An adaptive threshold-based semi-supervised learning method for cardiovascular disease detection

Deep cardiovascular disease (CVD) detection usually achieves good performance with large-scale labeled electrocardiograms (ECGs), but manual labeling of ECGs is tedious. Semi-supervised learning (SSL) aims to improve model performance through unlabeled data. In this study, an adaptive threshold-base...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 677; s. 120881
Hlavní autoři: Shi, Jiguang, Li, Zhoutong, Liu, Wenhan, Zhang, Huaicheng, Luo, Deyu, Ge, Yue, Chang, Sheng, Wang, Hao, He, Jin, Huang, Qijun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2024
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep cardiovascular disease (CVD) detection usually achieves good performance with large-scale labeled electrocardiograms (ECGs), but manual labeling of ECGs is tedious. Semi-supervised learning (SSL) aims to improve model performance through unlabeled data. In this study, an adaptive threshold-based semi-supervised learning model (ATSS-LGP) is proposed. It introduces the multibranch network (MBN) to generate local and global predictions for 12-lead ECG. The labeled ECGs are used to train the model in supervised manner and produce adaptive thresholds through the proposed prediction voting decision mechanism. The unlabeled ECGs are divided into high-confidence and low-confidence parts by the adaptive thresholds. The pseudo-labeling technique and consistency regularization are used to jointly guide the unsupervised learning, which can fully utilize all unlabeled ECGs. To the best of our knowledge, this is the first SSL algorithm that explores adaptive threshold in ECG. ATSS-LGP shows impressive performance in CVD detection. Using the same number of labeled ECGs, it achieves at least a 5.15% increase in accuracy over pure supervised learning. Moreover, ATSS-LGP achieves comparable performance to fully supervised method using only 10% of labeled ECGs. In summary, ATSS-LGP is a suitable SSL algorithm for 12-lead ECGs, which can greatly reduce the burden of ECG labeling in deep learning.
AbstractList Deep cardiovascular disease (CVD) detection usually achieves good performance with large-scale labeled electrocardiograms (ECGs), but manual labeling of ECGs is tedious. Semi-supervised learning (SSL) aims to improve model performance through unlabeled data. In this study, an adaptive threshold-based semi-supervised learning model (ATSS-LGP) is proposed. It introduces the multibranch network (MBN) to generate local and global predictions for 12-lead ECG. The labeled ECGs are used to train the model in supervised manner and produce adaptive thresholds through the proposed prediction voting decision mechanism. The unlabeled ECGs are divided into high-confidence and low-confidence parts by the adaptive thresholds. The pseudo-labeling technique and consistency regularization are used to jointly guide the unsupervised learning, which can fully utilize all unlabeled ECGs. To the best of our knowledge, this is the first SSL algorithm that explores adaptive threshold in ECG. ATSS-LGP shows impressive performance in CVD detection. Using the same number of labeled ECGs, it achieves at least a 5.15% increase in accuracy over pure supervised learning. Moreover, ATSS-LGP achieves comparable performance to fully supervised method using only 10% of labeled ECGs. In summary, ATSS-LGP is a suitable SSL algorithm for 12-lead ECGs, which can greatly reduce the burden of ECG labeling in deep learning.
ArticleNumber 120881
Author Shi, Jiguang
Luo, Deyu
Li, Zhoutong
Ge, Yue
Zhang, Huaicheng
Chang, Sheng
He, Jin
Huang, Qijun
Liu, Wenhan
Wang, Hao
Author_xml – sequence: 1
  givenname: Jiguang
  surname: Shi
  fullname: Shi, Jiguang
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 2
  givenname: Zhoutong
  surname: Li
  fullname: Li, Zhoutong
  organization: Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
– sequence: 3
  givenname: Wenhan
  surname: Liu
  fullname: Liu, Wenhan
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 4
  givenname: Huaicheng
  surname: Zhang
  fullname: Zhang, Huaicheng
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 5
  givenname: Deyu
  surname: Luo
  fullname: Luo, Deyu
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 6
  givenname: Yue
  surname: Ge
  fullname: Ge, Yue
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 7
  givenname: Sheng
  orcidid: 0000-0003-4875-5501
  surname: Chang
  fullname: Chang, Sheng
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 8
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 9
  givenname: Jin
  surname: He
  fullname: He, Jin
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
– sequence: 10
  givenname: Qijun
  orcidid: 0000-0001-9679-5191
  surname: Huang
  fullname: Huang, Qijun
  email: huangqj@whu.edu.cn
  organization: School of Physics and Technology, Wuhan University, Wuhan, 430072, China
BookMark eNp9kMtqAzEMRb1IoUnaD-jOPzBT25knXYXQFwS6adeuxpYbh4kdbGegf98Z0lUWWQkJHaF7FmTmvENCHjjLOePV4z63LuaCiSLngjUNn5E5Y4JlTJTlLVnEuGeMFXVVzcn32lHQcEx2QJp2AePO9zrrIKKmEQ82i6cjhsFOfY8QnHU_9IBp5zU1PlAFQVs_QFSnHgLV4-LIUo0JVbLe3ZEbA33E-_-6JF8vz5-bt2z78fq-WW8zJdo6ZaZd6dIYzk2pwHBtOqWqoih4A01XIevGWal5qzvRdJ0uWQ1KcSwMrEzTtPVqSerzXRV8jAGNVDbB9EEKYHvJmZzkyL0c5chJjjzLGUl-QR6DPUD4vco8nRkcIw0Wg4zKolOobRhzS-3tFfoPS6mEnQ
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106228
crossref_primary_10_1016_j_knosys_2025_113173
crossref_primary_10_1016_j_ins_2024_121788
Cites_doi 10.1016/j.eswa.2020.113411
10.1007/s10489-021-02696-6
10.1038/s41597-020-0495-6
10.1109/MCAS.2012.2221521
10.1109/JBHI.2021.3060433
10.1109/JBHI.2019.2910082
10.1056/NEJMra022700
10.1016/j.cmpb.2019.105138
10.1016/j.eswa.2023.121723
10.1038/s41597-020-0386-x
10.1038/s41591-018-0268-3
10.1016/j.ins.2017.04.012
10.1016/j.knosys.2021.107187
10.3390/bios12010015
10.1016/j.cmpb.2021.106379
10.1016/j.compbiomed.2021.105114
10.1109/JBHI.2022.3173655
10.1038/s41467-020-15432-4
10.1016/j.compbiomed.2019.103378
10.1109/JBHI.2020.2980454
10.1038/s41551-022-00914-1
10.1109/JBHI.2018.2858789
10.1016/j.bspc.2021.102771
10.1016/j.engappai.2023.106230
10.3390/electronics9010121
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.120881
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10_1016_j_ins_2024_120881
S0020025524007953
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-f93d5ff11f5caf1dfbcc644418a8b6e0bf1d5d19db28bbd507acc1e4fa3f88973
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302601600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 02:44:14 EST 2025
Tue Nov 18 21:58:01 EST 2025
Sat Dec 28 15:52:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cardiovascular disease detection
Semi-supervised learning (SSL)
Adaptive threshold
Electrocardiogram (ECG)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f93d5ff11f5caf1dfbcc644418a8b6e0bf1d5d19db28bbd507acc1e4fa3f88973
ORCID 0000-0001-9679-5191
0000-0003-4875-5501
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2024_120881
crossref_primary_10_1016_j_ins_2024_120881
elsevier_sciencedirect_doi_10_1016_j_ins_2024_120881
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ebrahimi, Loni, Daneshtalab, Gharehbaghi (br0070) 2020; 7
Cai, Chen, Guo, Han, Shi, Ji, Wang, Zhang, Luo (br0220) 2020; 116
Han, Shi (br0190) 2020; 185
Wang, Chen, Heng, Hou, Fan, Wu, Wang, Savvides, Shinozaki, Raj (br0330) 2022
Ribeiro, Ribeiro, Paixão, Oliveira, Gomes, Canazart, Ferreira, Andersson, Macfarlane, Meira (br0170) 2020; 11
Zhai, Zhou, Tin (br0370) 2020; 158
Zimetbaum, Josephson (br0030) 2003; 348
Bachman, Alsharif, Precup (br0310) 2014; 27
Tang, Xiao, Zhang, Lei, Wang, Xu (br0050) 2024; 237
Wang, Tang, Lei (br0060) 2023; 123
Van der Maaten, Hinton (br0500) 2008; 9
Li, Yang, Liu, Wu (br0090) 2012; 12
Otto (br0020) 2012
Hu, Yang, Hu, Nevatia (br0450) 2021
Gao, Zhang, Lu, Wang (br0120) 2019
Zhang, Wang, Hou, Wu, Wang, Okumura, Shinozaki (br0280) 2021; 34
Hammad, Alkinani, Gupta, El-Latif (br0200) 2021
Sohn, Zhang, Li, Zhang, Lee, Pfister (br0440) 2020
Xu, Shang, Ye, Qian, Li, Sun, Li, Jin (br0340) 2021
Mehari, Strodthoff (br0460) 2022; 141
Simonyan, Zisserman (br0480) 2014
Lai, Bu, Su, Zhang, Ma (br0160) 2020; 24
Liu, Ji, Chang, Wang, He, Huang (br0380) 2021; 12
Zheng, Zhang, Danioko, Yao, Guo, Rakovski (br0420) 2020; 7
Fan, Yao, Cai, Miao, Sun, Li (br0150) 2018; 22
Berthelot, Carlini, Goodfellow, Papernot, Oliver, Raffel (br0260) 2019; 32
Krishnan, Rajpurkar, Topol (br0230) 2022; 6
Krizhevsky, Hinton (br0320) 2009
Krizhevsky, Sutskever, Hinton (br0470) 2012; 25
Mensah, Roth, Fuster (br0010) 2019
Grandvalet, Bengio (br0240) 2004; 17
Lee (br0250) 2013
Laine, Aila (br0300) 2016
Ying, Zhang, Pan, Chu, Liu (br0350) 2023; 35
Liu, Wang, Huang, Chang, Wang, He (br0410) 2019; 24
Wagner, Strodthoff, Bousseljot, Kreiseler, Lunze, Samek, Schaeffter (br0430) 2020; 7
Cao, Wei, Zhang, Lin, Rodrigues, Li, Zhang (br0400) 2021; 25
Yang, Tong, Chen, Zhou (br0100) 2022; 70
Sohn, Berthelot, Carlini, Zhang, Zhang, Raffel, Cubuk, Kurakin, Li (br0270) 2020; 33
Liu, Wang, Li, Qin (br0040) 2021; 227
Tong, Ma, Chen, Wei, Shi (br0080) 2023
Zhang, Chen, Lin, Wu, Yang, Li (br0360) 2022; 26
He, Yuan, An, Zhao, Du (br0390) 2021; 210
Acharya, Fujita, Lih, Hagiwara, Tan, Adam (br0140) 2017; 405
Rai, Chatterjee (br0180) 2022; 52
Sajjadi, Javanmardi, Tasdizen (br0290) 2016; 29
Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (br0210) 2019; 25
Liu, Jin, Liu, Qin, Lin, Shi, Tao, Zhao, Liu (br0110) 2021; 68
Zheng, Chen, Hu, Zhu, Tang, Liang (br0130) 2020; 9
He, Zhang, Ren, Sun (br0490) 2016
Krishnan (10.1016/j.ins.2024.120881_br0230) 2022; 6
Van der Maaten (10.1016/j.ins.2024.120881_br0500) 2008; 9
Zhang (10.1016/j.ins.2024.120881_br0360) 2022; 26
Zimetbaum (10.1016/j.ins.2024.120881_br0030) 2003; 348
Tang (10.1016/j.ins.2024.120881_br0050) 2024; 237
He (10.1016/j.ins.2024.120881_br0390) 2021; 210
Ebrahimi (10.1016/j.ins.2024.120881_br0070) 2020; 7
Zheng (10.1016/j.ins.2024.120881_br0130) 2020; 9
Acharya (10.1016/j.ins.2024.120881_br0140) 2017; 405
Hammad (10.1016/j.ins.2024.120881_br0200) 2021
Xu (10.1016/j.ins.2024.120881_br0340) 2021
Ying (10.1016/j.ins.2024.120881_br0350) 2023; 35
Fan (10.1016/j.ins.2024.120881_br0150) 2018; 22
Lee (10.1016/j.ins.2024.120881_br0250) 2013
Krizhevsky (10.1016/j.ins.2024.120881_br0320) 2009
Ribeiro (10.1016/j.ins.2024.120881_br0170) 2020; 11
Sohn (10.1016/j.ins.2024.120881_br0270) 2020; 33
Liu (10.1016/j.ins.2024.120881_br0040) 2021; 227
Zheng (10.1016/j.ins.2024.120881_br0420) 2020; 7
Hu (10.1016/j.ins.2024.120881_br0450) 2021
Rai (10.1016/j.ins.2024.120881_br0180) 2022; 52
Yang (10.1016/j.ins.2024.120881_br0100) 2022; 70
Mehari (10.1016/j.ins.2024.120881_br0460) 2022; 141
Lai (10.1016/j.ins.2024.120881_br0160) 2020; 24
Liu (10.1016/j.ins.2024.120881_br0110) 2021; 68
Gao (10.1016/j.ins.2024.120881_br0120) 2019
Wang (10.1016/j.ins.2024.120881_br0330)
Hannun (10.1016/j.ins.2024.120881_br0210) 2019; 25
Han (10.1016/j.ins.2024.120881_br0190) 2020; 185
Li (10.1016/j.ins.2024.120881_br0090) 2012; 12
Cao (10.1016/j.ins.2024.120881_br0400) 2021; 25
Mensah (10.1016/j.ins.2024.120881_br0010) 2019
Liu (10.1016/j.ins.2024.120881_br0380) 2021; 12
Wagner (10.1016/j.ins.2024.120881_br0430) 2020; 7
Zhai (10.1016/j.ins.2024.120881_br0370) 2020; 158
Simonyan (10.1016/j.ins.2024.120881_br0480)
Bachman (10.1016/j.ins.2024.120881_br0310) 2014; 27
Krizhevsky (10.1016/j.ins.2024.120881_br0470) 2012; 25
Laine (10.1016/j.ins.2024.120881_br0300)
Tong (10.1016/j.ins.2024.120881_br0080) 2023
Grandvalet (10.1016/j.ins.2024.120881_br0240) 2004; 17
Berthelot (10.1016/j.ins.2024.120881_br0260) 2019; 32
Otto (10.1016/j.ins.2024.120881_br0020) 2012
Zhang (10.1016/j.ins.2024.120881_br0280) 2021; 34
Wang (10.1016/j.ins.2024.120881_br0060) 2023; 123
Cai (10.1016/j.ins.2024.120881_br0220) 2020; 116
He (10.1016/j.ins.2024.120881_br0490) 2016
Liu (10.1016/j.ins.2024.120881_br0410) 2019; 24
Sohn (10.1016/j.ins.2024.120881_br0440)
Sajjadi (10.1016/j.ins.2024.120881_br0290) 2016; 29
References_xml – year: 2022
  ident: br0330
  article-title: Freematch: self-adaptive thresholding for semi-supervised learning
– volume: 33
  start-page: 596
  year: 2020
  end-page: 608
  ident: br0270
  article-title: Fixmatch: simplifying semi-supervised learning with consistency and confidence
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  year: 2004
  ident: br0240
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 11525
  year: 2021
  end-page: 11536
  ident: br0340
  article-title: Dash: semi-supervised learning with dynamic thresholding
  publication-title: International Conference on Machine Learning
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0490
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 33
  year: 2012
  end-page: 46
  ident: br0090
  article-title: Bridging time series dynamics and complex network theory with application to electrocardiogram analysis
  publication-title: IEEE Circuits Syst. Mag.
– volume: 7
  start-page: 154
  year: 2020
  ident: br0430
  article-title: Ptb-xl, a large publicly available electrocardiography dataset
  publication-title: Sci. Data
– volume: 123
  year: 2023
  ident: br0060
  article-title: A q-learning artificial bee colony for distributed assembly flow shop scheduling with factory eligibility, transportation capacity and setup time
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2021
  end-page: 13
  ident: br0200
  article-title: Myocardial infarction detection based on deep neural network on imbalanced data
  publication-title: Multimed. Syst.
– volume: 52
  start-page: 5366
  year: 2022
  end-page: 5384
  ident: br0180
  article-title: Hybrid cnn-lstm deep learning model and ensemble technique for automatic detection of myocardial infarction using big ecg data
  publication-title: Appl. Intell.
– start-page: 2019
  year: 2019
  ident: br0120
  article-title: An effective lstm recurrent network to detect arrhythmia on imbalanced ecg dataset
  publication-title: J. Healthcare Eng.
– volume: 116
  year: 2020
  ident: br0220
  article-title: Accurate detection of atrial fibrillation from 12-lead ecg using deep neural network
  publication-title: Comput. Biol. Med.
– volume: 32
  year: 2019
  ident: br0260
  article-title: Mixmatch: a holistic approach to semi-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 1744
  year: 2018
  end-page: 1753
  ident: br0150
  article-title: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ecg recordings
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 896
  year: 2013
  ident: br0250
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Workshop on Challenges in Representation Learning, ICML, vol. 3
– volume: 29
  year: 2016
  ident: br0290
  article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 503
  year: 2019
  end-page: 514
  ident: br0410
  article-title: Mfb-cbrnn: a hybrid network for mi detection using 12-lead ecgs
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 11
  start-page: 1760
  year: 2020
  ident: br0170
  article-title: Automatic diagnosis of the 12-lead ecg using a deep neural network
  publication-title: Nat. Commun.
– volume: 25
  year: 2012
  ident: br0470
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 26
  start-page: 3791
  year: 2022
  end-page: 3801
  ident: br0360
  article-title: Semi-supervised learning for automatic atrial fibrillation detection in 24-hour holter monitoring
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 9
  start-page: 121
  year: 2020
  ident: br0130
  article-title: An automatic diagnosis of arrhythmias using a combination of cnn and lstm technology
  publication-title: Electronics
– volume: 6
  start-page: 1346
  year: 2022
  end-page: 1352
  ident: br0230
  article-title: Self-supervised learning in medicine and healthcare
  publication-title: Nature Biomed. Eng.
– volume: 68
  year: 2021
  ident: br0110
  article-title: Precise and efficient heartbeat classification using a novel lightweight-modified method
  publication-title: Biomed. Signal Process. Control
– year: 2016
  ident: br0300
  article-title: Temporal ensembling for semi-supervised learning
– volume: 227
  year: 2021
  ident: br0040
  article-title: Deep learning in ecg diagnosis: a review
  publication-title: Knowl.-Based Syst.
– year: 2009
  ident: br0320
  article-title: Learning Multiple Layers of Features from Tiny Images
– volume: 185
  year: 2020
  ident: br0190
  article-title: Ml–resnet: a novel network to detect and locate myocardial infarction using 12 leads ecg
  publication-title: Comput. Methods Programs Biomed.
– volume: 348
  start-page: 933
  year: 2003
  end-page: 940
  ident: br0030
  article-title: Use of the electrocardiogram in acute myocardial infarction
  publication-title: N. Engl. J. Med.
– year: 2019
  ident: br0010
  article-title: The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond
– volume: 24
  start-page: 1569
  year: 2020
  end-page: 1578
  ident: br0160
  article-title: Non-standardized patch-based ecg lead together with deep learning based algorithm for automatic screening of atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 25
  start-page: 3721
  year: 2021
  end-page: 3731
  ident: br0400
  article-title: Ml-net: multi-channel lightweight network for detecting myocardial infarction
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: br0140
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 9
  year: 2008
  ident: br0500
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 141
  year: 2022
  ident: br0460
  article-title: Self-supervised representation learning from 12-lead ecg data
  publication-title: Comput. Biol. Med.
– volume: 237
  year: 2024
  ident: br0050
  article-title: A dql-nsga-iii algorithm for solving the flexible job shop dynamic scheduling problem
  publication-title: Expert Syst. Appl.
– year: 2012
  ident: br0020
  article-title: Practice of Clinical Echocardiography e-Book
– volume: 70
  start-page: 1555
  year: 2022
  end-page: 1559
  ident: br0100
  article-title: Fixed-time synchronization and energy consumption for kuramoto-oscillator networks with multilayer distributed control
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 7
  start-page: 48
  year: 2020
  ident: br0420
  article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients
  publication-title: Sci. Data
– volume: 35
  year: 2023
  ident: br0350
  article-title: Fedecg: a federated semi-supervised learning framework for electrocardiogram abnormalities prediction
  publication-title: J. King Saud Univ, Comput. Inf. Sci.
– start-page: 15099
  year: 2021
  end-page: 15108
  ident: br0450
  article-title: Simple: similar pseudo label exploitation for semi-supervised classification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: br0080
  article-title: Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 25
  start-page: 65
  year: 2019
  end-page: 69
  ident: br0210
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
– volume: 27
  year: 2014
  ident: br0310
  article-title: Learning with pseudo-ensembles
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: br0440
  article-title: A simple semi-supervised learning framework for object detection
– year: 2014
  ident: br0480
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 158
  year: 2020
  ident: br0370
  article-title: Semi-supervised learning for ecg classification without patient-specific labeled data
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 15
  year: 2021
  ident: br0380
  article-title: Evombn: evolving multi-branch networks on myocardial infarction diagnosis using 12-lead electrocardiograms
  publication-title: Biosensors
– volume: 7
  start-page: 100033
  year: 2020
  ident: br0070
  article-title: A review on deep learning methods for ecg arrhythmia classification
  publication-title: Expert Syst. Appl.
– volume: 210
  year: 2021
  ident: br0390
  article-title: Mfb-lann: a lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning
  publication-title: Comput. Methods Programs Biomed.
– volume: 34
  start-page: 18408
  year: 2021
  end-page: 18419
  ident: br0280
  article-title: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 70
  start-page: 1555
  issue: 4
  year: 2022
  ident: 10.1016/j.ins.2024.120881_br0100
  article-title: Fixed-time synchronization and energy consumption for kuramoto-oscillator networks with multilayer distributed control
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 158
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0370
  article-title: Semi-supervised learning for ecg classification without patient-specific labeled data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113411
– volume: 52
  start-page: 5366
  issue: 5
  year: 2022
  ident: 10.1016/j.ins.2024.120881_br0180
  article-title: Hybrid cnn-lstm deep learning model and ensemble technique for automatic detection of myocardial infarction using big ecg data
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02696-6
– start-page: 770
  year: 2016
  ident: 10.1016/j.ins.2024.120881_br0490
  article-title: Deep residual learning for image recognition
– year: 2019
  ident: 10.1016/j.ins.2024.120881_br0010
– volume: 7
  start-page: 154
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0430
  article-title: Ptb-xl, a large publicly available electrocardiography dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0495-6
– volume: 12
  start-page: 33
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2024.120881_br0090
  article-title: Bridging time series dynamics and complex network theory with application to electrocardiogram analysis
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2012.2221521
– volume: 25
  start-page: 3721
  issue: 10
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0400
  article-title: Ml-net: multi-channel lightweight network for detecting myocardial infarction
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3060433
– volume: 24
  start-page: 503
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2024.120881_br0410
  article-title: Mfb-cbrnn: a hybrid network for mi detection using 12-lead ecgs
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2910082
– volume: 348
  start-page: 933
  issue: 10
  year: 2003
  ident: 10.1016/j.ins.2024.120881_br0030
  article-title: Use of the electrocardiogram in acute myocardial infarction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra022700
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.ins.2024.120881_br0500
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.ins.2024.120881_br0480
– volume: 34
  start-page: 18408
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0280
  article-title: Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 596
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0270
  article-title: Fixmatch: simplifying semi-supervised learning with consistency and confidence
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 185
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0190
  article-title: Ml–resnet: a novel network to detect and locate myocardial infarction using 12 leads ecg
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105138
– volume: 237
  year: 2024
  ident: 10.1016/j.ins.2024.120881_br0050
  article-title: A dql-nsga-iii algorithm for solving the flexible job shop dynamic scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121723
– volume: 7
  start-page: 48
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0420
  article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0386-x
– year: 2023
  ident: 10.1016/j.ins.2024.120881_br0080
  article-title: Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– start-page: 11525
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0340
  article-title: Dash: semi-supervised learning with dynamic thresholding
– volume: 25
  start-page: 65
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2024.120881_br0210
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0200
  article-title: Myocardial infarction detection based on deep neural network on imbalanced data
  publication-title: Multimed. Syst.
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.ins.2024.120881_br0140
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 227
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0040
  article-title: Deep learning in ecg diagnosis: a review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107187
– volume: 12
  start-page: 15
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0380
  article-title: Evombn: evolving multi-branch networks on myocardial infarction diagnosis using 12-lead electrocardiograms
  publication-title: Biosensors
  doi: 10.3390/bios12010015
– volume: 210
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0390
  article-title: Mfb-lann: a lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106379
– start-page: 2019
  year: 2019
  ident: 10.1016/j.ins.2024.120881_br0120
  article-title: An effective lstm recurrent network to detect arrhythmia on imbalanced ecg dataset
  publication-title: J. Healthcare Eng.
– volume: 141
  year: 2022
  ident: 10.1016/j.ins.2024.120881_br0460
  article-title: Self-supervised representation learning from 12-lead ecg data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105114
– volume: 26
  start-page: 3791
  issue: 8
  year: 2022
  ident: 10.1016/j.ins.2024.120881_br0360
  article-title: Semi-supervised learning for automatic atrial fibrillation detection in 24-hour holter monitoring
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3173655
– ident: 10.1016/j.ins.2024.120881_br0300
– volume: 29
  year: 2016
  ident: 10.1016/j.ins.2024.120881_br0290
  article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 15099
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0450
  article-title: Simple: similar pseudo label exploitation for semi-supervised classification
– volume: 11
  start-page: 1760
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0170
  article-title: Automatic diagnosis of the 12-lead ecg using a deep neural network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15432-4
– volume: 116
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0220
  article-title: Accurate detection of atrial fibrillation from 12-lead ecg using deep neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103378
– volume: 24
  start-page: 1569
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0160
  article-title: Non-standardized patch-based ecg lead together with deep learning based algorithm for automatic screening of atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2980454
– volume: 6
  start-page: 1346
  issue: 12
  year: 2022
  ident: 10.1016/j.ins.2024.120881_br0230
  article-title: Self-supervised learning in medicine and healthcare
  publication-title: Nature Biomed. Eng.
  doi: 10.1038/s41551-022-00914-1
– volume: 27
  year: 2014
  ident: 10.1016/j.ins.2024.120881_br0310
  article-title: Learning with pseudo-ensembles
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.ins.2024.120881_br0440
– volume: 17
  year: 2004
  ident: 10.1016/j.ins.2024.120881_br0240
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 100033
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0070
  article-title: A review on deep learning methods for ecg arrhythmia classification
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 1744
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2024.120881_br0150
  article-title: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ecg recordings
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2858789
– volume: 25
  year: 2012
  ident: 10.1016/j.ins.2024.120881_br0470
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.ins.2024.120881_br0330
– volume: 68
  year: 2021
  ident: 10.1016/j.ins.2024.120881_br0110
  article-title: Precise and efficient heartbeat classification using a novel lightweight-modified method
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102771
– volume: 123
  year: 2023
  ident: 10.1016/j.ins.2024.120881_br0060
  article-title: A q-learning artificial bee colony for distributed assembly flow shop scheduling with factory eligibility, transportation capacity and setup time
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106230
– volume: 32
  year: 2019
  ident: 10.1016/j.ins.2024.120881_br0260
  article-title: Mixmatch: a holistic approach to semi-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  issue: 6
  year: 2023
  ident: 10.1016/j.ins.2024.120881_br0350
  article-title: Fedecg: a federated semi-supervised learning framework for electrocardiogram abnormalities prediction
  publication-title: J. King Saud Univ, Comput. Inf. Sci.
– year: 2012
  ident: 10.1016/j.ins.2024.120881_br0020
– year: 2009
  ident: 10.1016/j.ins.2024.120881_br0320
– volume: 9
  start-page: 121
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2024.120881_br0130
  article-title: An automatic diagnosis of arrhythmias using a combination of cnn and lstm technology
  publication-title: Electronics
  doi: 10.3390/electronics9010121
– start-page: 896
  year: 2013
  ident: 10.1016/j.ins.2024.120881_br0250
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
SSID ssj0004766
Score 2.4624882
Snippet Deep cardiovascular disease (CVD) detection usually achieves good performance with large-scale labeled electrocardiograms (ECGs), but manual labeling of ECGs...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120881
SubjectTerms Adaptive threshold
Cardiovascular disease detection
Electrocardiogram (ECG)
Semi-supervised learning (SSL)
Title An adaptive threshold-based semi-supervised learning method for cardiovascular disease detection
URI https://dx.doi.org/10.1016/j.ins.2024.120881
Volume 677
WOSCitedRecordID wos001302601600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8IBggxhjyA-KByihOnMZ5rNDQmNCExEAVL8GfW6eSVWsy7c_f2XE-Wm2IPfAStZZzjXq_nM_n390h9E4zFiVcRCQ1PnTDKMmFVoQLYaTMqOS-2PPPr9nxMZ_N8m-jUd3mwlwtsrLk19f58r-qGsZA2S519h7q7oTCAHwGpcMV1A7Xf1L8tBwLLZaeElSBplbugIm41UqPV-bPnKzqpTMQ7vuiDYw0jaQ951CtM1TDCc5Ym8qztsqhOxuSmTyGwlra-ejffbvg8dH8tBZheXTEHz_46-yiBqdzMFp7sp8pz3q0drHsw1o4wmqYHkIUMesIcn3KQETc5mVodiehfUtjOGkM5o7eatOb8MI5bERcefWYfeznrtfP3ljXOrZhS2Q7L0BE4UQUjYgHaDvO0hzs-fb0y8HsqE-ozZpD7va52-NwTwzceI7bHZqBk3LyFD0Juws8bVDxDI1MuYMeD2pO7qD9kKmC3-OB9nCw8c_R72mJW_zgDfzgDfzgFj-4wQ8GeXgdPzjgB3f4eYF-fD44-XRIQhsOouI8q4jNE51aS6lNlbBUW6kUeNGMcsHlxEQSxlJNcy1jLqWGDYZQihpmRWI5z7PkJdoqL0rzCmE6iXNGIwsOkWWZZlIznYh44sIGGWw0dlHU_peFCjXqXauURXGnDnfRh-6WZVOg5W-TWaugIrwVjedYANjuvu31fX5jDz3q34E3aKu6rM0-eqiuqvnq8m1A2g1q0p9k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+threshold-based+semi-supervised+learning+method+for+cardiovascular+disease+detection&rft.jtitle=Information+sciences&rft.au=Shi%2C+Jiguang&rft.au=Li%2C+Zhoutong&rft.au=Liu%2C+Wenhan&rft.au=Zhang%2C+Huaicheng&rft.date=2024-08-01&rft.issn=0020-0255&rft.volume=677&rft.spage=120881&rft_id=info:doi/10.1016%2Fj.ins.2024.120881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2024_120881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon