A general fragments allocation method for join query in distributed database

The quality of fragments allocation is key for improving performance of join query in distributed database. Current strategies concentrate on using heuristic rules to allocate fragments to corresponding locations, such as picking the location with maximum required data or with greedy algorithm. Notw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 512; s. 1249 - 1263
Hlavní autoři: Gao, Jintao, Liu, Wenjie, Li, Zhanhuai, Zhang, Jian, Shen, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2020
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The quality of fragments allocation is key for improving performance of join query in distributed database. Current strategies concentrate on using heuristic rules to allocate fragments to corresponding locations, such as picking the location with maximum required data or with greedy algorithm. Notwithstanding their benefits, under distributed environment, facing various query plans, different data distributions and expensive network cost, their scene-sensitive character may easily generate low quality allocation plan due to lack of generalization ability. In this paper, for breaking this limitation, we propose a general strategy for allocating fragments(AlCo, Allocate fragments based on Cost). AlCo evaluates multiple candidate allocation plans based on cost, which is realized by a modified genetic algorithm employed from PostgreSQL. Our fitness function (cost model) synthetically considers various changeable factors to support generalization ability. For reducing the risks caused by randomization of genetic algorithm, AlCo provides an upper bound computed through current heuristic methods to improve the robustness of our genetic algorithm. We implement AlCo in a distributed database system, and the experiments show that, on TPC-H benchmark, AlCo is up to 2x–4x better on performance than existing strategies and performs well in robustness and scalability.
AbstractList The quality of fragments allocation is key for improving performance of join query in distributed database. Current strategies concentrate on using heuristic rules to allocate fragments to corresponding locations, such as picking the location with maximum required data or with greedy algorithm. Notwithstanding their benefits, under distributed environment, facing various query plans, different data distributions and expensive network cost, their scene-sensitive character may easily generate low quality allocation plan due to lack of generalization ability. In this paper, for breaking this limitation, we propose a general strategy for allocating fragments(AlCo, Allocate fragments based on Cost). AlCo evaluates multiple candidate allocation plans based on cost, which is realized by a modified genetic algorithm employed from PostgreSQL. Our fitness function (cost model) synthetically considers various changeable factors to support generalization ability. For reducing the risks caused by randomization of genetic algorithm, AlCo provides an upper bound computed through current heuristic methods to improve the robustness of our genetic algorithm. We implement AlCo in a distributed database system, and the experiments show that, on TPC-H benchmark, AlCo is up to 2x–4x better on performance than existing strategies and performs well in robustness and scalability.
Author Shen, Li
Liu, Wenjie
Zhang, Jian
Gao, Jintao
Li, Zhanhuai
Author_xml – sequence: 1
  givenname: Jintao
  orcidid: 0000-0003-3262-8946
  surname: Gao
  fullname: Gao, Jintao
  email: gaojintao@mail.nwpu.edu.cn
  organization: Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 2
  givenname: Wenjie
  surname: Liu
  fullname: Liu, Wenjie
  organization: Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 3
  givenname: Zhanhuai
  surname: Li
  fullname: Li, Zhanhuai
  organization: Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 4
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: PingCAP Ltd., Beijing 100096, China
– sequence: 5
  givenname: Li
  surname: Shen
  fullname: Shen, Li
  organization: PingCAP Ltd., Beijing 100096, China
BookMark eNp9kMtKQzEQhoNUsK0-gLu8wDkmac8luCrFGxTc6DrkMqk5nCaapELf3tS6ctHVzPzwDfzfDE188IDQLSU1JbS9G2rnU80I5eWuyXJxgaa071jVMk4naEoIIxVhTXOFZikNhJBl17ZTtFnhLXiIcsQ2yu0OfE5YjmPQMrvg8Q7yRzDYhoiH4Dz-2kM84LIYl3J0ap_BYCOzVDLBNbq0ckxw8zfn6P3x4W39XG1en17Wq02lGe9yZTtDqW16LRU3lFleAsZUS1puLOs4KE6XjDVaNrxXnFOm1EJpwiSYXiu9mCN6-qtjSCmCFZ_R7WQ8CErEUYcYRNEhjjqOUdFRmO4fo13-7ZijdONZ8v5EQqn07SCKpB14DcZF0FmY4M7QP0Ooffk
CitedBy_id crossref_primary_10_1016_j_ins_2022_09_003
crossref_primary_10_1142_S0219649222400196
crossref_primary_10_1002_dac_5458
crossref_primary_10_1155_2022_4417998
crossref_primary_10_1109_ACCESS_2025_3547623
Cites_doi 10.1016/j.ins.2013.01.020
10.14778/3137628.3137650
10.14778/3137628.3137639
10.1109/69.273032
10.14778/3231751.3231761
10.14778/2850578.2850582
10.14778/3137628.3137636
10.14778/3007263.3007277
10.1109/TEVC.2016.2634625
10.14778/3025111.3025125
10.14778/3115404.3115415
10.14778/3055540.3055551
10.1109/TCYB.2019.2951520
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2019.10.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 1263
ExternalDocumentID 10_1016_j_ins_2019_10_043
S0020025519310114
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-f7d11f58cab9d12f9f7d22b6069df279eb914225ca598b9912bb3bc02aed8cbc3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504778300076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:58 EST 2025
Tue Nov 18 21:55:37 EST 2025
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fragments allocation
Robustness
Distributed database
Genetic algorithm
Query optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-f7d11f58cab9d12f9f7d22b6069df279eb914225ca598b9912bb3bc02aed8cbc3
ORCID 0000-0003-3262-8946
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_ins_2019_10_043
crossref_citationtrail_10_1016_j_ins_2019_10_043
elsevier_sciencedirect_doi_10_1016_j_ins_2019_10_043
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Olma, Karpathiotakis, Alagiannis, Athanassoulis, Ailamaki (bib0015) 2017; 10
Sun, Franklin, Krishnan, Xin (bib0012) 2014
Sharma, Singh, Singh (bib0029) 2018; 8
Gong, Sun, Miao (bib0025) 2018; 22
Tpc-h. the home page of tpc-h
Ding, Das, Wu, Chaudhuri, Narasayya (bib0011) 2018; 11
Thusoo, Sarma, Jain, Zheng, Chakka, Ning, Anthony, Hao, Murthy (bib0005) 2010
Gong, Jing, Ji (bib0026) 2013; 233
Li, Xu, Tang, Wang (bib0020) 2018; 11 (6)
Sun, Miao, Gong, Zeng, Li, Wang (bib0028) 2019
Serafini, Taft, Elmore, Pavlo, Aboulnaga, Stonebraker (bib0014) 2016; 10
Tidb. source code of tidb
Yang (bib0036) 2014; 2014
Ammar, Mcsherry, Salihoglu, Joglekar (bib0022) 2018; 11 (6)
Apache drill. join planning guidelines
Sharma, Singh, Singh (bib0032) 2016; 17
Jing, Gong, Zeng, Na (bib0027) 2018; 436
Rupprecht, Culhane, Pietzuch (bib0024) 2017; 10
Hasan, Motwani (bib0008) 1994
Lin, Ooi, Wang, Yu (bib0001) 2015
Yi, Shanbhag, Jindal, Madden (bib0019) 2017; 10
Graefe (bib0034) 2002; 6
Apache calcite. the home page of apache calcite
Zaharia, Chowdhury, Das, Dave, Ma, Mccauley, Franklin, Shenker, Stoica (bib0018) 2012
Katsipoulakis, Labrinidis, Chrysanthis (bib0038) 2017; 10
.
Graefe (bib0009) 1995; 18
Shankar, Nehme, Aguilar-Saborit, Chung, Elhemali, Halverson, Robinson, Subramanian, Dewitt (bib0017) 2012
Kloudas, Mamede, Rodrigues (bib0023) 2015; 9
Wiki. genetic algorithm
Tpc benchmark h. the tool to generate tpc-h data sets
Zamanian, Binnig, Salama (bib0013) 2015
Sharma, Singh, Singh (bib0031) 2018
Postgresql. genetic query optimizer
Sevin, Coar (bib0030) 2011; 54
Soliman, Lyublena Antova, Amr El-Helw, Gu, George, Caragea, Foyzur Rahman, Petropoulos, Sivaramakrishnan Narayanan, Baldwin (bib0006) 2014
Chen, Jindel, Walzer, Sen, Andrews (bib0007) 2016; 9
Kabiljo, Karrer, Pundir, Pupyrev, Shalita, Presta, Akhremtsev (bib0021) 2017; 10
Mysql cluster.join pushdown
Olma (10.1016/j.ins.2019.10.043_bib0015) 2017; 10
Kloudas (10.1016/j.ins.2019.10.043_bib0023) 2015; 9
Gong (10.1016/j.ins.2019.10.043_bib0026) 2013; 233
Sun (10.1016/j.ins.2019.10.043_bib0012) 2014
Yi (10.1016/j.ins.2019.10.043_bib0019) 2017; 10
Katsipoulakis (10.1016/j.ins.2019.10.043_bib0038) 2017; 10
10.1016/j.ins.2019.10.043_bib0004
Soliman (10.1016/j.ins.2019.10.043_bib0006) 2014
Sharma (10.1016/j.ins.2019.10.043_bib0029) 2018; 8
Sharma (10.1016/j.ins.2019.10.043_bib0031) 2018
Graefe (10.1016/j.ins.2019.10.043_bib0034) 2002; 6
10.1016/j.ins.2019.10.043_bib0003
10.1016/j.ins.2019.10.043_bib0002
Thusoo (10.1016/j.ins.2019.10.043_bib0005) 2010
Ding (10.1016/j.ins.2019.10.043_bib0011) 2018; 11
Kabiljo (10.1016/j.ins.2019.10.043_bib0021) 2017; 10
Jing (10.1016/j.ins.2019.10.043_bib0027) 2018; 436
Sharma (10.1016/j.ins.2019.10.043_bib0032) 2016; 17
Shankar (10.1016/j.ins.2019.10.043_bib0017) 2012
Graefe (10.1016/j.ins.2019.10.043_bib0009) 1995; 18
Ammar (10.1016/j.ins.2019.10.043_bib0022) 2018; 11 (6)
Sevin (10.1016/j.ins.2019.10.043_bib0030) 2011; 54
Lin (10.1016/j.ins.2019.10.043_bib0001) 2015
10.1016/j.ins.2019.10.043_bib0016
10.1016/j.ins.2019.10.043_bib0037
Hasan (10.1016/j.ins.2019.10.043_bib0008) 1994
Rupprecht (10.1016/j.ins.2019.10.043_bib0024) 2017; 10
10.1016/j.ins.2019.10.043_bib0010
Yang (10.1016/j.ins.2019.10.043_bib0036) 2014; 2014
Sun (10.1016/j.ins.2019.10.043_bib0028) 2019
Zaharia (10.1016/j.ins.2019.10.043_bib0018) 2012
Li (10.1016/j.ins.2019.10.043_bib0020) 2018; 11 (6)
Zamanian (10.1016/j.ins.2019.10.043_bib0013) 2015
Gong (10.1016/j.ins.2019.10.043_bib0025) 2018; 22
10.1016/j.ins.2019.10.043_bib0035
Serafini (10.1016/j.ins.2019.10.043_bib0014) 2016; 10
Chen (10.1016/j.ins.2019.10.043_bib0007) 2016; 9
10.1016/j.ins.2019.10.043_bib0033
References_xml – reference: Mysql cluster.join pushdown,
– start-page: 17
  year: 2015
  end-page: 30
  ident: bib0013
  article-title: Locality-aware partitioning in parallel database systems
  publication-title: The 2015 ACM SIGMOD International Conference
– volume: 2014
  start-page: 141
  year: 2014
  end-page: 148
  ident: bib0036
  article-title: The architecture of oceanbase relational database system
  publication-title: J. East China Normal Univ.
– start-page: 767
  year: 2012
  end-page: 776
  ident: bib0017
  article-title: Query optimization in microsoft SQL server PDW
  publication-title: ACM SIGMOD International Conference on Management of Data
– volume: 233
  start-page: 141
  year: 2013
  end-page: 161
  ident: bib0026
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inf. Sci.
– volume: 10
  start-page: 1286
  year: 2017
  end-page: 1297
  ident: bib0038
  article-title: A holistic view of stream partitioning costs
  publication-title: Proc. VLDB Endow.
– start-page: 2
  year: 2012
  ident: bib0018
  article-title: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing
  publication-title: Usenix Conference on Networked Systems Design and Implementation
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0028
  article-title: Interval multiobjective optimization with memetic algorithms
  publication-title: IEEE Trans. Cybern.
– year: 2018
  ident: bib0031
  article-title: Clinical decision support system query optimizer using hybrid firefly and controlled genetic algorithm
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib0029
  article-title: A review of different cost-based distributed query optimizers
  publication-title: Prog. Artif. Intell.
– reference: Tidb. source code of tidb,
– volume: 9
  start-page: 1401
  year: 2016
  end-page: 1412
  ident: bib0007
  article-title: The MemSQL query optimizer: a modern optimizer for real-time analytics in a distributed database
  publication-title: Proc. VLDB Endow.
– start-page: 1115
  year: 2014
  end-page: 1126
  ident: bib0012
  article-title: Fine-grained partitioning for aggressive data skipping
  publication-title: ACM SIGMOD International Conference on Management of Data
– volume: 9
  start-page: 72
  year: 2015
  end-page: 83
  ident: bib0023
  article-title: PIXIDA: optimizing data parallel jobs in wide-area data analytics
  publication-title: Proc. VLDB Endow.
– reference: Postgresql. genetic query optimizer,
– volume: 10
  start-page: 1250
  year: 2017
  end-page: 1261
  ident: bib0024
  article-title: Squirreljoin: network-aware distributed join processing with lazy partitioning
  publication-title: Proc. VLDB Endow.
– reference: Wiki. genetic algorithm,
– volume: 436
  start-page: 146
  year: 2018
  end-page: 161
  ident: bib0027
  article-title: An ensemble framework for assessing solutions of interval programming problems
  publication-title: Inf. Sci.
– start-page: 337
  year: 2014
  end-page: 348
  ident: bib0006
  article-title: Orca: a modular query optimizer architecture for big data
  publication-title: ACM SIGMOD International Conference on Management of Data
– volume: 11 (6)
  start-page: 691
  year: 2018
  end-page: 704
  ident: bib0022
  article-title: Distributed evaluation of subgraph queries using worstcase optimal lowmemory dataflows
  publication-title: Proceedings of the VLDB Endowment
– volume: 6
  start-page: 120
  year: 2002
  end-page: 135
  ident: bib0034
  article-title: Volcano/spl minus/an extensible and parallel query evaluation system
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 22
  start-page: 47
  year: 2018
  end-page: 60
  ident: bib0025
  article-title: A set-based genetic algorithm for interval many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11 (6)
  start-page: 705
  year: 2018
  end-page: 718
  ident: bib0020
  article-title: Model-free control for distributed stream data processing using deep reinforcement learning
  publication-title: Proceedings of the VLDB Endowment
– start-page: 996
  year: 2010
  end-page: 1005
  ident: bib0005
  article-title: Hive - a petabyte scale data warehouse using hadoop
  publication-title: Proceedings-International Conference on Data Engineering
– volume: 54
  start-page: 147
  year: 2011
  end-page: 152
  ident: bib0030
  article-title: An evolutionary genetic algorithm for optimization of distributed database queries
  publication-title: International Symposium on Computer & Information Sciences
– reference: .
– volume: 18
  start-page: 19
  year: 1995
  end-page: 29
  ident: bib0009
  article-title: The cascades framework for query optimization
  publication-title: Data Eng. Bull.
– reference: Apache calcite. the home page of apache calcite,
– start-page: 36
  year: 1994
  end-page: 47
  ident: bib0008
  article-title: Optimization algorithms for exploiting the parallelism-communication tradeoff in pipelined parallelism
  publication-title: Proceedings of 20th International Conference on Very Large Data Bases
– reference: Tpc-h. the home page of tpc-h,
– volume: 10
  start-page: 589
  year: 2017
  end-page: 600
  ident: bib0019
  article-title: AdaptDB: adaptive partitioning for distributed joins
  publication-title: Proc. VLDB Endow.
– reference: Apache drill. join planning guidelines,
– start-page: 811
  year: 2015
  end-page: 825
  ident: bib0001
  article-title: Scalable distributed stream join processing
  publication-title: ACM Sigmod International Conference
– volume: 10
  start-page: 445
  year: 2016
  end-page: 456
  ident: bib0014
  article-title: Clay: fine-grained adaptive partitioning for general database schemas
  publication-title: Proc. VLDB Endow.
– volume: 10
  start-page: 1106
  year: 2017
  end-page: 1117
  ident: bib0015
  article-title: Slalom: coasting through raw data via adaptive partitioning and indexing
  publication-title: Proc. VLDB Endow.
– reference: Tpc benchmark h. the tool to generate tpc-h data sets,
– volume: 11
  start-page: 1123
  year: 2018
  end-page: 1136
  ident: bib0011
  article-title: Plan stitch: harnessing the best of many plans
  publication-title: Proc. VLDB Endow.
– volume: 17
  start-page: 161
  year: 2016
  end-page: 173
  ident: bib0032
  article-title: Design and analysis of stochastic DSS query optimizers in a distributed database system
  publication-title: Egypt. Inf. J.
– volume: 10
  year: 2017
  ident: bib0021
  article-title: Social hash partitioner: a scalable distributed hypergraph partitioner
  publication-title: Proc. VLDB Endow.
– volume: 54
  start-page: 147
  year: 2011
  ident: 10.1016/j.ins.2019.10.043_bib0030
  article-title: An evolutionary genetic algorithm for optimization of distributed database queries
– start-page: 36
  year: 1994
  ident: 10.1016/j.ins.2019.10.043_bib0008
  article-title: Optimization algorithms for exploiting the parallelism-communication tradeoff in pipelined parallelism
– volume: 233
  start-page: 141
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2019.10.043_bib0026
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.01.020
– volume: 10
  issue: 11
  year: 2017
  ident: 10.1016/j.ins.2019.10.043_bib0021
  article-title: Social hash partitioner: a scalable distributed hypergraph partitioner
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3137628.3137650
– ident: 10.1016/j.ins.2019.10.043_bib0037
– ident: 10.1016/j.ins.2019.10.043_bib0016
– volume: 436
  start-page: 146
  year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0027
  article-title: An ensemble framework for assessing solutions of interval programming problems
  publication-title: Inf. Sci.
– volume: 10
  start-page: 1286
  issue: 11
  year: 2017
  ident: 10.1016/j.ins.2019.10.043_bib0038
  article-title: A holistic view of stream partitioning costs
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3137628.3137639
– volume: 11 (6)
  start-page: 705
  year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0020
  article-title: Model-free control for distributed stream data processing using deep reinforcement learning
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0029
  article-title: A review of different cost-based distributed query optimizers
  publication-title: Prog. Artif. Intell.
– volume: 6
  start-page: 120
  issue: 1
  year: 2002
  ident: 10.1016/j.ins.2019.10.043_bib0034
  article-title: Volcano/spl minus/an extensible and parallel query evaluation system
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.273032
– ident: 10.1016/j.ins.2019.10.043_bib0010
– volume: 11
  start-page: 1123
  issue: 10
  year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0011
  article-title: Plan stitch: harnessing the best of many plans
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3231751.3231761
– volume: 2014
  start-page: 141
  year: 2014
  ident: 10.1016/j.ins.2019.10.043_bib0036
  article-title: The architecture of oceanbase relational database system
  publication-title: J. East China Normal Univ.
– ident: 10.1016/j.ins.2019.10.043_bib0003
– start-page: 2
  year: 2012
  ident: 10.1016/j.ins.2019.10.043_bib0018
  article-title: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing
– start-page: 1115
  year: 2014
  ident: 10.1016/j.ins.2019.10.043_bib0012
  article-title: Fine-grained partitioning for aggressive data skipping
– volume: 18
  start-page: 19
  issue: 5
  year: 1995
  ident: 10.1016/j.ins.2019.10.043_bib0009
  article-title: The cascades framework for query optimization
  publication-title: Data Eng. Bull.
– volume: 9
  start-page: 72
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2019.10.043_bib0023
  article-title: PIXIDA: optimizing data parallel jobs in wide-area data analytics
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2850578.2850582
– start-page: 811
  year: 2015
  ident: 10.1016/j.ins.2019.10.043_bib0001
  article-title: Scalable distributed stream join processing
– start-page: 767
  year: 2012
  ident: 10.1016/j.ins.2019.10.043_bib0017
  article-title: Query optimization in microsoft SQL server PDW
– volume: 10
  start-page: 1250
  issue: 11
  year: 2017
  ident: 10.1016/j.ins.2019.10.043_bib0024
  article-title: Squirreljoin: network-aware distributed join processing with lazy partitioning
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3137628.3137636
– volume: 17
  start-page: 161
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2019.10.043_bib0032
  article-title: Design and analysis of stochastic DSS query optimizers in a distributed database system
  publication-title: Egypt. Inf. J.
– ident: 10.1016/j.ins.2019.10.043_bib0033
– ident: 10.1016/j.ins.2019.10.043_bib0035
– start-page: 337
  year: 2014
  ident: 10.1016/j.ins.2019.10.043_bib0006
  article-title: Orca: a modular query optimizer architecture for big data
– volume: 9
  start-page: 1401
  issue: 13
  year: 2016
  ident: 10.1016/j.ins.2019.10.043_bib0007
  article-title: The MemSQL query optimizer: a modern optimizer for real-time analytics in a distributed database
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3007263.3007277
– volume: 11 (6)
  start-page: 691
  year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0022
  article-title: Distributed evaluation of subgraph queries using worstcase optimal lowmemory dataflows
– volume: 22
  start-page: 47
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0025
  article-title: A set-based genetic algorithm for interval many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2634625
– start-page: 996
  year: 2010
  ident: 10.1016/j.ins.2019.10.043_bib0005
  article-title: Hive - a petabyte scale data warehouse using hadoop
– volume: 10
  start-page: 445
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2019.10.043_bib0014
  article-title: Clay: fine-grained adaptive partitioning for general database schemas
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3025111.3025125
– year: 2018
  ident: 10.1016/j.ins.2019.10.043_bib0031
  article-title: Clinical decision support system query optimizer using hybrid firefly and controlled genetic algorithm
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 10
  start-page: 1106
  issue: 10
  year: 2017
  ident: 10.1016/j.ins.2019.10.043_bib0015
  article-title: Slalom: coasting through raw data via adaptive partitioning and indexing
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3115404.3115415
– ident: 10.1016/j.ins.2019.10.043_bib0004
– volume: 10
  start-page: 589
  issue: 5
  year: 2017
  ident: 10.1016/j.ins.2019.10.043_bib0019
  article-title: AdaptDB: adaptive partitioning for distributed joins
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3055540.3055551
– ident: 10.1016/j.ins.2019.10.043_bib0002
– start-page: 17
  year: 2015
  ident: 10.1016/j.ins.2019.10.043_bib0013
  article-title: Locality-aware partitioning in parallel database systems
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2019.10.043_bib0028
  article-title: Interval multiobjective optimization with memetic algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2951520
SSID ssj0004766
Score 2.350528
Snippet The quality of fragments allocation is key for improving performance of join query in distributed database. Current strategies concentrate on using heuristic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1249
SubjectTerms Distributed database
Fragments allocation
Genetic algorithm
Query optimization
Robustness
Title A general fragments allocation method for join query in distributed database
URI https://dx.doi.org/10.1016/j.ins.2019.10.043
Volume 512
WOSCitedRecordID wos000504778300076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5QAHBAVEW4p8QBxYpUqcZB0fV6h8VFXFoUh7i-zYpokqb7XdRf35zMR2Nm0BARKXKLLi3cjzPPHMvJkh5I0UUy5twRKhM5kUmmWJYjJNZC711NjS2KJPFD7hp6fVfC6-hHDBVd9OgDtXXV-Ly_8qahgDYWPq7F-Ie_hRGIB7EDpcQexw_SPBz7ArMnqaJnYpv_kMNoyue99caBndswu7Resm8F1Y9rl_GkvoYvcrOIIib1TFuE0Xye5DouMkfDeH8_hH6QM4rVvJxcDxadc9g8-4rjWbwT4cci7d-Vq2d9zWxxGtwREBVmd6g9QxZMjcIHCm_kFfivfQeCVbcZZMme_SFbVwGdjUXo9iS-zRNzljXgve0ffe9dCBkYKl1zNxiEw9X_fpVhltjEr3BhScWDO0Au-TbcZLAcp8e_b5aH68yablPsId3zzGwntW4K0_-vlpZnRCOXtCHgfTgs48JJ6Se8btkEejgpM75CCkqdC3dCROGhT8M3IyowE8dAAP3YCHevBQmEkRPLQHD4WbEXhoBM9z8vXD0dn7T0not5E0TPBVYrnOMltWjVSwc5kVMMCYAhNXaMu4MEqgx7BsZCkqBYYFUypXTcqk0VWjmvwF2XILZ14Smtt8WhldZprLQhaFUExzZaw2kiHheZekcd3qJhSjx54oF3VkHXY1LHWNS41DsNS75N0w5dJXYvndw0UURh22hD8i1oCcX0_b-7dp--ThZkO8Ilur5dockAfN91V7tXwd8PUDud-Y8Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+fragments+allocation+method+for+join+query+in+distributed+database&rft.jtitle=Information+sciences&rft.au=Gao%2C+Jintao&rft.au=Liu%2C+Wenjie&rft.au=Li%2C+Zhanhuai&rft.au=Zhang%2C+Jian&rft.date=2020-02-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=512&rft.spage=1249&rft.epage=1263&rft_id=info:doi/10.1016%2Fj.ins.2019.10.043&rft.externalDocID=S0020025519310114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon