Accelerating page loads via streamlining JavaScript engine for distributed learning
Distributed learning based on JavaScript-based frontends is typically implemented at the endpoint to maximize performance. Yet, JavaScript-based frontends often experience suboptimal performance. To reconcile these disparities in performance between EDGE and endpoint deployments, strategic optimizat...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 675; S. 120713 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.07.2024
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Distributed learning based on JavaScript-based frontends is typically implemented at the endpoint to maximize performance. Yet, JavaScript-based frontends often experience suboptimal performance. To reconcile these disparities in performance between EDGE and endpoint deployments, strategic optimization is essential, particularly for preserving privacy in distributed learning. Real-time streaming optimizations are imperative to align the performance of disparate components for smooth integration. The reliance on JavaScript for various web functionalities can lead to increased resource consumption and slower page loads. Thus, we introduce a streamlined JavaScript engine designed to optimize structural patterns in JavaScript code, with three key enhancements. Firstly, we reduce the computational burden of the JavaScript engine necessary for setting up the browser's runtime environment. Secondly, we refine the parsing process for specific code patterns, boosting the efficiency of our lightweight engine. Thirdly, we streamline the Inter-Process Communication (IPC) to maintain high performance, even with limited memory resources. Our evaluations demonstrate that our approach reduces the median Total Computation Time (TCT) by 45.2%, and surpasses existing leading solutions, Siploader and Prepack, with improvements ranging from 1.13× to 1.39×. |
|---|---|
| ISSN: | 0020-0255 1872-6291 |
| DOI: | 10.1016/j.ins.2024.120713 |