Hate speech and offensive language detection in Dravidian languages using deep ensemble framework
Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many more. On the other hand, it is also used for spreading rumors, bullying people, and abusing certain groups of people with hateful words. The hate...
Uložené v:
| Vydané v: | Computer speech & language Ročník 75; s. 101386 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.09.2022
|
| Predmet: | |
| ISSN: | 0885-2308, 1095-8363 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many more. On the other hand, it is also used for spreading rumors, bullying people, and abusing certain groups of people with hateful words. The hate and offensive posts must be detected and removed as early as possible from the social platforms because such posts are spread very quickly and tend to have a lot of negative impacts on human beings. In the last few years, offensive content and hate speech detection has become popular topic of research. Detecting hate speech on social platforms has many challenges, one of them being the use of code-mixed language. Majority of the social media users usually post their messages in code-mixed languages such as Hindi–English, Tamil–English, Malayalam–English, Telugu–English and others. In this exhaustive study, we explore and compare the use of various machine learning and deep learning approaches. An ensemble model by combining the outcomes of transformer and deep learning-based models is suggested to detect hate speech and offensive language on social networking platforms. The experimental outcomes of the proposed weighted ensemble framework outperformed state-of-the-art models by achieving 0.802 and 0.933 weighted F1-score for Malayalam and Tamil code-mixed datasets.
•Proposed a weighted ensemble framework for hate and offensive code-mixed posts identification on social platforms.•Two code-mixed datasets, namely Tamil and Malayalam, are used in this research.•The proposed model utilized the outcomes of deep learning and transformer-based models.•Transformer based models like m-BERT, distilBERT, xlm-RoBERTa performed better than the ML and DL based models. |
|---|---|
| AbstractList | Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many more. On the other hand, it is also used for spreading rumors, bullying people, and abusing certain groups of people with hateful words. The hate and offensive posts must be detected and removed as early as possible from the social platforms because such posts are spread very quickly and tend to have a lot of negative impacts on human beings. In the last few years, offensive content and hate speech detection has become popular topic of research. Detecting hate speech on social platforms has many challenges, one of them being the use of code-mixed language. Majority of the social media users usually post their messages in code-mixed languages such as Hindi–English, Tamil–English, Malayalam–English, Telugu–English and others. In this exhaustive study, we explore and compare the use of various machine learning and deep learning approaches. An ensemble model by combining the outcomes of transformer and deep learning-based models is suggested to detect hate speech and offensive language on social networking platforms. The experimental outcomes of the proposed weighted ensemble framework outperformed state-of-the-art models by achieving 0.802 and 0.933 weighted F1-score for Malayalam and Tamil code-mixed datasets.
•Proposed a weighted ensemble framework for hate and offensive code-mixed posts identification on social platforms.•Two code-mixed datasets, namely Tamil and Malayalam, are used in this research.•The proposed model utilized the outcomes of deep learning and transformer-based models.•Transformer based models like m-BERT, distilBERT, xlm-RoBERTa performed better than the ML and DL based models. |
| ArticleNumber | 101386 |
| Author | Roy, Pradeep Kumar Subalalitha, Chinnaudayar Navaneethakrishnan Bhawal, Snehaan |
| Author_xml | – sequence: 1 givenname: Pradeep Kumar orcidid: 0000-0001-5513-2834 surname: Roy fullname: Roy, Pradeep Kumar email: pkroynitp@gmail.com organization: Department of Computer Science & Engineering, Indian Institute of Information Technology, Surat, India – sequence: 2 givenname: Snehaan orcidid: 0000-0002-1072-5326 surname: Bhawal fullname: Bhawal, Snehaan email: mailtosnehaan@gmail.com organization: School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar Odisha, India – sequence: 3 givenname: Chinnaudayar Navaneethakrishnan surname: Subalalitha fullname: Subalalitha, Chinnaudayar Navaneethakrishnan email: subalalitha@gmail.com organization: Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6T4kcSJWKECLVIlNrC2pva4uKROZadF_D2Jiliw6Go0mntGumdCRqENSMgtZzPOeHm3nZnUzAQTYthlVV6QMWd1kVWylCMyZlVVZEKy6opMUtoyxsoiV2MCS-iQpj2i-aAQLG2dw5D8EWkDYXOADVKLHZrOt4H6QB8jHL31EP7uiR6SD5s-hnvas7hbN0hdhB1-tfHzmlw6aBLe_M4peX9-epsvs9Xr4mX-sMqMqFWXOeCgpGQFs5XlhVBKqtrmmJscBJY1SMMUFAYVV8V6jZVzIErHnWJKAjA5Jfz018Q2pYhO76PfQfzWnOnBkd7q3pEeHOmTo55R_xjjOxiqdhF8c5a8P5HYVzp6jDoZj8Gg9bGXpW3rz9A_ALmEsQ |
| CitedBy_id | crossref_primary_10_1038_s41598_025_88687_w crossref_primary_10_1515_lpp_2023_0019 crossref_primary_10_1016_j_ijedudev_2024_103081 crossref_primary_10_1016_j_eswa_2025_129756 crossref_primary_10_1007_s11042_023_14481_3 crossref_primary_10_1109_TNSE_2024_3398219 crossref_primary_10_3390_app131911000 crossref_primary_10_1007_s13042_025_02715_9 crossref_primary_10_1007_s11042_025_20716_2 crossref_primary_10_1016_j_engappai_2023_107239 crossref_primary_10_1109_TBDATA_2024_3445372 crossref_primary_10_1109_TCSS_2023_3236527 crossref_primary_10_1145_3653303 crossref_primary_10_1109_ACCESS_2023_3310244 crossref_primary_10_1145_3600229 crossref_primary_10_1177_08944393231161124 crossref_primary_10_1007_s13278_024_01361_3 crossref_primary_10_1016_j_engappai_2023_107143 crossref_primary_10_2478_ias_2024_0012 crossref_primary_10_1002_wics_1648 crossref_primary_10_1109_ACCESS_2025_3535694 crossref_primary_10_1007_s12597_025_00993_z crossref_primary_10_1007_s11227_023_05361_6 crossref_primary_10_1007_s00530_023_01051_8 crossref_primary_10_1016_j_datak_2025_102409 crossref_primary_10_1007_s11042_022_13918_5 crossref_primary_10_1108_JARHE_04_2024_0157 crossref_primary_10_1145_3711710 crossref_primary_10_1016_j_csl_2022_101464 crossref_primary_10_1093_comjnl_bxaf070 crossref_primary_10_1145_3712260 |
| Cites_doi | 10.18653/v1/S19-2011 10.1007/s11063-020-10284-x 10.1109/ACCESS.2020.3037073 10.18653/v1/W19-3506 10.1177/0165551520917651 10.1007/s42979-021-00977-y 10.1002/poi3.85 10.1609/icwsm.v11i1.14955 10.18653/v1/N16-2013 10.1145/3441501.3441517 10.18653/v1/W16-5618 10.18653/v1/P19-2038 10.1145/3041021.3054223 10.1016/j.future.2019.09.001 10.1609/aaai.v27i1.8539 10.1109/TNNLS.2016.2582924 10.1145/2740908.2742760 10.1109/ACCESS.2018.2806394 10.1016/S0262-4079(18)30377-4 10.18653/v1/W17-3013 10.1109/ACCESS.2020.2968173 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.csl.2022.101386 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1095-8363 |
| ExternalDocumentID | 10_1016_j_csl_2022_101386 S0885230822000250 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AACTN AADFP AAEDT AAEDW AAFJI AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABOYX ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACXNI ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFYLN AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMW HMY HVGLF HZ~ IHE J1W JJJVA KOM LG5 LX9 M3U M3X M41 MO0 MVM N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPS SSB SSO SSS SST SSV SSY SSZ T5K TN5 UHS WUQ XFK XPP YK3 ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-fa1a733050d8d15277379d4e4c4a2e69a3c07a5ce7175bbe8ffa26f1f7073aa03 |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821456000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-2308 |
| IngestDate | Sat Nov 29 07:14:56 EST 2025 Tue Nov 18 22:34:22 EST 2025 Fri Feb 23 02:41:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Hate speech Transfer learning Dravidian language Offensive language BERT Low-resource |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-fa1a733050d8d15277379d4e4c4a2e69a3c07a5ce7175bbe8ffa26f1f7073aa03 |
| ORCID | 0000-0002-1072-5326 0000-0001-5513-2834 |
| ParticipantIDs | crossref_primary_10_1016_j_csl_2022_101386 crossref_citationtrail_10_1016_j_csl_2022_101386 elsevier_sciencedirect_doi_10_1016_j_csl_2022_101386 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer speech & language |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Das, Acharjya, Patra (b21) 2014 Ranasinghe, Gupte, Zampieri, Nwogu (b53) 2020 Roy, Tripathy, Das, Gao (b58) 2020; 8 Jayanthi, Gupta (b37) 2021 Saumya, S., Kumar, A., Singh, J.P., 2021. Offensive language identification in Dravidian code mixed social media text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 36–45. Conneau, Khandelwal, Goyal, Chaudhary, Wenzek, Guzmán, Ott, Zettlemoyer, Stoyanov (b20) 2019 Fauzi, Yuniarti (b28) 2018; 11 Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N., 2015. Hate speech detection with comment embeddings. In: Proceedings of the 24th International Conference on World Wide Web. pp. 29–30. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b71) 2017 Waseem, Z., 2016. Are you a racist or am i seeing things? Annotator influence on hate speech detection on Twitter. In: Proceedings of the First Workshop on NLP and Computational Social Science. pp. 138–142. Hande, Puranik, Yasaswini, Priyadharshini, Thavareesan, Sampath, Shanmugavadivel, Thenmozhi, Chakravarthi (b35) 2021 Vasantharajan, C., Thayasivam, U., 2021. Hypers@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian code-mixed YouTube comments and posts. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 195–202. Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M., 2017. Hate me, hate me not: Hate speech detection on Facebook. In: Proceedings of the First Italian Conference on Cybersecurity, ITASEC17. pp. 86–95. Devlin, Chang, Lee, Toutanova (b25) 2018 Alfina, Mulia, Fanany, Ekanata (b4) 2017 Ghanghor, N., Ponnusamy, R., Kumaresan, P.K., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITK@ LT-EDI-EACL2021: Hope speech detection for equality, diversity, and inclusion in Tamil, Malayalam and English. In: Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion. pp. 197–203. Kedia, Nandy (b40) 2021 Zhao, Y., Tao, X., 2021. Zyj123@ DravidianLangTech-EACL2021: Offensive language identification based on xlm-RoBERTa with DPCNN. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 216–221. Al-Hassan, Al-Dossari (b2) 2021 Gambäck, B., Sikdar, U.K., 2017. Using convolutional neural networks to classify hate-speech. In: Proceedings of the First Workshop on Abusive Language Online. pp. 85–90. Susanty, Rahman, Normansyah, Irawan (b69) 2019 Febriana, Budiarto (b29) 2019 Kamble, Joshi (b39) 2018 Yasaswini, K., Puranik, K., Hande, A., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITT@ DravidianLangTech-EACL2021: Transfer learning for offensive language detection in Dravidian languages. Balaji, Bharathi (b9) 2020 Chakravarthi, M, McCrae, Premjith, Soman, Mandl (b14) 2020 Albadi, Kurdi, Mishra (b3) 2018 Dave, B., Bhat, S., Majumder, P., 2021. IRNLP_DAIICT@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian languages using tf-idf char n-grams and MuRIL. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 266–269. Badjatiya, P., Gupta, S., Gupta, M., Varma, V., 2017. Deep learning for hate speech detection in tweets. In: Proceedings of the 26th International Conference on World Wide Web Companion. pp. 759–760. Liu, P., Li, W., Zou, L., 2019. Nuli at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers. In: Proceedings of the 13th International Workshop on Semantic Evaluation. pp. 87–91. Roy (b56) 2020; 52 Zhu, Zhou (b81) 2020 Greff, Srivastava, Koutník, Schmidhuber (b33) 2016; 28 Renjit, Idicula (b55) 2020 Saha, Paharia, Chakraborty, Saha, Mukherjee (b59) 2021 Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B.R., Fransen, T., McCrae, J.P., 2020. A comparative study of different state-of-the-art hate speech detection methods in Hindi-English code-mixed data. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying. pp. 42–48. Charitidis, Doropoulos, Vologiannidis, Papastergiou, Karakeva (b17) 2020; 17 Pires, Schlinger, Garrette (b52) 2019 Chen, S., Kong, B., 2021. CS@ DravidianLangTech-EACL2021: Offensive language identification based on multilingual BERT model. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 230–235. Chowdhury, A.G., Didolkar, A., Sawhney, R., Shah, R., 2019. Arhnet-leveraging community interaction for detection of religious hate speech in Arabic. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. pp. 273–280. Oriola, Kotzé (b49) 2020; 8 Munikar, Shakya, Shrestha (b47) 2019 Kumar, Saumya, Singh (b42) 2020 Sanh, Debut, Chaumond, Wolf (b61) 2019 Waseem, Z., Hovy, D., 2016. Hateful symbols or hateful people? Predictive features for hate speech detection on Twitter. In: Proceedings of the NAACL Student Research Workshop. pp. 88–93. Kwok, I., Wang, Y., 2013. Locate the hate: Detecting tweets against blacks. In: Twenty-Seventh AAAI Conference on Artificial Intelligence. pp. 1621–1622. Roy, Singh, Banerjee (b57) 2020; 102 Li, Z., 2021. Codewithzichao@ DravidianLangTech-EACL2021: Exploring multilingual transformers for offensive language identification on code mixing text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 164–168. Sai, S., Sharma, Y., 2021. Towards offensive language identification for Dravidian languages. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 18–27. Baruah, Das, Barbhuiya, Dey (b11) 2021 Chakravarthi, Priyadharshini, Muralidaran, Jose, Suryawanshi, Sherly, McCrae (b16) 2021 Sharma, Agrawal, Shrivastava (b64) 2018 Sreelakshmi, K., Premjith, B., Kp, S., 2021. Amrita_CEN_NLP@ DravidianLangTech-EACL2021: Deep learning-based offensive language identification in Malayalam, Tamil and Kannada. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 249–254. Hande, Hegde, Priyadharshini, Ponnusamy, Kumaresan, Thavareesan, Chakravarthi (b34) 2021 Zhang, Luo (b78) 2019; 10 Davidson, T., Warmsley, D., Macy, M., Weber, I., 2017. Automated hate speech detection and the problem of offensive language. In: Eleventh International Aaai Conference on Web and Social Media. pp. 512–515. Ajees (b1) 2020 Burnap, Williams (b12) 2015; 7 Chakravarthi, Muralidaran, Priyadharshini, McCrae (b15) 2020 Ibrohim, M.O., Budi, I., 2019. Multi-label hate speech and abusive language detection in Indonesian Twitter. In: Proceedings of the Third Workshop on Abusive Language Online. pp. 6–57. Veena, Ramanan, G (b72) 2020 Banerjee, Chakravarthi, McCrae (b10) 2020 Sharif, Hossain, Hoque (b63) 2021 Watanabe, Bouazizi, Ohtsuki (b76) 2018; 6 Singh, Bhattacharyya (b65) 2020 Khanuja, Bansal, Mehtani, Khosla, Dey, Gopalan, Margam, Aggarwal, Nagipogu, Dave (b41) 2021 Nayel, Shashirekha (b48) 2019 Warner, Hirschberg (b73) 2012 Zhang, Robinson, Tepper (b79) 2018 Kalchbrenner, Grefenstette, Blunsom (b38) 2014 Gao, Huang (b31) 2017 Aljarah, Habib, Hijazi, Faris, Qaddoura, Hammo, Abushariah, Alfawareh (b5) 2021; 47 Andrew, J.J., 2021. JudithJeyafreedaAndrew@ DravidianLangTech-EACL2021: Offensive language detection for Dravidian code-mixed YouTube comments. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 169–174. Stokel-Walker (b67) 2018 Mandl, T., Modha, S., Kumar, M.A., Chakravarthi, B.R., 2020. Overview of the HASOC track at FIRE 2020: Hate speech and offensive language identification in Tamil, Malayalam, Hindi, English and German. In: Forum for Information Retrieval Evaluation. pp. 29–32. Park, Fung (b50) 2017 Dowlagar, S., Mamidi, R., 2021. Offlangone@ DravidianLangTech-EACL2021: Transformers with the class balanced loss for offensive language identification in Dravidian code-mixed text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 154–159. Chakravarthi, Kumaresan, Sakuntharaj, Madasamy, Thavareesan, B, Chinnaudayar Navaneethakrishnan, McCrae, Mandl (b13) 2021 Sun, Qiu, Xu, Huang (b68) 2019 Arora (b7) 2020 Pathak, Joshi, Joshi, Mundada, Joshi (b51) 2021 10.1016/j.csl.2022.101386_b30 10.1016/j.csl.2022.101386_b74 Nayel (10.1016/j.csl.2022.101386_b48) 2019 10.1016/j.csl.2022.101386_b75 10.1016/j.csl.2022.101386_b32 Alfina (10.1016/j.csl.2022.101386_b4) 2017 10.1016/j.csl.2022.101386_b70 10.1016/j.csl.2022.101386_b6 10.1016/j.csl.2022.101386_b8 Banerjee (10.1016/j.csl.2022.101386_b10) 2020 Susanty (10.1016/j.csl.2022.101386_b69) 2019 Chakravarthi (10.1016/j.csl.2022.101386_b14) 2020 Kumar (10.1016/j.csl.2022.101386_b42) 2020 Park (10.1016/j.csl.2022.101386_b50) 2017 Sharif (10.1016/j.csl.2022.101386_b63) 2021 Renjit (10.1016/j.csl.2022.101386_b55) 2020 Kedia (10.1016/j.csl.2022.101386_b40) 2021 Roy (10.1016/j.csl.2022.101386_b56) 2020; 52 Hande (10.1016/j.csl.2022.101386_b35) 2021 10.1016/j.csl.2022.101386_b26 10.1016/j.csl.2022.101386_b27 Albadi (10.1016/j.csl.2022.101386_b3) 2018 10.1016/j.csl.2022.101386_b22 10.1016/j.csl.2022.101386_b66 10.1016/j.csl.2022.101386_b23 10.1016/j.csl.2022.101386_b24 Stokel-Walker (10.1016/j.csl.2022.101386_b67) 2018 10.1016/j.csl.2022.101386_b43 Munikar (10.1016/j.csl.2022.101386_b47) 2019 10.1016/j.csl.2022.101386_b80 Chakravarthi (10.1016/j.csl.2022.101386_b16) 2021 Aljarah (10.1016/j.csl.2022.101386_b5) 2021; 47 Greff (10.1016/j.csl.2022.101386_b33) 2016; 28 Kamble (10.1016/j.csl.2022.101386_b39) 2018 Roy (10.1016/j.csl.2022.101386_b57) 2020; 102 Chakravarthi (10.1016/j.csl.2022.101386_b13) 2021 Balaji (10.1016/j.csl.2022.101386_b9) 2020 10.1016/j.csl.2022.101386_b77 Oriola (10.1016/j.csl.2022.101386_b49) 2020; 8 Ajees (10.1016/j.csl.2022.101386_b1) 2020 Hande (10.1016/j.csl.2022.101386_b34) 2021 10.1016/j.csl.2022.101386_b36 Zhang (10.1016/j.csl.2022.101386_b79) 2018 Devlin (10.1016/j.csl.2022.101386_b25) 2018 Febriana (10.1016/j.csl.2022.101386_b29) 2019 10.1016/j.csl.2022.101386_b54 Vaswani (10.1016/j.csl.2022.101386_b71) 2017 Sharma (10.1016/j.csl.2022.101386_b64) 2018 Conneau (10.1016/j.csl.2022.101386_b20) 2019 Fauzi (10.1016/j.csl.2022.101386_b28) 2018; 11 Warner (10.1016/j.csl.2022.101386_b73) 2012 Pathak (10.1016/j.csl.2022.101386_b51) 2021 Watanabe (10.1016/j.csl.2022.101386_b76) 2018; 6 Kalchbrenner (10.1016/j.csl.2022.101386_b38) 2014 Zhu (10.1016/j.csl.2022.101386_b81) 2020 Burnap (10.1016/j.csl.2022.101386_b12) 2015; 7 Das (10.1016/j.csl.2022.101386_b21) 2014 10.1016/j.csl.2022.101386_b44 10.1016/j.csl.2022.101386_b45 10.1016/j.csl.2022.101386_b46 10.1016/j.csl.2022.101386_b62 Veena (10.1016/j.csl.2022.101386_b72) 2020 Zhang (10.1016/j.csl.2022.101386_b78) 2019; 10 Ranasinghe (10.1016/j.csl.2022.101386_b53) 2020 10.1016/j.csl.2022.101386_b60 Sun (10.1016/j.csl.2022.101386_b68) 2019 Khanuja (10.1016/j.csl.2022.101386_b41) 2021 Gao (10.1016/j.csl.2022.101386_b31) 2017 Saha (10.1016/j.csl.2022.101386_b59) 2021 Pires (10.1016/j.csl.2022.101386_b52) 2019 Roy (10.1016/j.csl.2022.101386_b58) 2020; 8 Jayanthi (10.1016/j.csl.2022.101386_b37) 2021 Charitidis (10.1016/j.csl.2022.101386_b17) 2020; 17 Arora (10.1016/j.csl.2022.101386_b7) 2020 10.1016/j.csl.2022.101386_b19 Sanh (10.1016/j.csl.2022.101386_b61) 2019 Al-Hassan (10.1016/j.csl.2022.101386_b2) 2021 Singh (10.1016/j.csl.2022.101386_b65) 2020 10.1016/j.csl.2022.101386_b18 Baruah (10.1016/j.csl.2022.101386_b11) 2021 Chakravarthi (10.1016/j.csl.2022.101386_b15) 2020 |
| References_xml | – year: 2019 ident: b20 article-title: Unsupervised cross-lingual representation learning at scale – reference: Li, Z., 2021. Codewithzichao@ DravidianLangTech-EACL2021: Exploring multilingual transformers for offensive language identification on code mixing text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 164–168. – volume: 102 start-page: 524 year: 2020 end-page: 533 ident: b57 article-title: Deep learning to filter sms spam publication-title: Future Gener. Comput. Syst. – start-page: 350 year: 2019 end-page: 353 ident: b69 article-title: Offensive language detection using artificial neural network publication-title: 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT – reference: Sreelakshmi, K., Premjith, B., Kp, S., 2021. Amrita_CEN_NLP@ DravidianLangTech-EACL2021: Deep learning-based offensive language identification in Malayalam, Tamil and Kannada. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 249–254. – start-page: 21 year: 2020 end-page: 25 ident: b10 article-title: Comparison of pretrained embeddings to identify hate speech in Indian code-mixed text publication-title: 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, ICACCCN – start-page: 233 year: 2017 end-page: 238 ident: b4 article-title: Hate speech detection in the Indonesian language: A dataset and preliminary study publication-title: 2017 International Conference on Advanced Computer Science and Information Systems, ICACSIS – start-page: 260 year: 2017 end-page: 266 ident: b31 article-title: Detecting online hate speech using context aware models – volume: 10 start-page: 925 year: 2019 end-page: 945 ident: b78 article-title: Hate speech detection: A solved problem? The challenging case of long tail on twitter publication-title: Semantic Web J. – volume: 47 start-page: 805 year: 2021 end-page: 821 ident: b5 article-title: Intelligent detection of hate speech in Arabic social network: A machine learning approach publication-title: J. Inf. Sci. – start-page: 411 year: 2020 end-page: 416 ident: b65 article-title: CFILT IIT Bombay@ HASOC-Dravidian-CodeMix FIRE 2020: Assisting ensemble of transformers with random transliteration – start-page: 404 year: 2020 end-page: 410 ident: b1 article-title: Ajees@ HASOC-Dravidian-CodeMix-FIRE2020 – start-page: 1 year: 2019 end-page: 5 ident: b47 article-title: Fine-grained sentiment classification using BERT publication-title: 2019 Artificial Intelligence for Transforming Business and Society (AITB), vol. 1 – reference: Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M., 2017. Hate me, hate me not: Hate speech detection on Facebook. In: Proceedings of the First Italian Conference on Cybersecurity, ITASEC17. pp. 86–95. – start-page: 745 year: 2018 end-page: 760 ident: b79 article-title: Detecting hate speech on twitter using a convolution-gru based deep neural network publication-title: European Semantic Web Conference – reference: Badjatiya, P., Gupta, S., Gupta, M., Varma, V., 2017. Deep learning for hate speech detection in tweets. In: Proceedings of the 26th International Conference on World Wide Web Companion. pp. 759–760. – year: 2021 ident: b40 article-title: Indicnlp@ kgp at DravidianLangTech-EACL2021: Offensive language identification in Dravidian languages – year: 2019 ident: b52 article-title: How multilingual is multilingual BERT? – start-page: 19 year: 2012 end-page: 26 ident: b73 article-title: Detecting hate speech on the world wide web publication-title: Proceedings of the Second Workshop on Language in Social Media – reference: Chen, S., Kong, B., 2021. CS@ DravidianLangTech-EACL2021: Offensive language identification based on multilingual BERT model. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 230–235. – start-page: 377 year: 2020 end-page: 383 ident: b72 article-title: CENMates@ HASOC-Dravidian-CodeMix-FIRE2020: Offensive language identification on code-mixed social media comments – year: 2018 ident: b25 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – year: 2021 ident: b41 article-title: MuRIL: Multilingual representations for Indian languages – start-page: 336 year: 2019 end-page: 343 ident: b48 article-title: Deep at HASOC2019: A machine learning framework for hate speech and offensive language detection – start-page: 194 year: 2019 end-page: 206 ident: b68 article-title: How to fine-tune BERT for text classification? publication-title: China National Conference on Chinese Computational Linguistics – reference: Dave, B., Bhat, S., Majumder, P., 2021. IRNLP_DAIICT@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian languages using tf-idf char n-grams and MuRIL. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 266–269. – year: 2020 ident: b7 article-title: Gauravarora@ HASOC-Dravidian-CodeMix-FIRE2020: Pre-training ULMFiT on synthetically generated code-mixed data for hate speech detection – reference: Vasantharajan, C., Thayasivam, U., 2021. Hypers@ DravidianLangTech-EACL2021: Offensive language identification in Dravidian code-mixed YouTube comments and posts. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 195–202. – reference: Ghanghor, N., Ponnusamy, R., Kumaresan, P.K., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITK@ LT-EDI-EACL2021: Hope speech detection for equality, diversity, and inclusion in Tamil, Malayalam and English. In: Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion. pp. 197–203. – start-page: 41 year: 2017 end-page: 45 ident: b50 article-title: One-step and two-step classification for abusive language detection on Twitter – reference: Saumya, S., Kumar, A., Singh, J.P., 2021. Offensive language identification in Dravidian code mixed social media text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 36–45. – start-page: 5998 year: 2017 end-page: 6008 ident: b71 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2021 ident: b16 article-title: DravidianCodeMix: Sentiment analysis and offensive language identification dataset for Dravidian languages in code-mixed text – reference: Dowlagar, S., Mamidi, R., 2021. Offlangone@ DravidianLangTech-EACL2021: Transformers with the class balanced loss for offensive language identification in Dravidian code-mixed text. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 154–159. – year: 2021 ident: b34 article-title: Benchmarking multi-task learning for sentiment analysis and offensive language identification in under-resourced Dravidian languages – volume: 6 start-page: 13825 year: 2018 end-page: 13835 ident: b76 article-title: Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection publication-title: IEEE Access – start-page: 1 year: 2021 end-page: 12 ident: b2 article-title: Detection of hate speech in Arabic tweets using deep learning publication-title: Multimedia Syst. – volume: 11 start-page: 294 year: 2018 end-page: 299 ident: b28 article-title: Ensemble method for Indonesian twitter hate speech detection publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 52 start-page: 805 year: 2020 end-page: 821 ident: b56 article-title: Multilayer convolutional neural network to filter low quality content from Quora publication-title: Neural Process. Lett. – year: 2014 ident: b38 article-title: A convolutional neural network for modelling sentences – year: 2020 ident: b53 article-title: WLV-RIT@HASOC-Dravidian-CodeMix-FIRE2020: Offensive language identification in code-switched YouTube comments – start-page: 1 year: 2014 end-page: 4 ident: b21 article-title: Opinion mining about a product by analyzing public tweets in Twitter publication-title: 2014 International Conference on Computer Communication and Informatics – reference: Gambäck, B., Sikdar, U.K., 2017. Using convolutional neural networks to classify hate-speech. In: Proceedings of the First Workshop on Abusive Language Online. pp. 85–90. – volume: 7 start-page: 223 year: 2015 end-page: 242 ident: b12 article-title: Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making publication-title: Policy Internet – start-page: 397 year: 2020 end-page: 403 ident: b81 article-title: Zyy1510@ HASOC-Dravidian-CodeMix-FIRE2020: An ensemble model for offensive language identification – reference: Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B.R., Fransen, T., McCrae, J.P., 2020. A comparative study of different state-of-the-art hate speech detection methods in Hindi-English code-mixed data. In: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying. pp. 42–48. – reference: Chowdhury, A.G., Didolkar, A., Sawhney, R., Shah, R., 2019. Arhnet-leveraging community interaction for detection of religious hate speech in Arabic. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. pp. 273–280. – reference: Ibrohim, M.O., Budi, I., 2019. Multi-label hate speech and abusive language detection in Indonesian Twitter. In: Proceedings of the Third Workshop on Abusive Language Online. pp. 6–57. – reference: Kwok, I., Wang, Y., 2013. Locate the hate: Detecting tweets against blacks. In: Twenty-Seventh AAAI Conference on Artificial Intelligence. pp. 1621–1622. – volume: 8 start-page: 204951 year: 2020 end-page: 204962 ident: b58 article-title: A framework for hate speech detection using deep convolutional neural network publication-title: IEEE Access – year: 2019 ident: b61 article-title: DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter – start-page: 15 year: 2018 ident: b67 article-title: Alt-right’s’ twitter’is hate-speech hub publication-title: New Sci. – start-page: 370 year: 2020 end-page: 376 ident: b9 article-title: SSNCSE_NLP@ HASOC-Dravidian-CodeMix-FIRE2020: Offensive language identification on multilingual code mixing text – start-page: 384 year: 2020 end-page: 390 ident: b42 article-title: NITP-AI-NLP@ HASOC-Dravidian-codemix-FIRE2020: A machine learning approach to identify offensive languages from Dravidian code-mixed text – reference: Sai, S., Sharma, Y., 2021. Towards offensive language identification for Dravidian languages. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 18–27. – year: 2021 ident: b11 article-title: IIITG-ADBU@ HASOC-Dravidian-CodeMix-FIRE2020: Offensive content detection in code-mixed Dravidian text – year: 2018 ident: b39 article-title: Hate speech detection from code-mixed Hindi-English tweets using deep learning models – year: 2021 ident: b35 article-title: Offensive language identification in low-resourced code-mixed Dravidian languages using pseudo-labeling – reference: Waseem, Z., 2016. Are you a racist or am i seeing things? Annotator influence on hate speech detection on Twitter. In: Proceedings of the First Workshop on NLP and Computational Social Science. pp. 138–142. – start-page: 112 year: 2020 end-page: 120 ident: b14 article-title: Overview of the track on HASOC-Offensive language identification-DravidianCodeMix – volume: 28 start-page: 2222 year: 2016 end-page: 2232 ident: b33 article-title: LSTM: A Search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Liu, P., Li, W., Zou, L., 2019. Nuli at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers. In: Proceedings of the 13th International Workshop on Semantic Evaluation. pp. 87–91. – year: 2021 ident: b63 article-title: NLP-CUET@ DravidianLangTech-EACL2021: Offensive language detection from multilingual code-mixed text using transformers – start-page: 379 year: 2019 end-page: 382 ident: b29 article-title: Twitter dataset for hate speech and cyberbullying detection in Indonesian language publication-title: 2019 International Conference on Information Management and Technology, ICIMTech, vol. 1 – reference: Zhao, Y., Tao, X., 2021. Zyj123@ DravidianLangTech-EACL2021: Offensive language identification based on xlm-RoBERTa with DPCNN. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 216–221. – start-page: 202 year: 2020 end-page: 210 ident: b15 article-title: Corpus creation for sentiment analysis in code-mixed Tamil-English text publication-title: Proceedings of the 1st Joint Workshop on Spoken Language Technologies for under-Resourced Languages, SLTU and Collaboration and Computing for under-Resourced Languages (CCURL) – year: 2021 ident: b37 article-title: Sj_aj@ DravidianLangTech-EACL2021: Task-adaptive pre-training of multilingual bert models for offensive language identification – year: 2021 ident: b51 article-title: KBCNMUJAL@ HASOC-Dravidian-CodeMix-FIRE2020: Using machine learning for detection of hate speech and offensive code-mixed social media text – volume: 8 start-page: 21496 year: 2020 end-page: 21509 ident: b49 article-title: Evaluating machine learning techniques for detecting offensive and hate speech in South African tweets publication-title: IEEE Access – year: 2021 ident: b59 article-title: Hate-Alert@ DravidianLangTech-EACL2021: Ensembling strategies for transformer-based offensive language detection – year: 2021 ident: b13 article-title: Overview of the HASOC-DravidianCodeMix shared task on offensive language detection in Tamil and Malayalam publication-title: Working Notes of FIRE 2021 - Forum for Information Retrieval Evaluation – reference: Davidson, T., Warmsley, D., Macy, M., Weber, I., 2017. Automated hate speech detection and the problem of offensive language. In: Eleventh International Aaai Conference on Web and Social Media. pp. 512–515. – reference: Yasaswini, K., Puranik, K., Hande, A., Priyadharshini, R., Thavareesan, S., Chakravarthi, B.R., 2021. IIITT@ DravidianLangTech-EACL2021: Transfer learning for offensive language detection in Dravidian languages. – start-page: 69 year: 2018 end-page: 76 ident: b3 article-title: Are they our brothers? Analysis and detection of religious hate speech in the Arabic twittersphere publication-title: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM – reference: Andrew, J.J., 2021. JudithJeyafreedaAndrew@ DravidianLangTech-EACL2021: Offensive language detection for Dravidian code-mixed YouTube comments. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages. pp. 169–174. – year: 2020 ident: b55 article-title: CUSATNLP@ HASOC-Dravidian-CodeMix-FIRE2020: Identifying offensive language from Manglish tweets – reference: Waseem, Z., Hovy, D., 2016. Hateful symbols or hateful people? Predictive features for hate speech detection on Twitter. In: Proceedings of the NAACL Student Research Workshop. pp. 88–93. – volume: 17 start-page: 1 year: 2020 end-page: 10 ident: b17 article-title: Towards countering hate speech against journalists on social media publication-title: Online Soc. Netw. Media – year: 2018 ident: b64 article-title: Degree based classification of harmful speech using Twitter data – reference: Mandl, T., Modha, S., Kumar, M.A., Chakravarthi, B.R., 2020. Overview of the HASOC track at FIRE 2020: Hate speech and offensive language identification in Tamil, Malayalam, Hindi, English and German. In: Forum for Information Retrieval Evaluation. pp. 29–32. – reference: Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N., 2015. Hate speech detection with comment embeddings. In: Proceedings of the 24th International Conference on World Wide Web. pp. 29–30. – year: 2020 ident: 10.1016/j.csl.2022.101386_b55 – volume: 17 start-page: 1 year: 2020 ident: 10.1016/j.csl.2022.101386_b17 article-title: Towards countering hate speech against journalists on social media publication-title: Online Soc. Netw. Media – year: 2021 ident: 10.1016/j.csl.2022.101386_b51 – ident: 10.1016/j.csl.2022.101386_b45 doi: 10.18653/v1/S19-2011 – year: 2021 ident: 10.1016/j.csl.2022.101386_b34 – volume: 52 start-page: 805 year: 2020 ident: 10.1016/j.csl.2022.101386_b56 article-title: Multilayer convolutional neural network to filter low quality content from Quora publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10284-x – volume: 8 start-page: 204951 year: 2020 ident: 10.1016/j.csl.2022.101386_b58 article-title: A framework for hate speech detection using deep convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037073 – start-page: 1 year: 2021 ident: 10.1016/j.csl.2022.101386_b2 article-title: Detection of hate speech in Arabic tweets using deep learning publication-title: Multimedia Syst. – ident: 10.1016/j.csl.2022.101386_b36 doi: 10.18653/v1/W19-3506 – volume: 47 start-page: 805 issue: 4 year: 2021 ident: 10.1016/j.csl.2022.101386_b5 article-title: Intelligent detection of hate speech in Arabic social network: A machine learning approach publication-title: J. Inf. Sci. doi: 10.1177/0165551520917651 – year: 2021 ident: 10.1016/j.csl.2022.101386_b16 – ident: 10.1016/j.csl.2022.101386_b66 – ident: 10.1016/j.csl.2022.101386_b70 doi: 10.1007/s42979-021-00977-y – year: 2019 ident: 10.1016/j.csl.2022.101386_b20 – ident: 10.1016/j.csl.2022.101386_b24 – year: 2020 ident: 10.1016/j.csl.2022.101386_b7 – year: 2019 ident: 10.1016/j.csl.2022.101386_b52 – start-page: 69 year: 2018 ident: 10.1016/j.csl.2022.101386_b3 article-title: Are they our brothers? Analysis and detection of religious hate speech in the Arabic twittersphere – start-page: 336 year: 2019 ident: 10.1016/j.csl.2022.101386_b48 – start-page: 377 year: 2020 ident: 10.1016/j.csl.2022.101386_b72 – year: 2021 ident: 10.1016/j.csl.2022.101386_b41 – ident: 10.1016/j.csl.2022.101386_b62 – year: 2018 ident: 10.1016/j.csl.2022.101386_b64 – start-page: 21 year: 2020 ident: 10.1016/j.csl.2022.101386_b10 article-title: Comparison of pretrained embeddings to identify hate speech in Indian code-mixed text – year: 2021 ident: 10.1016/j.csl.2022.101386_b37 – start-page: 112 year: 2020 ident: 10.1016/j.csl.2022.101386_b14 – volume: 10 start-page: 925 year: 2019 ident: 10.1016/j.csl.2022.101386_b78 article-title: Hate speech detection: A solved problem? The challenging case of long tail on twitter publication-title: Semantic Web J. – volume: 7 start-page: 223 year: 2015 ident: 10.1016/j.csl.2022.101386_b12 article-title: Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making publication-title: Policy Internet doi: 10.1002/poi3.85 – ident: 10.1016/j.csl.2022.101386_b23 doi: 10.1609/icwsm.v11i1.14955 – start-page: 41 year: 2017 ident: 10.1016/j.csl.2022.101386_b50 – year: 2020 ident: 10.1016/j.csl.2022.101386_b53 – ident: 10.1016/j.csl.2022.101386_b18 – start-page: 1 year: 2014 ident: 10.1016/j.csl.2022.101386_b21 article-title: Opinion mining about a product by analyzing public tweets in Twitter – ident: 10.1016/j.csl.2022.101386_b75 doi: 10.18653/v1/N16-2013 – start-page: 202 year: 2020 ident: 10.1016/j.csl.2022.101386_b15 article-title: Corpus creation for sentiment analysis in code-mixed Tamil-English text – ident: 10.1016/j.csl.2022.101386_b46 doi: 10.1145/3441501.3441517 – ident: 10.1016/j.csl.2022.101386_b77 – ident: 10.1016/j.csl.2022.101386_b74 doi: 10.18653/v1/W16-5618 – start-page: 1 year: 2019 ident: 10.1016/j.csl.2022.101386_b47 article-title: Fine-grained sentiment classification using BERT – year: 2021 ident: 10.1016/j.csl.2022.101386_b63 – start-page: 397 year: 2020 ident: 10.1016/j.csl.2022.101386_b81 – ident: 10.1016/j.csl.2022.101386_b19 doi: 10.18653/v1/P19-2038 – year: 2019 ident: 10.1016/j.csl.2022.101386_b61 – ident: 10.1016/j.csl.2022.101386_b32 – start-page: 233 year: 2017 ident: 10.1016/j.csl.2022.101386_b4 article-title: Hate speech detection in the Indonesian language: A dataset and preliminary study – ident: 10.1016/j.csl.2022.101386_b8 doi: 10.1145/3041021.3054223 – volume: 102 start-page: 524 year: 2020 ident: 10.1016/j.csl.2022.101386_b57 article-title: Deep learning to filter sms spam publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.09.001 – year: 2021 ident: 10.1016/j.csl.2022.101386_b11 – ident: 10.1016/j.csl.2022.101386_b80 – ident: 10.1016/j.csl.2022.101386_b43 doi: 10.1609/aaai.v27i1.8539 – start-page: 411 year: 2020 ident: 10.1016/j.csl.2022.101386_b65 – start-page: 5998 year: 2017 ident: 10.1016/j.csl.2022.101386_b71 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.csl.2022.101386_b6 – start-page: 19 year: 2012 ident: 10.1016/j.csl.2022.101386_b73 article-title: Detecting hate speech on the world wide web – year: 2021 ident: 10.1016/j.csl.2022.101386_b13 article-title: Overview of the HASOC-DravidianCodeMix shared task on offensive language detection in Tamil and Malayalam – ident: 10.1016/j.csl.2022.101386_b22 – year: 2018 ident: 10.1016/j.csl.2022.101386_b39 – volume: 28 start-page: 2222 year: 2016 ident: 10.1016/j.csl.2022.101386_b33 article-title: LSTM: A Search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – year: 2021 ident: 10.1016/j.csl.2022.101386_b35 – year: 2021 ident: 10.1016/j.csl.2022.101386_b40 – start-page: 745 year: 2018 ident: 10.1016/j.csl.2022.101386_b79 article-title: Detecting hate speech on twitter using a convolution-gru based deep neural network – ident: 10.1016/j.csl.2022.101386_b26 doi: 10.1145/2740908.2742760 – start-page: 384 year: 2020 ident: 10.1016/j.csl.2022.101386_b42 – ident: 10.1016/j.csl.2022.101386_b54 – volume: 11 start-page: 294 year: 2018 ident: 10.1016/j.csl.2022.101386_b28 article-title: Ensemble method for Indonesian twitter hate speech detection publication-title: Indones. J. Electr. Eng. Comput. Sci. – ident: 10.1016/j.csl.2022.101386_b60 – start-page: 194 year: 2019 ident: 10.1016/j.csl.2022.101386_b68 article-title: How to fine-tune BERT for text classification? – start-page: 370 year: 2020 ident: 10.1016/j.csl.2022.101386_b9 – start-page: 260 year: 2017 ident: 10.1016/j.csl.2022.101386_b31 – volume: 6 start-page: 13825 year: 2018 ident: 10.1016/j.csl.2022.101386_b76 article-title: Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2806394 – year: 2014 ident: 10.1016/j.csl.2022.101386_b38 – ident: 10.1016/j.csl.2022.101386_b44 – start-page: 404 year: 2020 ident: 10.1016/j.csl.2022.101386_b1 – start-page: 15 year: 2018 ident: 10.1016/j.csl.2022.101386_b67 article-title: Alt-right’s’ twitter’is hate-speech hub publication-title: New Sci. doi: 10.1016/S0262-4079(18)30377-4 – start-page: 350 year: 2019 ident: 10.1016/j.csl.2022.101386_b69 article-title: Offensive language detection using artificial neural network – ident: 10.1016/j.csl.2022.101386_b30 doi: 10.18653/v1/W17-3013 – year: 2018 ident: 10.1016/j.csl.2022.101386_b25 – ident: 10.1016/j.csl.2022.101386_b27 – start-page: 379 year: 2019 ident: 10.1016/j.csl.2022.101386_b29 article-title: Twitter dataset for hate speech and cyberbullying detection in Indonesian language – year: 2021 ident: 10.1016/j.csl.2022.101386_b59 – volume: 8 start-page: 21496 year: 2020 ident: 10.1016/j.csl.2022.101386_b49 article-title: Evaluating machine learning techniques for detecting offensive and hate speech in South African tweets publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968173 |
| SSID | ssj0006547 |
| Score | 2.5555034 |
| Snippet | Social networking platforms gained widespread popularity and are used for various activities like: promoting products, sharing news, achievements and many... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101386 |
| SubjectTerms | BERT Deep learning Dravidian language Hate speech Low-resource Offensive language Transfer learning |
| Title | Hate speech and offensive language detection in Dravidian languages using deep ensemble framework |
| URI | https://dx.doi.org/10.1016/j.csl.2022.101386 |
| Volume | 75 |
| WOSCitedRecordID | wos000821456000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006547 issn: 0885-2308 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQ5SUfOBGlytvJsYKiglCFRJH2Fk2ciXarbbpKsqX9Ef3PjOPYCVWL6IFLtEriSZTv2_G87GHsfZR6EsKStF9R9GlG6YIfoYthVsa-FJjohcLfxNFROp9n32ezK7MW5nwl6jq9uMjW_xVqOkdgq6Wzd4DbCqUT9JtApyPBTsd_Av6QrEenXSNKvWjtrKqGInUTm3RK7FCaKsdPjSprV_9zc711Nn0EoURcOzQWT9XyqsqUcU3tWdMUwjxQEcmIGXM5OtzXQC-wL-q2UYAF_OpbDjg_alzASFVSaLBSPoJOSKk23zVsSriEhmYEMv8RO1WRsGwX9TBqiF2Q22uKs0YVF7vkBKVTfSziiUL1VSY1uVHX67DDyZ5sVQopCPbGe__cV_vafGerEE2B20lOInIlItci7rHtQMQZKcnt_S8H8692aledmrVbol_bpMn7gsFr73GzoTMxXo6fsEeD18H3NVueshnWO-yxAY8PCn6HPZxsT_mMgaIS18hyohK3VOIGY26pxJc1t1Sy11veU4kr5LmhErdUes5-fj44_njoDi05XBlkonMr8EGENEd4ZVqqjsgiFFkZYSQjCDDJIJSegFiiILO0KDCtKgiSyq8ETSUAXviCbdVnNb5kPIQkESWZyxU5xSn6gGlSJOhJr6JxMtplnvl-uRz2q1dtU1b5rbjtsg92yFpv1vK3myMDSj5Ym9qKzIlgtw97dZdnvGYPRtq_YVtds8G37L4875Zt825g129CtqO8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hate+speech+and+offensive+language+detection+in+Dravidian+languages+using+deep+ensemble+framework&rft.jtitle=Computer+speech+%26+language&rft.au=Roy%2C+Pradeep+Kumar&rft.au=Bhawal%2C+Snehaan&rft.au=Subalalitha%2C+Chinnaudayar+Navaneethakrishnan&rft.date=2022-09-01&rft.issn=0885-2308&rft.volume=75&rft.spage=101386&rft_id=info:doi/10.1016%2Fj.csl.2022.101386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csl_2022_101386 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-2308&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-2308&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-2308&client=summon |