Parallel and distributed association rule mining in life science: A novel parallel algorithm to mine genomics data

•A parallel algorithm for Association rule mining.•Association rule mining of genomics data.•A dynamic workload balancing algorithm for FP-Growth. Association rule mining (ARM) is largely employed in several scientific areas and application domains, and many different algorithms for learning associa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 575; s. 747 - 761
Hlavní autori: Agapito, Giuseppe, Guzzi, Pietro Hiram, Cannataro, Mario
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.10.2021
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A parallel algorithm for Association rule mining.•Association rule mining of genomics data.•A dynamic workload balancing algorithm for FP-Growth. Association rule mining (ARM) is largely employed in several scientific areas and application domains, and many different algorithms for learning association rules from databases have been introduced. Despite the presence of many existing algorithms, there is still room for the introduction of novel approaches tailored for novel kinds of datasets. Because often the efficiency of such algorithms depends on the type of analyzed dataset. For instance, classical ARM algorithms present some drawbacks for biological datasets produced by microarray technologies in particular containing Single Nucleotide Polymorphisms (SNPs). In particular classical algorithms require large execution times also with small datasets. Therefore the possibility to improve the performance of such algorithms by leveraging parallel computing is a growing research area. The main contributions of this paper are: a comparison among different sequential, parallels and distributed ARM techniques, and the presentation of a novel ARM algorithm, named Balanced Parallel Association Rule Extractor from SNPs (BPARES), that employs parallel computing and a novel balancing strategy to improve response time. BPARES improves performance without loosing in accuracy as well as it handles more efficiently the available computational power and reduces the memory consumption.
AbstractList •A parallel algorithm for Association rule mining.•Association rule mining of genomics data.•A dynamic workload balancing algorithm for FP-Growth. Association rule mining (ARM) is largely employed in several scientific areas and application domains, and many different algorithms for learning association rules from databases have been introduced. Despite the presence of many existing algorithms, there is still room for the introduction of novel approaches tailored for novel kinds of datasets. Because often the efficiency of such algorithms depends on the type of analyzed dataset. For instance, classical ARM algorithms present some drawbacks for biological datasets produced by microarray technologies in particular containing Single Nucleotide Polymorphisms (SNPs). In particular classical algorithms require large execution times also with small datasets. Therefore the possibility to improve the performance of such algorithms by leveraging parallel computing is a growing research area. The main contributions of this paper are: a comparison among different sequential, parallels and distributed ARM techniques, and the presentation of a novel ARM algorithm, named Balanced Parallel Association Rule Extractor from SNPs (BPARES), that employs parallel computing and a novel balancing strategy to improve response time. BPARES improves performance without loosing in accuracy as well as it handles more efficiently the available computational power and reduces the memory consumption.
Author Cannataro, Mario
Guzzi, Pietro Hiram
Agapito, Giuseppe
Author_xml – sequence: 1
  givenname: Giuseppe
  surname: Agapito
  fullname: Agapito, Giuseppe
  email: agapito@unicz.it
– sequence: 2
  givenname: Pietro Hiram
  surname: Guzzi
  fullname: Guzzi, Pietro Hiram
  email: hguzzi@unicz.it
– sequence: 3
  givenname: Mario
  orcidid: 0000-0003-1502-2387
  surname: Cannataro
  fullname: Cannataro, Mario
  email: cannataro@unicz.it
BookMark eNp9kMtKAzEYRoNUsK0-gLu8wIx_0s5NV6V4g4IudB0ySab-JZOUJC349k5tceGiq291PjhnQkbOO0PILYOcASvvNjm6mHNgdQ5VDkVxQcasrnhW8oaNyBiAQwa8KK7IJMYNAMyrshyT8C6DtNZYKp2mGmMK2O6S0VTG6BXKhN7RsLOG9ujQrSk6arEzNCo0Tpl7uqDO74eD7d-TXfuA6aunyR8oQ9fG-R5VpFomeU0uO2mjuTntlHw-PX4sX7LV2_PrcrHKFG-qlHXNICY7UFB2XDctL5tZpdVct5oXNZuzrq7KRrdct6ZmkpdMg9QMFGtmEkDPpqQ6_qrgYwymEwrTr08KEq1gIA7pxEYM6cQhnYBKDOkGkv0jtwF7Gb7PMg9HxgxKezRBnAJpDEYloT2eoX8AWXSLOw
CitedBy_id crossref_primary_10_1016_j_ins_2022_10_110
crossref_primary_10_1016_j_imu_2023_101432
crossref_primary_10_1186_s12859_022_04936_z
crossref_primary_10_3389_fphar_2025_1548991
crossref_primary_10_1007_s41060_023_00456_y
crossref_primary_10_1007_s10115_024_02105_7
crossref_primary_10_21511_kpm_05_1__2021_01
crossref_primary_10_3390_math12243930
Cites_doi 10.1186/1471-2105-13-258
10.1007/s10115-015-0884-x
10.1109/TC.2013.176
10.1109/69.846291
10.1016/j.jbi.2015.06.005
10.1007/s13174-010-0007-6
10.1016/j.bbrc.2014.01.151
10.1007/978-3-662-07952-2_2
10.1145/1327452.1327492
10.1007/978-3-642-21916-0
10.1093/nar/gkv1115
10.1007/978-3-540-24596-4_20
10.1145/568271.223813
10.1016/j.eswa.2014.01.025
10.1109/69.553164
10.1007/s00280-015-2916-3
10.18632/oncotarget.4302
10.1093/bioinformatics/btp595
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.07.055
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 761
ExternalDocumentID 10_1016_j_ins_2018_07_055
S0020025518305723
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-f9101af0c06f2d9b26937dc4dbd258141f8769db2dbe81a261d0ad10c193a00d3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696947900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:42:15 EST 2025
Sat Nov 29 07:26:48 EST 2025
Fri Feb 23 02:44:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel data mining
Association rules mining
Multi-threading
Genomics data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f9101af0c06f2d9b26937dc4dbd258141f8769db2dbe81a261d0ad10c193a00d3
ORCID 0000-0003-1502-2387
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2018_07_055
crossref_primary_10_1016_j_ins_2018_07_055
elsevier_sciencedirect_doi_10_1016_j_ins_2018_07_055
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Guzzi, Agapito, Di Martino, Arbitrio, Tassone, Tagliaferri, Cannataro (bib0006) 2012; 13
Pastrello, Pasini, Kotlyar, Otasek, Wong, Sangrar, Rahmati, Jurisica (bib0010) 2014; 445
Brown, Otasek, Ali, McGuffin, Xie, Devani, Toch, Jurisica (bib0007) 2009; 25
Di Martino, Guzzi, Caracciolo, Agnelli, Neri, Walker, Morgan, Cannataro, Tassone, Tagliaferri (bib0011) 2015; 6
Chen, Gao, Li (bib0034) 2009
Dean, Ghemawat (bib0033) 2008; 51
Zaki (bib0023) 2000; 12
M. Cannataro, A. Congiusta, C. Mastroianni, A. Pugliese, D. Talia, P. Trunfio, Grid-Based Data Mining and Knowledge Discovery, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 19–45. doi
Agapito, Guzzi, Cannataro (bib0016) 2017
Park, Chen, Yu (bib0022) 1995; 24
Deng, Lv (bib0027) 2014; 41
Agrawal, Mannila, Srikant, Toivonen, Verkamo (bib0020) 1996; 12
Savasere, Omiecinski, Navathe (bib0025) 1995
Guzzi, Agapito, Martino, Arbitrio, Tassone, Tagliaferri, Cannataro (bib0028) 2014
A. Veloso, M.E. Otey, S. Parthasarathy, W. Meira, Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 184–193. doi
Li, Wang, Zhang, Zhang, Chang (bib0032) 2008
Kotlyar, Pastrello, Sheahan, Jurisica (bib0009) 2016; 44
Cannataro, Talia (bib0014) 2003
Agrawal, Imieliński, Swami (bib0002) 1993; 22
Guzzi, Agapito, Cannataro (bib0005) 2014; 63
Zhang, Cheng, Boutaba (bib0019) 2010; 1
.
Mell, Grance (bib0018) 2011
Agrawal, Imieliński, Swami (bib0001) 1993
Agapito, Milano, Guzzi, Cannataro (bib0029) 2014
Han, Pei, Yin (bib0003) 2000; 29
Han, Pei, Yin (bib0004) 2000
Agapito, Guzzi, Cannataro (bib0015) 2015; 56
Arbitrio, Di Martino, Barbieri, Agapito, Guzzi, Botta, Iuliano, Scionti, Altomare, Codispoti, Conforti, Cannataro, Tassone, Tagliaferri (bib0012) 2016; 77
Agrawal, Shafer (bib0030) 1996; 8
Agapito, Cannataro, Guzzi, Marozzo, Talia, Trunfio (bib0008) 2013
Flynn (bib0017) 2011
Fumarola, Lanotte, Ceci, Malerba (bib0026) 2016; 48
Agarwal, Srikant (bib0021) 1994
M. Kryszkiewicz, H. Rybinski, A. Skowron, Z.W. Raś (Eds.), FAST sequence mining based on sparse Id-lists, Foundations of Intelligent Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi
Agrawal (10.1016/j.ins.2018.07.055_bib0030) 1996; 8
10.1016/j.ins.2018.07.055_bib0013
Guzzi (10.1016/j.ins.2018.07.055_bib0005) 2014; 63
Pastrello (10.1016/j.ins.2018.07.055_sbref0010) 2014; 445
Agrawal (10.1016/j.ins.2018.07.055_bib0002) 1993; 22
Kotlyar (10.1016/j.ins.2018.07.055_bib0009) 2016; 44
Guzzi (10.1016/j.ins.2018.07.055_bib0028) 2014
Zaki (10.1016/j.ins.2018.07.055_bib0023) 2000; 12
Zhang (10.1016/j.ins.2018.07.055_bib0019) 2010; 1
Arbitrio (10.1016/j.ins.2018.07.055_bib0012) 2016; 77
Fumarola (10.1016/j.ins.2018.07.055_bib0026) 2016; 48
Agapito (10.1016/j.ins.2018.07.055_bib0008) 2013
Park (10.1016/j.ins.2018.07.055_bib0022) 1995; 24
Agapito (10.1016/j.ins.2018.07.055_bib0015) 2015; 56
10.1016/j.ins.2018.07.055_bib0031
Dean (10.1016/j.ins.2018.07.055_bib0033) 2008; 51
Agapito (10.1016/j.ins.2018.07.055_bib0016) 2017
10.1016/j.ins.2018.07.055_bib0024
Guzzi (10.1016/j.ins.2018.07.055_bib0006) 2012; 13
Savasere (10.1016/j.ins.2018.07.055_bib0025) 1995
Di Martino (10.1016/j.ins.2018.07.055_bib0011) 2015; 6
Deng (10.1016/j.ins.2018.07.055_bib0027) 2014; 41
Chen (10.1016/j.ins.2018.07.055_bib0034) 2009
Agrawal (10.1016/j.ins.2018.07.055_bib0020) 1996; 12
Agrawal (10.1016/j.ins.2018.07.055_bib0001) 1993
Agarwal (10.1016/j.ins.2018.07.055_bib0021) 1994
Cannataro (10.1016/j.ins.2018.07.055_bib0014) 2003
Li (10.1016/j.ins.2018.07.055_bib0032) 2008
Flynn (10.1016/j.ins.2018.07.055_bib0017) 2011
Mell (10.1016/j.ins.2018.07.055_sbref0017) 2011
Han (10.1016/j.ins.2018.07.055_bib0004) 2000
Han (10.1016/j.ins.2018.07.055_bib0003) 2000; 29
Brown (10.1016/j.ins.2018.07.055_bib0007) 2009; 25
Agapito (10.1016/j.ins.2018.07.055_bib0029) 2014
References_xml – start-page: 468:468
  year: 2013
  end-page: 468:475
  ident: bib0008
  article-title: Cloud4SNP: distributed analysis of SNP microarray data on the cloud
  publication-title: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
– start-page: 1
  year: 2000
  end-page: 12
  ident: bib0004
  article-title: Mining frequent patterns without candidate generation
  publication-title: Proceedings of the ACM SIGMOD International Conference on Management of Data
– start-page: 437
  year: 2003
  end-page: 441
  ident: bib0014
  article-title: Towards the next-generation grid: a pervasive environment for knowledge-based computing
  publication-title: Proceedings of the International Conference on Information Technology: Coding and Computing
– volume: 6
  start-page: 19132
  year: 2015
  ident: bib0011
  article-title: Integrated analysis of micrornas, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma
  publication-title: Oncotarget
– volume: 445
  start-page: 757
  year: 2014
  end-page: 773
  ident: bib0010
  article-title: Integration, visualization and analysis of human interactome
  publication-title: Biochem. Biophys. Res. Commun.
– year: 2017
  ident: bib0016
  article-title: Parallel extraction of association rules from genomics data
  publication-title: Appl. Math. Comput.
– year: 2011
  ident: bib0018
  publication-title: The NIST Definition of Cloud Computing
– volume: 12
  start-page: 372
  year: 2000
  end-page: 390
  ident: bib0023
  article-title: Scalable algorithms for association mining
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: bib0033
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun. ACM
– volume: 1
  start-page: 7
  year: 2010
  end-page: 18
  ident: bib0019
  article-title: Cloud computing: state-of-the-art and research challenges
  publication-title: J. Internet Serv. Appl.
– reference: M. Cannataro, A. Congiusta, C. Mastroianni, A. Pugliese, D. Talia, P. Trunfio, Grid-Based Data Mining and Knowledge Discovery, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 19–45. doi:
– start-page: 107
  year: 2008
  end-page: 114
  ident: bib0032
  article-title: Pfp: parallel fp-growth for query recommendation
  publication-title: Proceedings of the ACM Conference on Recommender Systems
– start-page: 487
  year: 1994
  end-page: 499
  ident: bib0021
  article-title: Fast algorithms for mining association rules
  publication-title: Proceedings of the Twentieth VLDB Conference
– start-page: 1
  year: 2014
  end-page: 8
  ident: bib0029
  article-title: Improving annotation quality in gene ontology by mining cross-ontology weighted association rules
  publication-title: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– start-page: 432
  year: 1995
  end-page: 444
  ident: bib0025
  article-title: An efficient algorithm for mining association rules in large databases
  publication-title: Proceedings of the Twenty First International Conference on Very Large Data Bases
– volume: 12
  start-page: 307
  year: 1996
  end-page: 328
  ident: bib0020
  article-title: Fast discovery of association rules.
  publication-title: Adv. Knowl. Discov. Data Min.
– volume: 41
  start-page: 4505
  year: 2014
  end-page: 4512
  ident: bib0027
  article-title: Fast mining frequent itemsets using nodesets
  publication-title: Expert Syst. Appl.
– start-page: 207
  year: 1993
  end-page: 216
  ident: bib0001
  article-title: Mining association rules between sets of items in large databases
  publication-title: Proceedings of the ACM SIGMOD International Conference on Management of Data
– volume: 24
  start-page: 175
  year: 1995
  end-page: 186
  ident: bib0022
  article-title: An effective hash-based algorithm for mining association rules
  publication-title: Proceedings of the ACM SIGMOD International Conference on Management of Data
– volume: 22
  start-page: 207
  year: 1993
  end-page: 216
  ident: bib0002
  article-title: Mining association rules between sets of items in large databases
– volume: 44
  start-page: D536
  year: 2016
  end-page: D541
  ident: bib0009
  article-title: Integrated interactions database: tissue-specific view of the human and model organism interactomes
  publication-title: Nucleic Acids Res.
– volume: 63
  start-page: 2961
  year: 2014
  end-page: 2974
  ident: bib0005
  article-title: CoreSNP: parallel processing of microarray data
  publication-title: IEEE Trans. Comput.
– reference: M. Kryszkiewicz, H. Rybinski, A. Skowron, Z.W. Raś (Eds.), FAST sequence mining based on sparse Id-lists, Foundations of Intelligent Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:
– reference: .
– volume: 29
  start-page: 1
  year: 2000
  end-page: 12
  ident: bib0003
  article-title: Mining frequent patterns without candidate generation
– start-page: 59
  year: 2014
  end-page: 62
  ident: bib0028
  article-title: Dmet-miner: efficient learning of association rules from genotyping data for personalized medicine
  publication-title: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– start-page: 689
  year: 2011
  end-page: 697
  ident: bib0017
  article-title: Flynn’s taxonomy
  publication-title: Encyclopedia of Parallel Computing
– volume: 25
  start-page: 3327
  year: 2009
  end-page: 3329
  ident: bib0007
  article-title: Navigator: network analysis, visualization and graphing toronto
  publication-title: Bioinformatics
– volume: 77
  start-page: 205
  year: 2016
  end-page: 209
  ident: bib0012
  article-title: Identification of polymorphic variants associated with erlotinib-related skin toxicity in advanced non-small cell lung cancer patients by dmet microarray analysis
  publication-title: Cancer Chemother. Pharmacol.
– volume: 8
  start-page: 962
  year: 1996
  end-page: 969
  ident: bib0030
  article-title: Parallel mining of association rules
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 283
  year: 2009
  end-page: 286
  ident: bib0034
  article-title: An efficient parallel fp-growth algorithm
  publication-title: Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
– volume: 56
  start-page: 273
  year: 2015
  end-page: 283
  ident: bib0015
  article-title: DMET-miner: efficient discovery of association rules from pharmacogenomic data
  publication-title: J. Biomed. Inf.
– volume: 13
  start-page: 258
  year: 2012
  ident: bib0006
  article-title: DMET-analyzer: automatic analysis of affymetrix DMET data
  publication-title: BMC Bioinform.
– reference: A. Veloso, M.E. Otey, S. Parthasarathy, W. Meira, Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 184–193. doi:
– volume: 48
  start-page: 429
  year: 2016
  end-page: 463
  ident: bib0026
  article-title: CloFAST: closed sequential pattern mining using sparse and vertical id-lists
  publication-title: Knowl. Inf. Syst.
– volume: 13
  start-page: 258
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2018.07.055_bib0006
  article-title: DMET-analyzer: automatic analysis of affymetrix DMET data
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-13-258
– start-page: 432
  year: 1995
  ident: 10.1016/j.ins.2018.07.055_bib0025
  article-title: An efficient algorithm for mining association rules in large databases
– volume: 48
  start-page: 429
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2018.07.055_bib0026
  article-title: CloFAST: closed sequential pattern mining using sparse and vertical id-lists
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0884-x
– volume: 63
  start-page: 2961
  issue: 12
  year: 2014
  ident: 10.1016/j.ins.2018.07.055_bib0005
  article-title: CoreSNP: parallel processing of microarray data
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2013.176
– volume: 12
  start-page: 372
  issue: 3
  year: 2000
  ident: 10.1016/j.ins.2018.07.055_bib0023
  article-title: Scalable algorithms for association mining
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.846291
– year: 2011
  ident: 10.1016/j.ins.2018.07.055_sbref0017
– volume: 12
  start-page: 307
  issue: 1
  year: 1996
  ident: 10.1016/j.ins.2018.07.055_bib0020
  article-title: Fast discovery of association rules.
  publication-title: Adv. Knowl. Discov. Data Min.
– volume: 56
  start-page: 273
  year: 2015
  ident: 10.1016/j.ins.2018.07.055_bib0015
  article-title: DMET-miner: efficient discovery of association rules from pharmacogenomic data
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2015.06.005
– year: 2017
  ident: 10.1016/j.ins.2018.07.055_bib0016
  article-title: Parallel extraction of association rules from genomics data
  publication-title: Appl. Math. Comput.
– start-page: 207
  year: 1993
  ident: 10.1016/j.ins.2018.07.055_bib0001
  article-title: Mining association rules between sets of items in large databases
– start-page: 689
  year: 2011
  ident: 10.1016/j.ins.2018.07.055_bib0017
  article-title: Flynn’s taxonomy
– volume: 1
  start-page: 7
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2018.07.055_bib0019
  article-title: Cloud computing: state-of-the-art and research challenges
  publication-title: J. Internet Serv. Appl.
  doi: 10.1007/s13174-010-0007-6
– volume: 22
  start-page: 207
  issue: 2
  year: 1993
  ident: 10.1016/j.ins.2018.07.055_bib0002
  article-title: Mining association rules between sets of items in large databases
– start-page: 1
  year: 2014
  ident: 10.1016/j.ins.2018.07.055_bib0029
  article-title: Improving annotation quality in gene ontology by mining cross-ontology weighted association rules
– start-page: 107
  year: 2008
  ident: 10.1016/j.ins.2018.07.055_bib0032
  article-title: Pfp: parallel fp-growth for query recommendation
– volume: 445
  start-page: 757
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2018.07.055_sbref0010
  article-title: Integration, visualization and analysis of human interactome
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.01.151
– start-page: 437
  year: 2003
  ident: 10.1016/j.ins.2018.07.055_bib0014
  article-title: Towards the next-generation grid: a pervasive environment for knowledge-based computing
– ident: 10.1016/j.ins.2018.07.055_bib0013
  doi: 10.1007/978-3-662-07952-2_2
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2018.07.055_bib0033
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– start-page: 1
  year: 2000
  ident: 10.1016/j.ins.2018.07.055_bib0004
  article-title: Mining frequent patterns without candidate generation
– ident: 10.1016/j.ins.2018.07.055_bib0024
  doi: 10.1007/978-3-642-21916-0
– volume: 44
  start-page: D536
  issue: D1
  year: 2016
  ident: 10.1016/j.ins.2018.07.055_bib0009
  article-title: Integrated interactions database: tissue-specific view of the human and model organism interactomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1115
– start-page: 468:468
  year: 2013
  ident: 10.1016/j.ins.2018.07.055_bib0008
  article-title: Cloud4SNP: distributed analysis of SNP microarray data on the cloud
– ident: 10.1016/j.ins.2018.07.055_bib0031
  doi: 10.1007/978-3-540-24596-4_20
– start-page: 283
  year: 2009
  ident: 10.1016/j.ins.2018.07.055_bib0034
  article-title: An efficient parallel fp-growth algorithm
– volume: 24
  start-page: 175
  issue: 2
  year: 1995
  ident: 10.1016/j.ins.2018.07.055_bib0022
  article-title: An effective hash-based algorithm for mining association rules
  publication-title: Proceedings of the ACM SIGMOD International Conference on Management of Data
  doi: 10.1145/568271.223813
– volume: 41
  start-page: 4505
  issue: 10
  year: 2014
  ident: 10.1016/j.ins.2018.07.055_bib0027
  article-title: Fast mining frequent itemsets using nodesets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.025
– volume: 8
  start-page: 962
  issue: 6
  year: 1996
  ident: 10.1016/j.ins.2018.07.055_bib0030
  article-title: Parallel mining of association rules
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.553164
– volume: 77
  start-page: 205
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2018.07.055_bib0012
  article-title: Identification of polymorphic variants associated with erlotinib-related skin toxicity in advanced non-small cell lung cancer patients by dmet microarray analysis
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-015-2916-3
– start-page: 487
  year: 1994
  ident: 10.1016/j.ins.2018.07.055_bib0021
  article-title: Fast algorithms for mining association rules
– start-page: 59
  year: 2014
  ident: 10.1016/j.ins.2018.07.055_bib0028
  article-title: Dmet-miner: efficient learning of association rules from genotyping data for personalized medicine
– volume: 6
  start-page: 19132
  issue: 22
  year: 2015
  ident: 10.1016/j.ins.2018.07.055_bib0011
  article-title: Integrated analysis of micrornas, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4302
– volume: 29
  start-page: 1
  issue: 2
  year: 2000
  ident: 10.1016/j.ins.2018.07.055_bib0003
  article-title: Mining frequent patterns without candidate generation
– volume: 25
  start-page: 3327
  issue: 24
  year: 2009
  ident: 10.1016/j.ins.2018.07.055_bib0007
  article-title: Navigator: network analysis, visualization and graphing toronto
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp595
SSID ssj0004766
Score 2.4507802
Snippet •A parallel algorithm for Association rule mining.•Association rule mining of genomics data.•A dynamic workload balancing algorithm for FP-Growth. Association...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 747
SubjectTerms Association rules mining
Genomics data
Multi-threading
Parallel data mining
Title Parallel and distributed association rule mining in life science: A novel parallel algorithm to mine genomics data
URI https://dx.doi.org/10.1016/j.ins.2018.07.055
Volume 575
WOSCitedRecordID wos000696947900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcUCmgFmjlA-JAFMlxk3XCbYVKCxLVHoq0t8iJnZIqL6XZVdW_wJ9mHNtJ1AeiBy5RZK3H2cwXz4zt-QahDxHJaCgUGR4PueungXQhsg1dERE5nxNO_YT3xSbY2Vm4WkXL2ey3zYXZFKyqwuvrqPmvqoY2ULZKnX2Eugeh0AD3oHS4gtrh-k-KX_JW1UfRFABC8eKqklbgV_JRE067LqRT9sUh1IpHkWfSMcZQ56pX9QZENIOs4qJu8-5XqXzVUnmmity1VBTPJrttcHFNglM_jBE5-O2LC97kfeEm5yRfX8mmGXB1sr656U8WLHPZtbVzmre8HHdIqgqG0Tk5PyC8r6erFdQbzr2N2QPQQDU1r52BAxZM5lCmKTiNOWaaq_3OTK8XHS4hPFGk616oKViD0azZrfxb1m44g2iPt13GICJWImLCYhDxBG1TFkQwy28vvh2vvo9ptkxvfdu_YDfJ--OCt57jfjdn4rqc76AXJubAC42Vl2gmq130fMJEuYsOTP4K_ogn-sNm5n-FWosqDKjCE1ThCaqwQhXWqMJ5hRWqsIHAZ7zAPaZwM0iymMJdrXpJbDGFFaZeo59fj8-_nLqmXIeb0oh1bgaep8czkpJ5RkWU0Dm4viL1RSJoEHq-l4HljURCRSJDj0PoLggXHkkhhuCEiKM3aKuqK7mHcBIeeZTTTFBGwJJzLsDrD0QWcUo4E8k-IvbtxqnhslclVYr4Qa3uo09Dl0YTufztx75VWWxek_YwY4Dfw93ePmaMd-jZ-IG8R1tdu5YH6Gm66fKr9tBg7w9cJa1P
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+distributed+association+rule+mining+in+life+science%3A+A+novel+parallel+algorithm+to+mine+genomics+data&rft.jtitle=Information+sciences&rft.au=Agapito%2C+Giuseppe&rft.au=Guzzi%2C+Pietro+Hiram&rft.au=Cannataro%2C+Mario&rft.date=2021-10-01&rft.issn=0020-0255&rft.volume=575&rft.spage=747&rft.epage=761&rft_id=info:doi/10.1016%2Fj.ins.2018.07.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_07_055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon