Parameter identification algorithm for ship manoeuvrability and wave peak model based multi-innovation stochastic gradient algorithm use data filtering technique
This paper addresses the issue of identifying ship motion parameters and wave peak frequency. Utilising the Euler discretisation principle, we establish a discrete-time auto-regressive moving average model with exogenous input (ARMAX) for the ship-wave system. Furthermore, we develop a filtering-bas...
Gespeichert in:
| Veröffentlicht in: | Digital signal processing Jg. 148; S. 104445 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.05.2024
|
| Schlagworte: | |
| ISSN: | 1051-2004, 1095-4333 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper addresses the issue of identifying ship motion parameters and wave peak frequency. Utilising the Euler discretisation principle, we establish a discrete-time auto-regressive moving average model with exogenous input (ARMAX) for the ship-wave system. Furthermore, we develop a filtering-based stochastic gradient algorithm for the system by applying filtering techniques and auxiliary model identification idea. A filtering-based multi-innovation stochastic gradient algorithm, utilizing the multi-innovation identification theory, was developed to enhance the convergence rate and accuracy of parameter identification. This approach was found to be more effective than the filtering-based stochastic gradient algorithm. Simulation results validate the efficacy of the proposed algorithm in parameter identification.
•Based on the Eulerian discretization idea, a ship-wave discrete-time autoregressive moving average model with exogenous inputs is derived.•Introducing the filtering technique and the auxiliary model identification idea, a filtered stochastic gradient algorithm is proposed.•A filtering-based multi-innovation stochastic gradient algorithm is proposed based on filtered stochastic gradient identification. |
|---|---|
| ISSN: | 1051-2004 1095-4333 |
| DOI: | 10.1016/j.dsp.2024.104445 |