate speech on twitter using a convolution-gru based deep neural network
  publication-title: European Semantic Web Conference
– reference: Badjatiya, P., Gupta, S., Gupta, M., Varma, V., 2017. Deep learning for hate speech detection in tweets. In: Proceedings of the 26th International Conference on World Wide Web Companion. pp. 759–760.
– year: 2021
  ident: b40
  article-title: Indicnlp@ kgp at DravidianLangTech-EACL2021: Offensive language identification in Dravidian languages
– year: 2019
  ident: b52
  article-title: How multilingual is multilingual BERT?
– start-page: 19
  year: 2012
  end-page: 26
  ident: b73
  article-title: Detecting hate speech on the world wide web
  publication-title: Proceedings of the Second Workshop on Language in Social Media
– reference: Chen, S., Kong, B., 2021. CS@ DravidianLangTech-EACL2021: Offensive language identification based on multilingual BERT model. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 230–235.
– start-page: 377
  year: 2020
  end-page: 383
  ident: b72
  article-title: CENMates@ HASOC-Dravidian-CodeMix-FIRE2020: Offensive language identification on code-mixed social media comments
– year: 2018
  ident: b25
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– year: 2021
  ident: b41
  article-title: MuRIL: Multilingual representations for Indian languages
– start-page: 336
  year: 2019
  end-page: 343
  ident: b48
  article-title: Deep at HASOC2019: A machine learning framework for hate speech and offensive language detection
– start-page: 194
  year: 2019
  end-page: 206
  ident: b68
  article-title: How to fine-tune BERT for text classification?
  publication-title: China National Conference on Chinese Computational Linguistics
– reference: Dave, B., Bhat, S., Majumder, P., 2021. IRNLP_DAIICT@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian languages using tf-idf char n-grams and MuRIL. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 266–269.
– year: 2020
  ident: b7
  article-title: Gauravarora@ HASOC-Dravidian-CodeMix-FIRE2020: Pre-training ULMFiT on synthetically generated code-mixed data for hate speech detection
– reference: Vasantharajan, C., Thayasivam, U., 2021. Hypers@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian code-mixed YouTube comments and posts. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 195–202.
– reference: Ghanghor, N., Ponnusamy, R., Kumaresan, P.K., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITK@ LT-EDI-EACL2021: Hope speech detection for equality, diversity, and inclusion in Tamil, Malayalam and English. In: Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion. pp. 197–203.
– start-page: 41
  year: 2017
  end-page: 45
  ident: b50
  article-title: One-step and two-step classification for abusive language detection on Twitter
– reference: Saumya, S., Kumar, A., Singh, J.P., 2021. Offensive language identification in Dravidian code mixed social media text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 36–45.
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b71
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: b16
  article-title: DravidianCodeMix: Sentiment analysis and offensive language identification dataset for Dravidian languages in code-mixed text
– reference: Dowlagar, S., Mamidi, R., 2021. Offlangone@ DravidianLangTech-EACL2021: Transformers with the class balanced loss for offensive language identification in Dravidian code-mixed text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 154–159.
– year: 2021
  ident: b34
  article-title: Benchmarking multi-task learning for sentiment analysis and offensive language identification in under-resourced Dravidian languages
– volume: 6
  start-page: 13825
  year: 2018
  end-page: 13835
  ident: b76
  article-title: Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 12
  ident: b2
  article-title: Detection of hate speech in Arabic tweets using deep learning
  publication-title: Multimedia Syst.
– volume: 11
  start-page: 294
  year: 2018
  end-page: 299
  ident: b28
  article-title: Ensemble method for Indonesian twitter hate speech detection
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 52
  start-page: 805
  year: 2020
  end-page: 821
  ident: b56
  article-title: Multilayer convolutional neural network to filter low quality content from Quora
  publication-title: Neural Process. Lett.
– year: 2014
  ident: b38
  article-title: A convolutional neural network for modelling sentences
– year: 2020
  ident: b53
  article-title: WLV-RIT@HASOC-Dravidian-CodeMix-FIRE2020: Offensive language identification in code-switched YouTube comments
– start-page: 1
  year: 2014
  end-page: 4
  ident: b21
  article-title: Opinion mining about a product by analyzing public tweets in Twitter
  publication-title: 2014 International Conference on Computer Communication and Informatics
– reference: Gambäck, B., Sikdar, U.K., 2017. Using convolutional neural networks to classify hate-speech. In: Proceedings of the First Workshop on Abusive Language Online. pp. 85–90.
– volume: 7
  start-page: 223
  year: 2015
  end-page: 242
  ident: b12
  article-title: Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making
  publication-title: Policy Internet
– start-page: 397
  year: 2020
  end-page: 403
  ident: b81
  article-title: Zyy1510@ HASOC-Dravidian-CodeMix-FIRE2020: An ensemble model for offensive language identification
– reference: Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B.R., Fransen, T., McCrae, J.P., 2020. A comparative study of different state-of-the-art hate speech detection methods in Hindi-English code-mixed data. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying. pp. 42–48.
– reference: Chowdhury, A.G., Didolkar, A., Sawhney, R., Shah, R., 2019. Arhnet-leveraging community interaction for detection of religious hate speech in Arabic. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. pp. 273–280.
– reference: Ibrohim, M.O., Budi, I., 2019. Multi-label hate speech and abusive language detection in Indonesian Twitter. In: Proceedings of the Third Workshop on Abusive Language Online. pp. 6–57.
– reference: Kwok, I., Wang, Y., 2013. Locate the hate: Detecting tweets against blacks. In: Twenty-Seventh AAAI Conference on Artificial Intelligence. pp. 1621–1622.
– volume: 8
  start-page: 204951
  year: 2020
  end-page: 204962
  ident: b58
  article-title: A framework for hate speech detection using deep convolutional neural network
  publication-title: IEEE Access
– year: 2019
  ident: b61
  article-title: DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter
– start-page: 15
  year: 2018
  ident: b67
  article-title: Alt-right’s’ twitter’is hate-speech hub
  publication-title: New Sci.
– start-page: 370
  year: 2020
  end-page: 376
  ident: b9
  article-title: SSNCSE_NLP@ HASOC-Dravidian-CodeMix-FIRE2020: Offensive language identification on multilingual code mixing text
– start-page: 384
  year: 2020
  end-page: 390
  ident: b42
  article-title: NITP-AI-NLP@ HASOC-Dravidian-codemix-FIRE2020: A machine learning approach to identify offensive languages from Dravidian code-mixed text
– reference: Sai, S., Sharma, Y., 2021. Towards offensive language identification for Dravidian languages. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 18–27.
– year: 2021
  ident: b11
  article-title: IIITG-ADBU@ HASOC-Dravidian-CodeMix-FIRE2020: Offensive content detection in code-mixed Dravidian text
– year: 2018
  ident: b39
  article-title: Hate speech detection from code-mixed Hindi-English tweets using deep learning models
– year: 2021
  ident: b35
  article-title: Offensive language identification in low-resourced code-mixed Dravidian languages using pseudo-labeling
– reference: Waseem, Z., 2016. Are you a racist or am i seeing things? Annotator influence on hate speech detection on Twitter. In: Proceedings of the First Workshop on NLP and Computational Social Science. pp. 138–142.
– start-page: 112
  year: 2020
  end-page: 120
  ident: b14
  article-title: Overview of the track on HASOC-Offensive language identification-DravidianCodeMix
– volume: 28
  start-page: 2222
  year: 2016
  end-page: 2232
  ident: b33
  article-title: LSTM: A Search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Liu, P., Li, W., Zou, L., 2019. Nuli at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers. In: Proceedings of the 13th International Workshop on Semantic Evaluation. pp. 87–91.
– year: 2021
  ident: b63
  article-title: NLP-CUET@ DravidianLangTech-EACL2021: Offensive language detection from multilingual code-mixed text using transformers
– start-page: 379
  year: 2019
  end-page: 382
  ident: b29
  article-title: Twitter dataset for hate speech and cyberbullying detection in Indonesian language
  publication-title: 2019 International Conference on Information Management and Technology, ICIMTech, vol. 1
– reference: Zhao, Y., Tao, X., 2021. Zyj123@ DravidianLangTech-EACL2021: Offensive language identification based on xlm-RoBERTa with DPCNN. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 216–221.
– start-page: 202
  year: 2020
  end-page: 210
  ident: b15
  article-title: Corpus creation for sentiment analysis in code-mixed Tamil-English text
  publication-title: Proceedings of the 1st Joint Workshop on Spoken Language Technologies for under-Resourced Languages, SLTU and Collaboration and Computing for under-Resourced Languages (CCURL)
– year: 2021
  ident: b37
  article-title: Sj_aj@ DravidianLangTech-EACL2021: Task-adaptive pre-training of multilingual bert models for offensive language identification
– year: 2021
  ident: b51
  article-title: KBCNMUJAL@ HASOC-Dravidian-CodeMix-FIRE2020: Using machine learning for detection of hate speech and offensive code-mixed social media text
– volume: 8
  start-page: 21496
  year: 2020
  end-page: 21509
  ident: b49
  article-title: Evaluating machine learning techniques for detecting offensive and hate speech in South African tweets
  publication-title: IEEE Access
– year: 2021
  ident: b59
  article-title: Hate-Alert@ DravidianLangTech-EACL2021: Ensembling strategies for transformer-based offensive language detection
– year: 2021
  ident: b13
  article-title: Overview of the HASOC-DravidianCodeMix shared task on offensive language detection in Tamil and Malayalam
  publication-title: Working Notes of FIRE 2021 - Forum for Information Retrieval Evaluation
– reference: Davidson, T., Warmsley, D., Macy, M., Weber, I., 2017. Automated hate speech detection and the problem of offensive language. In: Eleventh International Aaai Conference on Web and Social Media. pp. 512–515.
– reference: Yasaswini, K., Puranik, K., Hande, A., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITT@ DravidianLangTech-EACL2021: Transfer learning for offensive language detection in Dravidian languages.
– start-page: 69
  year: 2018
  end-page: 76
  ident: b3
  article-title: Are they our brothers? Analysis and detection of religious hate speech in the Arabic twittersphere
  publication-title: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM
– reference: Andrew, J.J., 2021. JudithJeyafreedaAndrew@ DravidianLangTech-EACL2021: Offensive language detection for Dravidian code-mixed YouTube comments. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 169–174.
– year: 2020
  ident: b55
  article-title: CUSATNLP@ HASOC-Dravidian-CodeMix-FIRE2020: Identifying offensive language from Manglish tweets
– reference: Waseem, Z., Hovy, D., 2016. Hateful symbols or hateful people? Predictive features for hate speech detection on Twitter. In: Proceedings of the NAACL Student Research Workshop. pp. 88–93.
– volume: 17
  start-page: 1
  year: 2020
  end-page: 10
  ident: b17
  article-title: Towards countering hate speech against journalists on social media
  publication-title: Online Soc. Netw. Media
– year: 2018
  ident: b64
  article-title: Degree based classification of harmful speech using Twitter data
– reference: Mandl, T., Modha, S., Kumar, M.A., Chakravarthi, B.R., 2020. Overview of the HASOC track at FIRE 2020: Hate speech and offensive language identification in Tamil, Malayalam, Hindi, English and German. In: Forum for Information Retrieval Evaluation. pp. 29–32.
– reference: Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N., 2015. Hate speech detection with comment embeddings. In: Proceedings of the 24th International Conference on World Wide Web. pp. 29–30.
– year: 2020
  ident: 10.1016/j.csl.2022.101386_b55
– volume: 17
  start-page: 1
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b17
  article-title: Towards countering hate speech against journalists on social media
  publication-title: Online Soc. Netw. Media
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b51
– ident: 10.1016/j.csl.2022.101386_b45
  doi: 10.18653/v1/S19-2011
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b34
– volume: 52
  start-page: 805
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b56
  article-title: Multilayer convolutional neural network to filter low quality content from Quora
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10284-x
– volume: 8
  start-page: 204951
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b58
  article-title: A framework for hate speech detection using deep convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037073
– start-page: 1
  year: 2021
  ident: 10.1016/j.csl.2022.101386_b2
  article-title: Detection of hate speech in Arabic tweets using deep learning
  publication-title: Multimedia Syst.
– ident: 10.1016/j.csl.2022.101386_b36
  doi: 10.18653/v1/W19-3506
– volume: 47
  start-page: 805
  issue: 4
  year: 2021
  ident: 10.1016/j.csl.2022.101386_b5
  article-title: Intelligent detection of hate speech in Arabic social network: A machine learning approach
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551520917651
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b16
– ident: 10.1016/j.csl.2022.101386_b66
– ident: 10.1016/j.csl.2022.101386_b70
  doi: 10.1007/s42979-021-00977-y
– year: 2019
  ident: 10.1016/j.csl.2022.101386_b20
– ident: 10.1016/j.csl.2022.101386_b24
– year: 2020
  ident: 10.1016/j.csl.2022.101386_b7
– year: 2019
  ident: 10.1016/j.csl.2022.101386_b52
– start-page: 69
  year: 2018
  ident: 10.1016/j.csl.2022.101386_b3
  article-title: Are they our brothers? Analysis and detection of religious hate speech in the Arabic twittersphere
– start-page: 336
  year: 2019
  ident: 10.1016/j.csl.2022.101386_b48
– start-page: 377
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b72
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b41
– ident: 10.1016/j.csl.2022.101386_b62
– year: 2018
  ident: 10.1016/j.csl.2022.101386_b64
– start-page: 21
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b10
  article-title: Comparison of pretrained embeddings to identify hate speech in Indian code-mixed text
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b37
– start-page: 112
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b14
– volume: 10
  start-page: 925
  year: 2019
  ident: 10.1016/j.csl.2022.101386_b78
  article-title: Hate speech detection: A solved problem? The challenging case of long tail on twitter
  publication-title: Semantic Web J.
– volume: 7
  start-page: 223
  year: 2015
  ident: 10.1016/j.csl.2022.101386_b12
  article-title: Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making
  publication-title: Policy Internet
  doi: 10.1002/poi3.85
– ident: 10.1016/j.csl.2022.101386_b23
  doi: 10.1609/icwsm.v11i1.14955
– start-page: 41
  year: 2017
  ident: 10.1016/j.csl.2022.101386_b50
– year: 2020
  ident: 10.1016/j.csl.2022.101386_b53
– ident: 10.1016/j.csl.2022.101386_b18
– start-page: 1
  year: 2014
  ident: 10.1016/j.csl.2022.101386_b21
  article-title: Opinion mining about a product by analyzing public tweets in Twitter
– ident: 10.1016/j.csl.2022.101386_b75
  doi: 10.18653/v1/N16-2013
– start-page: 202
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b15
  article-title: Corpus creation for sentiment analysis in code-mixed Tamil-English text
– ident: 10.1016/j.csl.2022.101386_b46
  doi: 10.1145/3441501.3441517
– ident: 10.1016/j.csl.2022.101386_b77
– ident: 10.1016/j.csl.2022.101386_b74
  doi: 10.18653/v1/W16-5618
– start-page: 1
  year: 2019
  ident: 10.1016/j.csl.2022.101386_b47
  article-title: Fine-grained sentiment classification using BERT
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b63
– start-page: 397
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b81
– ident: 10.1016/j.csl.2022.101386_b19
  doi: 10.18653/v1/P19-2038
– year: 2019
  ident: 10.1016/j.csl.2022.101386_b61
– ident: 10.1016/j.csl.2022.101386_b32
– start-page: 233
  year: 2017
  ident: 10.1016/j.csl.2022.101386_b4
  article-title: Hate speech detection in the Indonesian language: A dataset and preliminary study
– ident: 10.1016/j.csl.2022.101386_b8
  doi: 10.1145/3041021.3054223
– volume: 102
  start-page: 524
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b57
  article-title: Deep learning to filter sms spam
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.001
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b11
– ident: 10.1016/j.csl.2022.101386_b80
– ident: 10.1016/j.csl.2022.101386_b43
  doi: 10.1609/aaai.v27i1.8539
– start-page: 411
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b65
– start-page: 5998
  year: 2017
  ident: 10.1016/j.csl.2022.101386_b71
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.csl.2022.101386_b6
– start-page: 19
  year: 2012
  ident: 10.1016/j.csl.2022.101386_b73
  article-title: Detecting hate speech on the world wide web
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b13
  article-title: Overview of the HASOC-DravidianCodeMix shared task on offensive language detection in Tamil and Malayalam
– ident: 10.1016/j.csl.2022.101386_b22
– year: 2018
  ident: 10.1016/j.csl.2022.101386_b39
– volume: 28
  start-page: 2222
  year: 2016
  ident: 10.1016/j.csl.2022.101386_b33
  article-title: LSTM: A Search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b35
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b40
– start-page: 745
  year: 2018
  ident: 10.1016/j.csl.2022.101386_b79
  article-title: Detecting hate speech on twitter using a convolution-gru based deep neural network
– ident: 10.1016/j.csl.2022.101386_b26
  doi: 10.1145/2740908.2742760
– start-page: 384
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b42
– ident: 10.1016/j.csl.2022.101386_b54
– volume: 11
  start-page: 294
  year: 2018
  ident: 10.1016/j.csl.2022.101386_b28
  article-title: Ensemble method for Indonesian twitter hate speech detection
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– ident: 10.1016/j.csl.2022.101386_b60
– start-page: 194
  year: 2019
  ident: 10.1016/j.csl.2022.101386_b68
  article-title: How to fine-tune BERT for text classification?
– start-page: 370
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b9
– start-page: 260
  year: 2017
  ident: 10.1016/j.csl.2022.101386_b31
– volume: 6
  start-page: 13825
  year: 2018
  ident: 10.1016/j.csl.2022.101386_b76
  article-title: Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2806394
– year: 2014
  ident: 10.1016/j.csl.2022.101386_b38
– ident: 10.1016/j.csl.2022.101386_b44
– start-page: 404
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b1
– start-page: 15
  year: 2018
  ident: 10.1016/j.csl.2022.101386_b67
  article-title: Alt-right’s’ twitter’is hate-speech hub
  publication-title: New Sci.
  doi: 10.1016/S0262-4079(18)30377-4
– start-page: 350
  year: 2019
  ident: 10.1016/j.csl.2022.101386_b69
  article-title: Offensive language detection using artificial neural network
– ident: 10.1016/j.csl.2022.101386_b30
  doi: 10.18653/v1/W17-3013
– year: 2018
  ident: 10.1016/j.csl.2022.101386_b25
– ident: 10.1016/j.csl.2022.101386_b27
– start-page: 379
  year: 2019
  ident: 10.1016/j.csl.2022.101386_b29
  article-title: Twitter dataset for hate speech and cyberbullying detection in Indonesian language
– year: 2021
  ident: 10.1016/j.csl.2022.101386_b59
– volume: 8
  start-page: 21496
  year: 2020
  ident: 10.1016/j.csl.2022.101386_b49
  article-title: Evaluating machine learning techniques for detecting offensive and hate speech in South African tweets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968173
SSID ssj0006547
Score 2.5555034
Snippet Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101386
SubjectTerms BERT
Deep learning
Dravidian language
Hate speech
Low-resource
Offensive language
Transfer learning
Title Hate speech and offensive language detection in Dravidian languages using deep ensemble framework
URI https://dx.doi.org/10.1016/j.csl.2022.101386
Volume 75
WOSCitedRecordID wos000821456000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006547
  issn: 0885-2308
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQ5SUfOBGlytvJsYKiglCFRJH2Fk2ciXarbbpKsqX9Ef3PjOPYCVWL6IFLtEriSZTv2_G87GHsfZR6EsKStF9R9GlG6YIfoYthVsa-FJjohcLfxNFROp9n32ezK7MW5nwl6jq9uMjW_xVqOkdgq6Wzd4DbCqUT9JtApyPBTsd_Av6QrEenXSNKvWjtrKqGInUTm3RK7FCaKsdPjSprV_9zc711Nn0EoURcOzQWT9XyqsqUcU3tWdMUwjxQEcmIGXM5OtzXQC-wL-q2UYAF_OpbDjg_alzASFVSaLBSPoJOSKk23zVsSriEhmYEMv8RO1WRsGwX9TBqiF2Q22uKs0YVF7vkBKVTfSziiUL1VSY1uVHX67DDyZ5sVQopCPbGe__cV_vafGerEE2B20lOInIlItci7rHtQMQZKcnt_S8H8692aledmrVbol_bpMn7gsFr73GzoTMxXo6fsEeD18H3NVueshnWO-yxAY8PCn6HPZxsT_mMgaIS18hyohK3VOIGY26pxJc1t1Sy11veU4kr5LmhErdUes5-fj44_njoDi05XBlkonMr8EGENEd4ZVqqjsgiFFkZYSQjCDDJIJSegFiiILO0KDCtKgiSyq8ETSUAXviCbdVnNb5kPIQkESWZyxU5xSn6gGlSJOhJr6JxMtplnvl-uRz2q1dtU1b5rbjtsg92yFpv1vK3myMDSj5Ym9qKzIlgtw97dZdnvGYPRtq_YVtds8G37L4875Zt825g129CtqO8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hate+speech+and+offensive+language+detection+in+Dravidian+languages+using+deep+ensemble+framework&rft.jtitle=Computer+speech+%26+language&rft.au=Roy%2C+Pradeep+Kumar&rft.au=Bhawal%2C+Snehaan&rft.au=Subalalitha%2C+Chinnaudayar+Navaneethakrishnan&rft.date=2022-09-01&rft.issn=0885-2308&rft.volume=75&rft.spage=101386&rft_id=info:doi/10.1016%2Fj.csl.2022.101386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csl_2022_101386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-2308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-2308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-2308&client=summon